

53

Abb. 40:

Schnitt durch den 3. Erzhorizont in einem Teilabschnitt der Zuflußsenke "Breite Heide-Dürrer Grund"

ten lithologisch-radiometrischen Bohrlochschnitten sind derartige Lager schicht- bis linsenförmig ausgebildet. Die Lager sind ca. 50 bis 150 m lang und 1-10 m mächtig. Sie sind mit unregelmäßigen Begrenzungen kulissenartig neben- und übereinander liegend in den terrestrischen Schichtenverband eingeordnet. Dabei ist zu erkennen, daß sie sich bevorzugt im oberen Teil der Flußauenschichten dicht unter der Decke der grundwasserstauenden See-Sumpfablagerungen konzentrieren. Auf diesem Niveau sind die Erzlager mehrheitlich im Dach jener Sandsteinkomplexe verbreitet, die sich in hoher Mächtigkeit aus den rotbuntfarbigen konglomeratischen Basisschichten kuppelartig nach oben bis in die See-Sumpfablagerungen hineinerstrecken und die eigentliche Flußbettfazies in den Zuflußsenken verkörpern. Außerdem sind sie an die seitlichen Verzahnungen der sandigen Flußbett- mit der kohligschluffigen See-Sumpf-Fazies gebunden. In der hydrogeologischen Gliederung nehmen sie die oberen und seitlichen Begrenzungen des 5. Grundwasserleiters ein.

Die Erzlager sind in Bohrlochschnitten durch die cenomane Schichtenfolge auf der Grundlage von Bohrkerndokumentation und der Bohrlochradiometrie dargestellt. In der Zuflußsenke "Bahra-Kirchberg" bilden sie die in Abb. 39 gezeigte Nebenlagerstätte Pirna. In der Abb. 40 nehmen sie einen beckenwärtigen Abschnitt der Zuflußsenke "Breite Heide" ein. In beiden Profilen sind sie ohne die Existenz der zwei oberen Erzhorizonte ausgebildet. In der Hauptlagerstätte sind sie im Liegenden der oberen Erzhorizonte an die dortigen Flußverläufe gebunden. Die Abb. 47 zeigt die Urankonzentrierungen daselbst in der Zuflußsenke "Schüsselgrund-Leupoldishain" und die Abb. 48 in der Senke "Schacht 387-Forsthausweg" lokalisiert.

Jenseits ihrer Konturen klingen die Vererzungen allmählich oder unvermittelt aus. Ihre Bindung an bestimmte Verlaufsabschnitte der Zuflußsenken ist weniger auf dortige Besonderheiten in der faziellen Ausbildung ihrer Wirtsgesteine zurückzuführen. Vielmehr scheinen fazielle Veränderungen eine Rolle zu spielen, die im Liegenden des Erzhorizontes in beckenwärtiger Richtung vor sich gehen. So muß man betonen, daß die schon eingangs erwähnte mit häufiger Pyritbildung verbundene Grenzlinie zwischen den uranführenden Flußauen- und rotbuntfarbigen Basisschichten nicht niveaubeständig ist. Sie läuft durch die stratigraphischen Glieder des Profils hindurch. Die Grenzlinie sinkt beckenwärts bis in die Vererzungskonturen hinein tief ab. Dahinter, in den zentralen Depressionsabschnitten, verläuft sie unterhalb der Basisschichten in der präcenomanen Verwitterungskruste. Dagegen steigt sie in der Gegenrichtung beckenrandwärts auf das umrahmende Grundgebirge zu bis in das Niveau der Flußauenschichten auf. Im Zusammenhang mit der zunehmenden Rotfärbung der Sedimente greift in gleicher Richtung auch die Geröllführung auf jüngere Schichten über. Die Vorder- und Rückseiten der Vererzungsflächen unterscheiden sich demzufolge im lithologischen und geochemischen Charakter des terrestrischen Schichtenprofils. An den beckenwärtigen Rückseiten überwiegen reduzierende und an den randwärtigen Vorderseiten oxidierende Bedingungen im Profil. Die Vererzungen sind offensichtlich an die Zone des Übergangs von dem einen in das andere sedimentäre Milieu gebunden. Sie belegen in der lithologisch-faziellen Zonalität am Rande der Paläodepression eine feste Position.

Das Uran dürfte, im Grundwasser gelöst, den Erzflächen an ihrer oxidierenden Vorderseite über die Sandsteinkomplexe der Zuflußsenken kanalisiert zugeführt worden sein. An den zunehmend kohlenstoffhaltig-schluffigen Kontakten der Sandsteinbänke wurde es abgeschieden und angereichert. Die gewöhnlich graufarbigen Sandsteine erscheinen örtlich weißverfärbt und an ihren dunkelgrauen schluffigen Kontakten ausgeblichen. Wahrscheinlich handelt es sich bei diesen Merkmalen um die von sauerstoffhaltigen Wässern sichtbar hinterlassenen Spuren. An der Vorderseite der Vererzungsflächen nimmt die Uranführung der Sedimente allmählich zu. Nach überschrittenem Höhepunkt bricht sie dagegen an ihrer Rückenseite ziemlich unvermittelt ab. Dennoch setzt sich die charakteristische vererzungsgünstige Wechsellagerungsfazies in unveränderter Permeabilität und mit noch leicht ansteigenden Gehalten an inkohlter organischer Substanz in beckenwärtiger Richtung, gewissermaßen "flußabwärts", weiter fort. Dieses besagt, daß diese Fazies für das migrierende Uran eine undurchlässige Reduktions- und Adsorptionsbarriere bildete. Die Erzkörper des 3. Horizontes sind

dieser Barriere aufgeprägt. Auf die Bedeutung der Barrierenfunktion der cenomanen Schichtenfolge für die Herausbildung der Lagerstätte insgesamt wird aus geochemischer Sicht in einem späteren Abschnitt noch einmal eingegangen.

4.3 Der 2. und 1. Erzhorizont

In der oberen Lagerstätten-Etage überdecken die mit dem Unterquadersandstein bzw. 4. Grundwasserleiter verbundenen Vererzungen des 2. und 1. Horizontes diskordant die erzführenden linearen Zuflußsenken des 3. Horizontes. Durch die Stufe der grundwasserstauenden See-Sumpfablagerungen von den letzteren getrennt, folgen sie über diesen mit einem Abstand von nur wenigen Metern im lithologischen Profil. In Abhängigkeit von der flächigen Sedimentation des Wirtsgesteines in einem marinen Milieu sind sie aushaltender und zusammenhängender als im 3. Horizont ausgebildet. Erst mit ihnen erreicht die Erzführung der Schichtenfolge die Dimension der abbauwürdigen Lagerstätte. Ihre Abbaukontur wurde nach den industriellen Mindestwerten von Urangehalt (0,035 %) und Mächtigkeit (1,0 m) festgelegt. Sie bildet den summarischen Grundriß für die Lagerstätte (Abb. 29, 33, 34, 41).

Die Kontur schließt mit Ausnahme der westlich vorgelagerten Kleinlagerstätte "Pirna" die Vererzungsflächen des 3. Horizontes größtenteils mit in sich ein (Abb. 29). Meridional in der Schichtenneigung streichend, stimmt sie geologisch mit der Auskeilzone des Unterquaders an der Grundgebirgsschwelle der Bahra-Königsteiner Halbinsel überein. Nach Osten endet sie an der Auskeillinie dieser Sandsteinbank und nach Westen etwa am Verlauf ihrer 12-Meter-Mächtigkeitsisolinie, die beckenwärts noch weiter bis auf ca. 20 Meter ansteigt. Nach Norden erstreckt sich die Erzführung längs der Bahra-Königsteiner Halbinsel bis zu deren nördlichem Ende. Zwischen dieser und der Wehlener Insel verbindet der Unterquadersandstein die Pirnaer mit der benachbarten Lausitz-Hinterhermsdorfer Senke im Osten. Er unterbricht an dieser Stelle die seitliche Abgrenzung des 4. Grundwasserleiters in der Pirnaer Senke. Hier an der Öffnung der Grundwasserleiters zerfällt die Erzkontur, wie in Abb. 43 ersichtlich, in einzelne Teilabschnitte, darunter in das gesondert erkundete Erzvorkommen "Thürmsdorf". Von da an setzt sich die Anreicherungszone als eine sich abschwächende Urananomalie noch 5 km weiter in ihrer Richtung fort. Sie streicht als Lagerstättenaureole zunächst noch meridional und lenkt längs der Wehlener Insel nach Nordwesten ein. Nach der Unterquerung des Elbelaufes klingt sie an der Ortslage des Dorfes Wehlen aus (Abb. 33). Das südliche Ende der Kontur ist geologisch nur schwer zu begründen, doch offensichtlich hauptsächlich durch das Aussetzen der vererzungsgünstigen Sedimente im Schichtenprofil bedingt.

Abb. 41: Struktureller Grundriß der Lagerstätte nach A. I. WASSILJEV (1973)

Der Unterquader, der beide Erzhorizonte im Profil der Lagerstätte voneinander trennt, hebt sich, wie eingangs schon erwähnt, durch seine lebhafte und veränderliche Färbung aus der Schichtenfolge hervor. Stellenweise sieht er, wie die Flußauen-Sandsteine des 3. Erzhorizontes in seinem Liegenden, grau- und hellgraufarbig aus. Anderenortes ist er durch Beimengungen von Limonit und Hydrohämatit himbeerrötlich und wie die Turonsandsteine in seinem Hangenden rostfleckig und roststreifig ausgebildet. Dabei hängt seine Farbgebung jeweils von der Tiefenlage unter der Erdoberfläche ab. Seine rostfleckige Beschaffenheit ist an die herausgehobenen Teile der Kreidetafel an ihrem südlichen Rand gebunden. Seine Graufärbung setzt erst in Tiefenlagen ab 200 bis 300 Metern ein. Überdeckt durch ebenfalls rostfleckigen Unterturonsandstein, geht die Limonitisierung des Unterquaders in der Paläosenke von seiner Auskeillinie an der südlichen granitischen Grundgebirgsumrahmung und außerdem von seinen Ausbissen am Hang des Gottleubatales aus. Weiter dehnt sich die Oxidation zungenförmig im Einfallen des Unterquaders tief in die Paläosenke hinein. Die Grenzlinie dieser Zunge verläuft im Osten der Senke längs der Königsteiner Schwelle. Hier durchzieht sie schlängelnd fast die gesamte Kontur der Lagerstätte axial von Süd nach Nord (Abb. 41). Noch vor dem nördlichen Ende der Kontur wendet sie sich von ihr ab und durchwindet im weit geschwungenen Bogen die Paläosenke von der Königsteiner Schwelle im Osten bis zur Copitzer Schwelle im Westen (Abb. 33).

Bei ihrer anfänglichen Beobachtung wurde die eisenoxidhydratische Fleckung und Streifung des Sandsteins für eine primäre Ausbildung gehalten. Sie kommt z. B. ähnlich vergleichbar an den Küsten rezenter Schelfmeere und auch an den Sandstränden der Ostsee vor. Ihr Ausgang im gegebenen Fall von der Erdoberfläche weist sie jedoch als eine sekundäre Erscheinung aus. Die Oxidation wurde offensichtlich durch sauerstoffhaltige, aus der südlichen Grundgebirgsumrahmung in die Kreidebasisschichten gelangende und im Unterquadersandstein beckenwärts absteigende Untergrundwässer hervorgerufen. Die Oxidhydrate wurden durch die Überführung des im Sediment enthaltenen Eisens aus seinem chemisch zweiwertigen in den dreiwertigen Zustand gebildet. So wurden durch die Sauerstoffeinwirkung z. B. vorhandener Glaukonit, Pyrit und Biotit zersetzt. In der Fachliteratur wird dieser Vorgang im Zusammenhang mit der Herausbildung sedimentärer Uranlagerstätten des Sandsteintyps als sog. "Zwischenschicht-Oxidation" bezeichnet und ausführlich dargelegt [13].

Die hier zu beschreibenden Vererzungen sind mit dem Unterquader je an das Dach und die Sohle einer derart oxidierten Zwischenschicht gebunden. Sie sind in sich und zueinander in ihrer Mächtigkeit und Intensität veränderlich ausgebildet und unterschiedlichen milieu-geographischen Lithologien aufgeprägt. Die Unterquader-Dachvererzung verläuft als 1. Erzhorizont an der Oberkante der Sandsteinbank in der Basis der marinen Übergangsschichten (t_1t_s) zum hangenden Labiatuspläner (t_1p).

Die Dachvererzung überlagert und begleitet die Erosionsdiskordanz, die im oberen Teil des Unterquaders den 4. cenomanen Großrhythmus einleitet (Tab. 3, Abb. 31). Sie ist in der "Zone der gemaserten Quarzsandsteine", $(c_{1}s_{mas})$ lokalisiert. Sie wird von der Schichtoxidation tangiert. Die Unterquader-Sohlenvererzung erstreckt sich als 2. Erzhorizont in der Sandstein-Unterlage. Sie erfaßt in Abhängigkeit von der diskordanten übergreifenden Ablagerung des Unterquaders verschiedene stratigraphische Niveaus und Lithologien. Im zentralen und nördlichen Teil der Lager-

Abb. 42: Bohrprofil 2127/80 durch das marine Cenoman jenseits der westlichen Grenze der Abbaukontur des 1. und 2. Erzhorizonts

Abb. 43: Nördliches Ende der Lagerstättenkonturen des 1. und 2. Erzhorizontes, nach W. A. FELDGUN (1973)

stätte ist sie an den lagunären Wurmsandstein (cm_1) gebunden, der hier als Unterlage des Unterquaders dient. In dieser terrestrisch-marinen Übergangsfazies ist sie besonders mächtig und intensiv ausgebildet.

Das Uran ist in beiden Horizonten grundsätzlich wie auch in der unteren Lagerstättenetage verteilt. Jedoch ist es infolge eines einfacheren lithologischen Baues der Horizonte nicht wie in der unteren Etage über eine Vielzahl vertikal aufeinanderfolgender kleiner absetziger Schluff- und Tonsteinintervalle, die die einzelnen fluviatilen Sandsteinbänke voneinander trennen, verstreut. Stattdessen ist es massiv auf je ein Intervall in Dach und Sohle von nur einer Sandsteinschicht und örtlich auch auf diese selbst konzentriert. Der Grundcharakter der Uranverteilung in den beiden Intervallen tritt am deutlichsten am Rand der Erzführung außerhalb des Einflußbereichs von Faktoren hervor, die innerhalb der Lagerstätte diese Regelmäßigkeit beeinträchtigen.

An der westlichen Flanke der Lagerstätte führt der hier noch 12 m mächtige, die beiden Erzhorizonte voneinander trennende, Unterquader in seinem Profil zwischen 4 und 10 g/t Uran. In seiner Sohle steigt nach einer scharfen lithologischen Grenze die Konzentration in der Wurmsandstein-Oberkante sprunghaft auf ca. 300 g/t an und fällt mit wachsender Entfernung von dieser Faziesgrenze zum Liegenden in derselben Fazies wieder ab. Im Abstand eines halben Meters geht die Konzentration über Zwischenwerte von 160 und 40 g/t kontinuierlich bis auf den normalen Untergrundspiegel von ca. 3 g/t zurück. Entsprechend sprunghaft erfolgt der Konzentrationsanstieg an der Unterkante der schluffigen Übergangsschichten im Sandsteindach. Die Werte springen auf 100 g/t und fallen sodann mit zunehmendem Abstand von dieser Grenze nach dem Hangenden zu im Verlauf von 2 Metern allmählich auf ihr Normalniveau zurück. Das Thorium ist, wie auch im 3. Erzhorizont, in diese abrupten Konzentrationsschwankungen nicht mit einbezogen. Seine Werte verharren im Niveau des normalen gesteinsabhängigen geochemischen Untergrundes. Sie liegen hier im marinen deutlich niedriger als im terrestrischen Cenoman.

Am Beispiel von Bohrung 2127/80 (Abb. 42) dokumentiert, kommt der beschriebenen Uranverteilung für die obere Lagerstättenetage Modellcharakter zu. Die beiden Uran-Anreicherungsintervalle entsprechen den markantesten Schichtgrenzen im gegebenen Profilabschnitt in Bezug auf Durchlässigkeit, Adsorptions- und Redoxvermögen der Ablagerungen. Der litho-geochemischen Profilaufnahme ist zu entnehmen, daß das Uran aus dem zwischenlagernden Unterquader zugeführt worden sein muß. Hier an der westlichen Flanke der Vererzungszone noch schwach entwickelt, wachsen sich beide Urananomalien bis in die zentrale Lagerstätte zu den für sie typischen mächtigen in sich gegliederte Erzhorizonten aus. So führt in der Lagerstätte, an der Bohrung Nr. 2082, der 1. Erzhorizont nach Gehalt und Mächtigkeit 0,053 % x 2,8 Meter Uran und der 2. Erzhorizont 0,17 % x 2,4 Meter. Die Uranmaxima liegen je am oberen und unteren Sandsteinkontakt des zwischenlagernden Unterquaders. Die Maxima erreichen 0,1 bzw. 0,7 % (Abb. 46, Tab. 6).

Die ausgegliederten Abbaukonturen beider Horizonte stimmen in ihren Grenzen nicht genau überein. Die Kontur des 1. Horizontes setzt am westlichen Rand der Lagerstätte erst etwa 200 Meter weiter östlich der des 2. ein (Abb. 41) und die des 2. Horizontes erstreckt sich weiter als die 1. nach Norden (Abb. 43). Auch fallen die jeweils reichsten Teilareale beider Horizonte im Grundriß nicht zusammen. Im südlichen Teil der Lagerstätte ist unter Verarmung des zweiten der erste und im nördlichen Teil unter einer Verkümmerung des ersten der zweite Erzhorizont intensiver vererzt. Nur der große mittlere Lagerstättenabschnitt enthält beide Erzintervalle gemeinsam mächtig und intensiv entwickelt, so daß sich unter diesem Gesichtspunkt die Lagerstätte in je einen ärmeren nördlichen und südlichen und einen reichen mittleren Feldesteil untergliedert. In dieser Unterteilung ist die Verarmung des zweiten Erzhorizontes im Süden auf die dortige Verbreitung vererzungsungünstiger Lithologien in der Unterquader-Sohle zurückzuführen. Die Verkümmerung des ersten Horizontes im Norden dürfte dagegen ursächlich mit der dortigen Verbindung des Unterquaders bzw. vierten Grundwasserleiters zur benachbarten Cenoman-Senke zusammenhängen. Die intensive Herausbildung beider Erzflügel gemeinsam im mittleren Feldesteil ist dagegen mit dem Auskeilen des Unterquaders an der Königsteiner Schwelle zum einen und der Verbreitung des Wurmsandsteins in seiner Sohle zum anderen zu erklären.

Im südlichen Feldesteil bilden in Abhängigkeit von der diskordanten Auflagerung des Unterquaders im stratigraphischen Profil auch ältere Schichten als der Wurmsandstein das Unterquader-Liegende. Der 2. Erzhorizont ist aus diesem Grund in dieser Region je nach dem Verlauf der Diskordanz im Schichtenprofil ortsabhängig auch an Ablagerungen der See-Sumpf-, der Flußauen- und der rotbuntfarbigen Basisschichten gebunden. In Verbindung mit dem transgressiven Übergreifen des Unterquaders auf das Grundgebirge ist er lokal, wie am äußersten Ostrand der Lagerstätte, auch dessen verwitterter Oberkante aufgeprägt. Unter derartigen Bedingungen liegt der 2. Erzhorizont geringmächtig, verarmt und absetzig vor. In einem durch die Hermsdorf-Langenhennersdorfer Zuflußsenke führendem Bohrprofil verläuft er z. B. an der Bohrung Nr. 2468 etwa 3 Meter über dem 3. Erzhorizont in den Flußauenschichten. An der Bohrung Nr. 2389 ist er bemerkenswerterweise unterhalb des Niveaus des 3. Horizontes an die rotbuntfarbigen Basisschichten gebunden. Beiderseits der Zuflußsenke, an den Bohrungen Nr. 2368 und Nr. 2330, betrifft er hingegen der Verwitterungskruste des

Markersbacher Granites (Abb. 44, Tab. 6 III). Während in all diesen Bohrungen im Dach des Unterquaders der 1. Erzhorizont in Mächtigkeiten bis 3,65 Meter Urangehalte bis 0,042 % erreicht, nimmt in der Unterquadersohle der 2. Erzhorizont nur im Fall seiner Bindung an die kohlenstoffhaltigen Flußauen- und See-Sumpfablagerungen, wie an der Bohrung Nr. 2468 der Fall, einen Erzcharakter an. Bei seiner Aufprägung auf die Stufe der rotbuntfarbigen Basisschichten verkümmert er, wie in der Bohrung Nr. 2389 zu erkennen, zu einer schwächlichen Anomalie. An den Granitzersatz gebunden (Bl. Nr. 2330, Bl. Nr. 2368) wurde er, bis 0,5 m mächtig, mit Urangehalten von 0,03-0,04 % angetroffen (Abb. 44, Tab. 6 III). Jenseits der Auskeillinie des Unterquaders und in Bereichen der faziellen Ersetzung des Labiatuspläners durch Turonsandstein greift die Uranführung am Südost- und Südrand der Lagerstätte lokal, wie an den Bohrungen Nr. 2620/88 und Nr. 2330 (Abb. 44) nachweisbar, auf die Grenzlagen zum Labiatussandstein im 3. Grundwasserleiter über. Sie bildet hier die sog. "Labiatusanomalie". Die Anomalie steht wahrscheinlich mit einer Einflußnahme des tertiären Vulkanismus auf die Lagerstätte in Zusammenhang. Auf diese Frage wird in einem späteren Abschnitt des Berichtes ausführlicher eingegangen.

Im nördlichen Feldesteil schwächt sich im Unterschied zum südlichen der 1. Erzhorizont fortschreitend ab. Während dessen Urangehalte im Erzvorkommen Thürmsdorf nur noch 100 bis 150 g/t in Mächtigkeiten bis zu einem halben Meter betragen, führt der hier im Wurmsandstein entwickelte 2. Horizont in über 2 Meter Mächtigkeit noch bis durchschnittlich 0,045 % Uran (Tab. 6 IV, Abb. 45). Die maximale Uranführung des Horizontes hat sich abweichend vom Lagerstättenmodell aus der Wurmsandsteinoberkante in seine basalen Teile verlagert. Der Wurmsandstein keilt im Unterschied zum Unterquader auch weiterhin wenig weiter ostwärts zwischen Wehlener und Königsteiner Schwelle an der Grundgebirgsumrahmung der Pirnaer Paläosenke aus.

Im mittleren Feldesteil sind beide Horizonte gemeinsam mächtig und intensiv vererzt. Hier bilden sie mit den unterlagernden Erzkörpern des 3. Horizontes der Zuflußsenken "Leupoldishain", "Schacht 387-Forsthausweg" und "Breite Heide-Dürrer Grund" den eigentlichen Kern der Lagerstätte. Die drei Horizonte sind in lithologischradiometrischen Querprofilen durch die cenomane Schichtenfolge dargestellt (Abb. 47-48). Die Profile wurden nach den Kerndokumentationen und Gamma-Messungen der Bohrungen konstruiert. Mittlere Urangehalte und Mächtigkeiten erreichen im 1. Horizont 0,06 % und 2,8 Meter und im 2. Horizont 0,17 % und 2,4 Meter (Tab. 6 I-3). Beide Horizonte legen sich im Profil mit scharfen Grenzen von oben und unten an den zwischenlagernden roststreifigen Unterquadersandstein an. Sie stehen zu diesem Zwischenintervall in einem auffälligen

I. Westlicher und zentrale											er Lagerstät	tte						
	1. Bl 1925 (siehe Abb. 49)											3. B	1. 2082	(siehe A	bb. 46)			1
Pr.Nr	Teufe (m)	Mäch-	U	Th	Erzinterv	Lit	tholo	g.	Stra-	Pr.Nr	Teufe (m)	Mäch-	U	Th	Erzinterv	Lith	olog.	Stra-
1810	101 0	2 00	g/t 5.0	g/t	m'g/tU	т			tigr.	1	von-bis	1040	110	g/t	mg/tU	т		tigr.
1010	191,0-	2,00	5,9	15,0		1				1	191,95-	0,40	110	110		1		
1811	194,0	1,00	34	17,8		Т				2	192,55	0,20	710	nb	142,0	Т		
1812	194,5	0,50	104	14,5		St	1		t ₁ t _s	3	193,00	0,45	430	nb	193,5	Т		
1813	195,0	0,50	229	11,5		St	E	Η		4	193,50	0,50	390	nb	195,0	Т	1.	
1814	205,0	10,00	10	1,8		S			cm ₂	5	193,60	0,10	390	nb	39,0	St	EH	t ₁ t _s
1815	205,1	0,10	/1	5,4	12 7	5				0 7	194,05	0,45	180	nb	274,5	St St		
1810	205,2	0,10	437	12,0	45,7 128.4	St St	2			8	194,20	0,15	980	nb	539.0	St		
1818	205,0	0,40	254	10,5	101,6	St	2.	а		9	195,00	0,25	250	nb	62,5	S		
1819	206,4	0,40	214	7,7	85,6	S				10	195,15	0,15	140	nb	21,0	S		
1820	206,9	0,50	245	8,4	122,5	S	Е			11	195,55	0,40	130	nb		S		cm ₂
1821	207,2	0,30	520	13,5	156,0	St	Η	b	cm_1	10	200,40	4,85	nb	nb		S		
1822	207,8	0,60	325	10,5	195,0	St				12	200,90	0,50	130	nb	170.0	S		
1823	208,8	1,00	300	15,5	300,0	SL S				13	201,00	0,10	6850	nb	2397.0	St St	2	
1825	209,1	0,30	90	7.2		S				15	201,35	0,55	2020	nb	1010.0	St	EH	cm ₁
1826	209,8	0,50	85	14,0		St				16	202,45	0,60	380	nb	228,0	S		1
1827	210,1	0,3	364	20,0	109,2	St				17	203,00	0,55	310	nb	170,5	St		
1828	210,15	0,05	780	14,5	39,0	St		с		18	203,30	0,30	290	nb	87,0	Т		
1829	210,4	0,25	519	25	129,75	St				19	230,40	0,10	100	nb		S		ctr
1830	210,6	0,20	93 20	37		T				1. E	EH	2,80	533		1493,5	-		
1831	211,0	0,40	29 56	14,5 77		S T			ctr ₃	2. E	H	2,40	1696		4070,5			
2 EH	212,4	3 70	306	11	1132.8	1												
2. EH	c	0,60	463		277,95													
			2. B	1. 1936	,							4. B	1. 1422	(siehe A	bb. 46)			
Pr.Nr	Teufe (m)	Mäch	- U	T	n Erzinter	v L	ithol	og.	Stra-	Pr.Nr.	Teufe	Mäch-	U	Th	Erzin-	Litl	10-	Stra-
	von-bis	tigk. r	n g/t	g/	t m [·] g/tU				tigr.		(m)	tigk.	4		terv.	lo	g.	tigr.
8	192,0-193,	3 1,30	6,6	18,)		Г			1	207.8	m 0.80	g/t	g/l ph	mg/tU	т		
1	193,65	0,35	51 70	18,)	-	I F			1	207,8-	0,80	00	no		1		
3	194,75	0.35	85	5.	9		S			2	208,95	0,45	70	nb		Т		
4	195,00	0,25	211	9,	52,75	5 5	S		t ₁ t _s	3	209,40	0,45	180	nb		Т		$t_1 t_s$
5	195,30	0,30	319	12,	95,70) 3	S	1.		4	209,90	0,50	270	nb	135,0	St		
6	195,50	0,20	160	16,	5 32,0		Γ 1	EH		5	210,00	0,10	300	nb	30,0	St	1.	
7	195,60	0,10	1250) 16,	5 125,00		St .			6 7	210,40	0,40	310 500	nb nb	124,0 50.0	St St	ЕН	
10	196,00	0,40	520	11,	208,00		St St			8	210,50	0,10	1430	nb	500.5	S	-	
11	196.80	0.55	820	14,	451.00		s			9	211,05	0,20	680	nb	136,0	s		
12	196,90	0,10	2700	21	270,00) 3	S			10	211,25	0,20	610	nb	24,4	S		
13	197,25	0,35	158	11,	0		S			11	211,45	0,20	350	nb	70,0	S		
14	197,80	0,55	215	12,	C	5	S		cm_2	12	211,95	0,50	430	nb	215,0	S		cm_2
15	197,90	0,10	590	53	,		Г с			13	212,35	0,40	210	nb nb		S		
10	198,10	0,20	226	2,	5		5			15	212,50	1.15	150	nb		S		
18	199,70	0,70	197	3.	7		S			16	214,10	0,45	110	nb		ŝ		
19	200,00	0,30	158	1,	4	5	S			17	214,65	0,55	180	nb		S		
20	200,40	0,40	89	1,	5		S			18	215,15	0,50	980	nb	490,0	S	2.	
21	200,82	0,42	133	3,	1 55,80	5 5	S			19	215,50	0,35	610	nb	213,5	St	EH	
22	201,00	0,18	3300) 22	594,0		Г	2.		20	215,75	0,25	260	nb	65,0	St		
23	201,15	0,15	730	8,	9 109,5		st 1	EH		21	216,05	0,30	170	nb		St St		cm_1
24 25	201,55	0,40	321	24	27 4'	7 5	5 St		cm ₁	23	210,50	0,45	70	nb		S		
26	201,80	0.18	29	17.)		Г		2111	24	217,55	0,55	30	nb		ŝ		
27	202,07	0,27	118	22		S	St			25	218,40	0,85	20	nb		St		
28	202,55	0,48	9,5	16,	5	S	St			26	218,75	0,35	20	nb		Т		
29	203,00	0,45	4,9	13,	2	S	St			27	219,15	0,40	80	nb		S		ctr
30	203,60	0,60	5,9	10,	,	$-\frac{5}{2}$	st c			28	219,80 T	0,65	20	nb	1284.0	2		
31	204,10	0,50	5,2	76		-	э Г		ctr ₂	1.E	H	2,33	699		768 5			
1.1	EH	2.15	642	/0	1379.4	5	•		cus	2. L		1,10	077		700,5			
2.1	EH	1,22	718		875,4	3												

Tab. 6: Metallometrische Profile durch den 1. und 2. Erzhorizont

Fortsetzung Tab. 6

					II. Zoi	ammensc	hlusses b	eider Erzl	horizont	e									
	-	-	1. I	31. 1939							2.1	Bl. 1432	2 (siehe A	bb. 48)					
Pr.Nr.	Teufe	Mäch-	U	Th	Erzin-	Lit	ho-	Stra-	Pr.Nr.	Teufe	Mäch-	U	Th	Erzin-	L	itho-	Stra-		
	(m)	tigk.			terv.	lc	g.	tigr.		(m)	tigk.		4	terv.]	og.	tigr.		
24	von-bis	m	g/t	g/t	m [·] g/tU	т			1	von-bis	m 2.80	g/t	g/t	m'g/tU	т	1	-		
24	200-	0,50	30	13,0		1			1	194,2-	5,80	29	12,5		1				
25	204,5	0.50	34	15.5		т			2	198.8	0.80	31	4.8		т				
26	205,5	0,50	58	4,6		T			3	199,6	0,80	111	16,5		Т				
27	205,95	0,45	188	7,8		Т			4	200,2	0,60	211	10,5		St				
28	206,15	0,20	162	18,5		Т		$t_1 t_s$	5	201,0	0,80	382	7,0	305,6	St		$t_1 t_s$		
29	206,50	0,35	280	8,5	98,00	St			6	201,7	0,70	396	9,2	277,2	St				
30	206,75	0,25	830	8,5	207,50	St			7	202,3	0,60	162	8,5	97,2	S				
31	206,85	0,10	3900	12,5	390,00	St			8	202,6	0,30	74	7,3	22,2	S	1.			
32	207,00	0,15	3600	14,0	540,00	S	1. TH		9	203,4	0,80	144	<1,0	115,2	S	EH			
33	207,40	0,40	090 185	12,5	270,0	5	ЕН	cm.	10	204,5	1.00	342	<1,0	247,5	s S		cma		
35	207,90	0,30	690	14.5	138.0	S		cm ₂	12	205,5	0.70	270	<1.0	189.0	s		cm ₂		
36	208,10	0,20	373	10.0	149.2	s			13	206,4	0,40	313	<1,0	125,2	S				
37	209,00	0,50	134	8,8	67,0	ŝ			14	206,8	0,40	625	<1,0	250,0	S	-	-		
38	209,40	0,40	302	47	120,8	S			15	207,5	0,70	620	3,3	434,0	S	2.			
39	209,70	0,30	62	2,4	18,6	S			16	208,3	0,80	333	~ 1,2	266,4	S	EH			
40	210,10	0,40	73	<1,0	29,2	S			17	208,7	0,40	325	<1,0	130,0	S		(cm1)		
41	210,30	0,20	69	<1,0	13,8	S			18	209,1	0,40	359	7,4	143,6	S				
42	210,50	0,20	74	<1,0	14,8	S			19	209,7	0,60	475	21	285,0	St				
43	210,70	0,20	4600	13,5	920,0	St	2		20	209,9	0,20	510	41	102,0	St		_		
44	211,00	0,30	325 380	11,0	97,5 114.0	St St	2. EH	cm_1	21	211,0	1,1	98	51		Gr		Δlt-		
45	211,50	0,30	228	16,5	45.6	т	EII		22	212,0	1,0	36	59		Gr	-	nal		
40	211,55	0.05	41	14.5	45,0	S		ctr	1 110	d 2 EH	9.7	343	57	3332.1	01		pui.		
48	211,35	0.15	33	29		T		cu	1. un	u 2. Em),1	545		5552,1					
49	211,95	0,25	7,3	33		St													
50	212,30	0,35	5,2	10		S													
51	212,50	0,20	45	102		Т													
			1,5	102															
1. und	l 2. EH	5,35	623	102	3332,5														
1. und	l 2. EH	5,35	623	102	3332,5		III. S	üdlicher l	Lagerstät	tenrand									
1. und	12. EH	5,35	623 1.1	Bl. 2368	3332,5	-	III. S	üdlicher l	Lagerstät	tenrand	2.1	B1. 2330	(siehe A	bb. 44)					
1. und Pr.Nr.	Teufe	5,35 Mäch-	623	Bl. 2368 Th	3332,5 Erzin-	Li	III. S	üdlicher I Stra-	Lagerstätt Pr.Nr	Teufe	2. l Mäch-	Bl. 2330 U	(siehe A Th	bb. 44) Erzin-	Litt	10-	Stra-		
1. und Pr.Nr.	Teufe (m) von-bis	5,35 Mäch- tigk.	1.1 623	B1. 2368 Th	3332,5 Erzin- terv. m [*] g/tU	Li	III. S tho- og.	üdlicher I Stra- tigr.	Lagerstätt Pr.Nr	tenrand Teufe (m) von-bis	2. l Mäch- tigk. m	B1. 2330 U	(siehe A Th g/t	bb. 44) Erzin- terv. m [°] g/tU	Litl lo	10- g.	Stra- tigr.		
1. und Pr.Nr. 75	Teufe (m) von-bis 227.0-	5,35 Mäch- tigk. m 0,20	1.1 623 U g/t 27	Bl. 2368 Th g/t 13.5	3332,5 Erzin- terv. m [•] g/tU	Li 1 T	III. S tho- og.	üdlicher I Stra- tigr.	Lagerstätt Pr.Nr	Teufe (m) von-bis	2.1 Mäch- tigk. m 4.50	B1. 2330 U g/t 21	(siehe A Th g/t 3.0	bb. 44) Erzin- terv. mg/tU	Liti lo	10- g.	Stra- tigr.		
1. und Pr.Nr. 75	Teufe (m) von-bis 227,0- 227,2	5,35 Mäch- tigk. m 0,20	1,5 623 1.1 U g/t 27	B1. 2368 Th g/t 13,5	3332,5 Erzin- terv. mˈg/tU	Li 1 T	III. S tho- og.	üdlicher I Stra- tigr.	Pr.Nr	tenrand (m) von-bis 148- 152,5	2. 1 Mäch- tigk. m 4,50	B1. 2330 U g/t 21	$\frac{0 \text{ (siehe A)}}{\text{Th}}$ $\frac{g/t}{3,0}$	bb. 44) Erzin- terv. m'g/tU	Litt lo	10- g.	Stra- tigr.		
1. und Pr.Nr. 75 76	2. EH Teufe (m) von-bis 227,0- 227,2 228,0	5,35 Mäch- tigk. m 0,20 0,80	1,5 623 1.1 U g/t 27 53	Bl. 2368 Th g/t 13,5 14,5	3332,5 Erzin- terv. m [·] g/tU	Li 1 T T	III. S tho- og.	üdlicher l Stra- tigr.	Pr.Nr	tenrand (m) von-bis 148- 152,5 155,6	2.1 Mäch- tigk. m 4,50 3,10	Bl. 2330 U g/t 21 14) (siehe A Th g/t 3,0 3,5	bb. 44) Erzin- terv. m [*] g/tU	Liti lo S S	10- g.	Stra- tigr.		
1. und Pr.Nr. 75 76 77	2. EH Teufe (m) von-bis 227,0- 227,2 228,0 228,5	5,35 Mäch- tigk. m 0,20 0,80 0,50	1.1 623 1.1 U g/t 27 53 55	B1. 2368 Th g/t 13,5 14,5 14,5	3332,5 Erzin- terv. m [·] g/tU	T Li 1 T T T	III. S tho- og.	üdlicher I Stra- tigr.	Lagerstätt Pr.Nr 176 177 178	Teufe (m) von-bis 148- 152,5 155,6 156,0	2.1 Mäch- tigk. m 4,50 3,10 0,40	Bl. 2330 U g/t 21 14 20	(siehe A Th g/t 3,0 3,5 3,2	bb. 44) Erzin- terv. m`g/tU	Litt lo S S S	10- g.	Stra- tigr.		
1. und Pr.Nr. 75 76 77 78	Teufe (m) von-bis 227,0- 227,2 228,0 228,5 229,0 228,5 229,0	5,35 Mäch- tigk. m 0,20 0,80 0,50 0,50	1,3 623 1.1 U g/t 27 53 55 100	Bl. 2368 Th g/t 13,5 14,5 14,5 14,5	3332,5 Erzin- terv. m [·] g/tU	T Li 1 T T T T	III. S tho- og.	üdlicher I Stra- tigr.	Lagerstätt Pr.Nr 176 177 178 179	Teufe (m) von-bis 148- 152,5 155,6 156,0 156,4	2.1 Mäch- tigk. m 4,50 3,10 0,40 0,40	Bl. 2330 U g/t 21 14 20 29	(siehe A Th g/t 3,0 3,5 3,2 3,2	bb. 44) Erzin- terv. m'g/tU	Littl lo S S S S S	no- g.	Stra- tigr.		
1. und Pr.Nr. 75 76 77 78 79 80	2. EH Teufe (m) von-bis 227,0- 227,2 228,0 228,5 229,0 229,5 230,0	5,35 Mäch- tigk. m 0,20 0,80 0,50 0,50 0,50	1,3 623 1.1 U g/t 27 53 55 100 64	Bl. 2368 Th g/t 13,5 14,5 14,5 14,5 14,5 14,5 14,5	3332,5 Erzin- terv. m·g/tU	T Li 1 T T T T T	III. S tho- og.	üdlicher I Stra- tigr.	agerstätt Pr.Nr 176 177 178 179 180	Teufe (m) von-bis 148- 152,5 155,6 156,0 156,4 156,75	2.1 Mäch- tigk. m 4,50 3,10 0,40 0,40 0,40	Bl. 2330 U g/t 21 14 20 29 430	(siehe A Th g/t 3,0 3,5 3,2 3,2 4,0	bb. 44) Erzin- terv. m'g/tU	Littl lo S S S S S S t	Ino- g.	Stra- tigr.		
1. und Pr.Nr. 75 76 77 78 79 80 81	2. EH Teufe (m) von-bis 227,0- 227,2 228,0 228,5 229,0 229,5 230,0 230,5	5,35 Mäch- tigk. m 0,20 0,80 0,50 0,50 0,50 0,50	1.1 623 1.1 9 9 7 53 55 100 64 148 230	Bl. 2368 Th g/t 13,5 14,5 14,5 14,5 14,5 14,5 14,5 14,0 15,0 15,0	3332,5 Erzin- terv. m [·] g/tU	Li 1 T T T T T T	III. S tho- og.	üdlicher I Stra- tigr.	agerstätt Pr.Nr 176 177 178 179 180 181	Teurend (m) von-bis 148- 152,5 155,6 156,0 156,4 156,75 157,10	2.1 Mäch- tigk. m 4,50 3,10 0,40 0,40 0,40 0,35 0,35 0,40	Bl. 2330 U g/t 21 14 20 29 430 685) (siehe A Th g/t 3,0 3,5 3,2 3,2 4,0 4,4 4,2	bb. 44) Erzin- terv. m·g/tU 150,5 239,75 76 4	Liti lo S S S S S S S t S t S t	Lab.	Stra- tigr. t _{1S}		
1. und Pr.Nr. 75 76 77 78 79 80 81 82	2. EH Teufe (m) von-bis 227,0- 227,2 228,0 228,5 229,0 229,5 230,0 230,5 230,75	5,35 Mäch- tigk. m 0,20 0,80 0,50 0,50 0,50 0,50 0,50 0,50 0,5	1.1 623 1.1 9 9 7 53 55 100 64 148 230 360	Bl. 2368 Th g/t 13,5 14,5 14,5 14,5 14,5 14,5 14,0 15,0 17,5 19,0	3332,5 Erzin- terv. m [·] g/tU	Li 1 T T T T T T T St	III. S tho- og.	üdlicher I Stra- tigr.	agerstätt Pr.Nr 176 177 178 179 180 181 182 182	Teufe (m) von-bis 148- 152,5 155,6 156,0 156,4 156,75 157,10 157,50	2.1 Mäch- tigk. m 4,50 3,10 0,40 0,40 0,40 0,35 0,35 0,35 0,350 0,45	BI. 2330 U g/t 21 14 20 29 430 685 191	(siehe A Th g/t 3,0 3,5 3,2 3,2 4,0 4,4 4,3,3 2,8	bb. 44) Erzin- terv. m·g/tU 150,5 239,75 76,4	Litt lo S S S S S S S t S t S t S t S t S	Lab. An.	Stra- tigr. t _{1S} t _{1P}		
1. und Pr.Nr. 75 76 77 78 79 80 81 82 83	2. EH Teufe (m) von-bis 227,0- 227,2 228,0 228,5 229,0 229,5 229,0 229,5 230,0 230,5 230,75 230,92	5,35 Mäch- tigk. m 0,20 0,80 0,50 0,50 0,50 0,50 0,50 0,50 0,5	i,j i 623 1.1 U g/t 27 53 55 100 64 148 230 360 950 950	Bl. 2368 Th g/t 13,5 14,5 14,5 14,5 14,0 15,0 17,5 19,0 21	3332,5 Erzin- terv. m·g/tU 115 90 161,5	Li 1 T T T T T T St St	III. S tho- og.	üdlicher I Stra- tigr.	agerstätt Pr.Nr 176 177 178 179 180 181 181 182 183 184	Teuren (m) von-bis 148- 152,5 155,6 156,0 156,4 156,75 157,10 157,50 157,95 159,50	2.1 Mäch- tigk. m 4,50 3,10 0,40 0,40 0,40 0,35 0,35 0,35 0,40 0,45 1,55	Bl. 2330 U 21 14 20 29 430 685 191 8,2 10.5) (siehe A Th g/t 3,0 3,5 3,2 3,2 4,0 4,4 4,4 3,3 2,8 2,2	bb. 44) Erzin- terv. m'g/tU 150,5 239,75 76,4	Litt lo S S S S S S S t S t S t S t S t S s S	Lab.	Stra- tigr. t _{1s} t _{1ps1} t _{1p-} Aquiy.		
1. und Pr.Nr. 75 76 77 78 79 80 81 82 83 84	2. EH Teufe (m) von-bis 227,0- 227,2 228,0 228,5 229,0 228,5 229,0 229,5 230,0 230,5 230,75 230,92 231,05	5,35 Mäch- tigk. m 0,20 0,80 0,50 0,50 0,50 0,50 0,50 0,50 0,5	i,j 623 1.1 U g/t 27 53 55 100 64 148 230 360 950 1600	Bl. 2368 Th g/t 13,5 14,5 14,5 14,5 14,0 15,0 17,5 19,0 21 26	3332,5 Erzin- terv. mˈg/tU 115 90 161,5 208	Li 1 T T T T T T T St St St	III. S tho- og. 1. EH	üdlicher Stra- tigr.	agerstätt Pr.Nr 176 177 178 179 180 181 182 183 184 185	Teurand Teufe (m) von-bis 148- 152,5 155,6 156,0 156,4 156,75 157,10 157,50 157,95 159,50 159,85	2.1 Mäch- tigk. m 4,50 3,10 0,40 0,40 0,40 0,45 0,35 0,40 0,45 1,55 0,35	Bl. 2330 U 21 14 20 29 430 685 191 8,2 10,5 15,5) (siehe A Th 3,0 3,5 3,2 3,2 4,0 4,4 3,3 2,8 2,2 3,1	bb. 44) Erzin- terv. m'g/tU 150,5 239,75 76,4	Liti lo S S S S S S S S S S S S S S S S S	Lab.	Stra- tigr. t ₁ s t ₁ ps ₁ t ₁ p- Aquiv.		
1. und Pr.Nr. 75 76 77 78 79 80 81 82 83 84 85	2. EH Teufe (m) von-bis 227,0- 227,2 228,0 228,5 229,0 229,5 229,0 229,5 230,0 230,5 230,75 230,92 231,05 231,20	5,35 Mäch- tigk. m 0,20 0,50 0,50 0,50 0,50 0,50 0,50 0,50	i,b 623 1.1 g/t 27 53 55 100 64 148 230 360 950 1600 1400	BI. 2368 Th g/t 13,5 14,5 14,5 14,5 14,0 15,0 17,5 19,0 21 26 34	3332,5 Erzin- terv. m'g/tU 115 90 161,5 208 210	Li 1 T T T T T T St St St St	III. S tho- og. 1. EH	üdlicher Stra- tigr.	agerstätt Pr.Nr 77 176 177 178 179 180 181 182 183 184 185 186	Teurand Teufe (m) von-bis 148- 152,5 155,6 156,0 156,4 156,75 157,10 157,50 157,50 157,95 159,50 159,85 159,95	2.1 Mäch- tigk. m 4,50 3,10 0,40 0,40 0,45 0,40 0,45 1,55 0,35 0,10	Bl. 2330 U 21 14 20 29 430 685 191 8,2 10,5 15,5 3000	g/t 3,0 3,5 3,2 4,0 4,4 3,3 2,8 2,2 3,1 39	bb. 44) Erzin- terv. m'g/tU 150,5 239,75 76,4 300,0	Litillo S S S S S S S S S S S S S S T	Lab An.	Stra- tigr. t ₁ s t ₁ ps ₁ t ₁ p- Aquiv. t ₁ t _s		
1. und Pr.Nr. 75 76 77 78 79 80 81 82 83 84 85 86	2. EH Teufe (m) von-bis 227,0- 227,2 228,0 228,5 229,0 229,5 230,0 230,5 230,75 230,75 230,92 231,05 231,20 231,37	5,35 Mäch- tigk. m 0,20 0,80 0,50 0,50 0,50 0,50 0,50 0,50 0,5	i,b 623 1.1 U g/t 27 53 55 100 64 148 230 360 950 1600 1400 605	BI. 2368 Th g/t 13,5 14,5 14,5 14,5 14,0 15,0 17,5 19,0 21 26 34 6,7	3332,5 Erzin- terv. m'g/tU 115 90 161,5 208 210 102,85	Lia T T T T T T T St S S	III. S tho- og.	üdlicher Stra- tigr.	Lagerstätt Pr.Nr Pr.Nr 176 177 178 179 180 181 182 183 184 185 186 187	Teufe (m) von-bis 148- 152,5 155,6 156,0 156,7 156,75 157,10 157,50 157,95 159,95 159,95 160,25	2.1 Mäch- tigk. m 4,50 3,10 0,40 0,40 0,40 0,35 0,35 0,40 0,45 1,55 0,35 0,10 0,30	Bl. 2330 U 21 14 20 29 430 685 191 8,2 10,5 15,5 3000 244,0	g/t 3,0 3,5 3,2 4,0 4,4 3,3 2,8 2,2 3,1 39 15	bb. 44) Erzin- terv. m'g/tU 150,5 239,75 76,4 300,0 73,2	Littl lo S S S S S S S S S S S S S T S S	10- g. Lab. An. EH	Stra- tigr. t ₁ s t ₁ ps ₁ t ₁ p- Aquiv. t ₁ t _s		
1. und Pr.Nr. 75 76 77 78 79 80 81 82 83 84 85 86 87	2. EH Teufe (m) von-bis 227,0- 228,0 228,5 229,0 229,5 230,0 230,5 230,75 230,75 230,92 231,05 231,20 231,37 231,60	5,35 Mäch- tigk. m 0,20 0,80 0,50 0,50 0,50 0,50 0,50 0,50 0,25 0,17 0,13 0,15 0,17 0,23	i,b 623 1.1 U g/t 27 53 55 100 64 148 230 360 950 1600 1400 605 36	BI. 2368 Th g/t 13,5 14,5 14,5 14,5 14,0 15,0 17,5 19,0 21 26 34 6,7 2,6	3332,5 Erzin- terv. m'g/tU 115 90 161,5 208 210 102,85	Li 1 T T T T T T St St St S S	III. S tho- og. 1. EH	üdlicher Stra- tigr. t ₁ t _s	Lagerstätt Pr.Nr Pr.Nr 176 177 178 179 180 181 182 183 184 185 186 187 188	Teure (m) von-bis 148- 152,5 155,6 156,0 156,0 156,75 157,10 157,50 157,50 157,95 159,85 159,95 160,25 161,00	2.1 Mäch- tigk. m 4,50 3,10 0,40 0,40 0,35 0,35 0,40 0,45 1,55 0,35 0,10 0,30 0,75	Bl. 2330 U 21 14 20 29 430 685 191 8,2 10,5 15,5 3000 244,0 15	g/t 3,0 3,5 3,2 4,0 4,4 3,3 2,8 2,2 3,1 39 15 1,2	bb. 44) Erzin- terv. m'g/tU 150,5 239,75 76,4 300,0 73,2	Litt lo S S S S S S S S S S S S S S S T S	10- g. Lab. An. EH	Stra- tigr. t ₁ s t ₁ ps ₁ t ₁ p- Aquiv. t ₁ t _s		
1. und Pr.Nr. 75 76 77 78 79 80 81 82 83 84 85 86 87 88 87 88	2. EH Teufe (m) von-bis 227,0- 228,0 228,5 229,0 229,5 230,0 230,5 230,75 230,92 231,05 231,20 231,37 231,60 232,15 232,25	5,35 Mäch- tigk. m 0,20 0,80 0,50 0,50 0,50 0,50 0,50 0,50 0,25 0,17 0,13 0,15 0,17 0,23 0,55 0,55	i,b 623 1.1 U g/t 27 53 55 100 64 148 230 360 950 1600 1400 605 36 183	BI. 2368 Th g/t 13,5 14,5 14,5 14,5 14,5 14,0 15,0 21 26 34 6,7 2,6 <1,0 ()	3332,5 Erzin- terv. m'g/tU 115 90 161,5 208 210 102,85	Li 1 T T T T T St St S S S S S S	III. S tho- og. 1. EH	udlicher Stra- tigr. t ₁ t _s	 Pr.Nr 176 177 178 179 180 181 182 183 184 185 186 187 188 189	tenrand Teufe (m) von-bis 148- 152,5 155,6 156,0 156,4 156,75 157,10 157,55 159,55 159,95 160,25 161,00 162,10	2.1 Mäch- tigk. m 4,50 3,10 0,40 0,40 0,40 0,40 0,35 0,35 0,40 0,45 1,55 0,35 0,10 0,30 0,75 1,10	Bl. 2330 U g/t 21 14 20 29 430 685 191 8,2 10,5 15,5 3000 244,0 15 6,9	g/t 3,0 3,5 3,2 4,0 4,4 3,3 2,8 2,2 3,1 39 15 1,2 1,4	bb. 44) Erzin- terv. m'g/tU 150,5 239,75 76,4 300,0 73,2	Litt lo S S S S S S S S S S S S S S S S S S	10- g. Lab. An. EH	Stra- tigr. t ₁ s t ₁ ps ₁ t ₁ p- Aquiv. t ₁ t _s		
1. und Pr.Nr. 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	2. EH Teufe (m) von-bis 227,0- 228,0 229,5 230,0 230,5 230,75 230,92 231,05 231,20 231,37 231,60 232,15 232,90	5,35 Mäch- tigk. m 0,20 0,80 0,50 0,50 0,50 0,50 0,50 0,50 0,5	i,b 623 1.1 U g/t 27 53 55 100 64 148 230 360 950 1600 1400 605 36 183 28 70	Bl. 2368 Th g/t 13,5 14,5 14,5 14,5 14,5 14,0 15,0 17,5 19,0 21 26 34 6,7 2,6 <1,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2	3332,5 Erzin- terv. m'g/tU 115 90 161,5 208 210 102,85	Li 1 T T T T T St S S S S S S S S S S S	III. S tho- og. 1. EH	t ₁ t _s	Lagerstätt Pr.Nr 777 78 179 180 181 182 183 184 185 186 187 188 189 190	tenrand Teufe (m) von-bis 148- 152,5 155,6 156,0 156,4 156,75 157,10 157,55 159,50 159,85 159,95 160,25 161,00 162,10 163,20 164,60	2.1 Mäch- tigk. m 4,50 3,10 0,40 0,40 0,40 0,40 0,35 0,40 0,45 1,55 0,35 0,10 0,30 0,75 1,10 1,10	Bl. 2330 U g/t 21 14 20 29 430 685 191 8,2 10,5 15,5 3000 244,0 15 6,9 18	g/t 3,0 3,5 3,2 4,0 4,4 3,3 2,8 2,2 3,1 39 15 1,2 1,4 <1,0	bb. 44) Erzin- terv. m'g/tU 150,5 239,75 76,4 300,0 73,2	Liti lo S S S S S S S S S S S S S S S S S S	Lab. An. EH	Stra- tigr. t ₁ s t ₁ ps ₁ t ₁ p- Aquiv. t ₁ t _s cm ₂		
1. und Pr.Nr. 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 90	2. EH Teufe (m) von-bis 227,0- 227,2 228,0 229,5 230,0 230,5 230,75 230,92 231,05 231,20 231,37 231,60 232,15 232,90 233,20 233,20	5,35 Mäch- tigk. m 0,20 0,80 0,50 0,50 0,50 0,50 0,50 0,50 0,5	i,b 623 1.1 U g/t 27 53 55 100 64 148 230 360 950 1600 1400 605 36 183 28 70 44	Bl. 2368 Th g/t 13,5 14,5 14,5 14,5 14,5 14,5 14,0 15,0 17,5 19,0 21 26 34 6,7 2,6 <1,0 2,0 ~1,0 ~2,0 ~2,0 ~2,0 ~2,0 ~2,0 ~2,0 ~2,0 ~2,0	3332,5 Erzin- terv. m'g/tU 115 90 161,5 208 210 102,85	Li 1 T T T T T T T T T St S S S S S S S S S	III. S tho- og. 1. EH	t ₁ t _s	Lagerstätt Pr.Nr Pr.Nr 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 102	tenrand von-bis 148- 152,5 155,6 156,0 156,4 156,75 157,10 157,55 159,50 159,85 159,95 160,25 161,00 162,10 163,20 164,60 166,10	2.1 Mäch- tigk. m 4,50 3,10 0,40 0,40 0,40 0,40 0,35 0,35 0,40 0,45 1,55 0,35 0,10 0,30 0,75 1,10 1,10 1,10 1,50	Bl. 2330 U g/t 21 14 20 29 430 685 191 8,2 10,5 15,5 3000 244,0 15 6,9 18 16 32	g/t 3,0 3,5 3,2 4,0 4,4 3,3 2,8 2,2 3,1 39 15 1,2 1,4 <1,0	bb. 44) Erzin- terv. m [*] g/tU 150,5 239,75 76,4 300,0 73,2	Liti lo S S S S S S S S S S S S S S S S S S	10- g. Lab. An. EH	Stra- tigr. t ₁ s t ₁ ps ₁ t ₁ p- Aquiv. t ₁ t _s cm ₂		
1. und Pr.Nr. 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92	2. EH Teufe (m) von-bis 227,0- 227,2 228,0 229,5 230,0 230,5 230,75 230,92 231,05 231,20 231,37 231,60 232,15 232,90 233,20 233,20 234,00 235,20	5,35 Mäch- tigk. m 0,20 0,80 0,50 0,50 0,50 0,50 0,50 0,50 0,5	i,b 623 1.1 U g/t 27 53 55 100 64 148 230 360 950 1600 1400 605 36 183 28 70 44 33	Bl. 2368 Th g/t 13,5 14,5 14,5 14,5 14,5 14,5 14,0 15,0 17,5 19,0 21 26 34 6,7 2,6 <1,0 2,0 ~1,3 2,0 ~1,3 2,0 ~1,3 2,0 ~1,3 ~1,4 ~1,5 ~1,6 ~1,7 ~1,5 ~1,0 ~1,3 ~1,3 ~1,3 ~1,5 ~1,5 ~1,5 ~1,5 ~1,6 ~1,7 ~1,5 ~1,6 ~1,7 ~1,7 ~1,3 ~1,7 ~,7 ~,7 ~,7 ~,7 ~,7 ~,7 ~,7 ~	3332,5 Erzin- terv. m'g/tU 115 90 161,5 208 210 102,85	Li I T T T T T T T T T T St S S S S S S S S	III. S tho- og. 1. EH	t ₁ t _s	Lagerstätt Pr.Nr 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193	tenrand von-bis 148- 152,5 155,6 156,0 156,4 156,75 157,10 157,50 157,95 159,50 159,95 160,25 161,00 162,10 163,20 164,60 166,10 166,10	2.1 Mäch- tigk. m 4,50 3,10 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0	Bl. 2330 U g/t 21 14 20 29 430 685 191 8,2 10,5 15,5 3000 244,0 15 6,9 18 16 32 39	g/t 3,0 3,5 3,2 3,0 3,5 3,2 4,0 4,4 3,3 2,8 2,2 3,1 39 15 1,2 1,4 <1,0	bb. 44) Erzin- terv. m [*] g/tU 150,5 239,75 76,4 300,0 73,2	Liti lo S S S S S S S S S S S S S S S S S S	10- g. Lab. An. EH	Stra- tigr. t ₁ s t ₁ ps ₁ t ₁ p- Aquiv. t ₁ t _s cm ₂		
1. und Pr.Nr. 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93	2. EH Teufe (m) von-bis 227,0- 227,2 228,0 229,5 230,0 230,5 230,75 230,92 231,05 231,20 231,37 231,60 232,15 232,90 233,20 233,20 235,20 235,20 236,10	5,35 Mäch- tigk. m 0,20 0,80 0,50 0,50 0,50 0,50 0,50 0,50 0,5	i,b 623 1.1 U g/t 27 53 55 100 64 148 230 360 950 1600 1400 605 36 183 28 70 44 33 40	Bl. 2368 Th g/t 13,5 14,5 14,5 14,5 14,5 14,5 14,5 14,0 15,0 17,5 19,0 21 26 34 6,7 2,6 <1,0 2,0 ~1,3 2,0 <1,0 <1,0 <1,0	3332,5 Erzin- terv. m'g/tU 115 90 161,5 208 210 102,85	Li I T T T T T T T T T T T S t S S S S S S S	III. S tho- og. 1. EH	t ₁ t _s	Lagerstätt Pr.Nr 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 192 193 194	tenrand von-bis 148- 152,5 155,6 156,0 156,4 156,75 157,10 157,50 157,95 159,95 160,25 161,00 162,10 163,20 164,60 166,10 166,20 166,45	2.1 Mäch- tigk. m 4,50 3,10 0,40 0,40 0,40 0,35 0,35 0,40 0,45 1,55 0,35 0,10 0,30 0,75 1,10 1,10 1,40 1,40 0,10 0,25	Bl. 2330 U g/t 21 14 20 29 430 685 191 8,2 10,5 15,5 3000 244,0 15 6,9 18 16 32 39 86	g/t 3,0 3,5 3,2 3,0 3,5 3,2 4,0 4,4 3,3 2,8 2,2 3,1 39 15 1,2 1,4 <1,0	bb. 44) Erzin- terv. m [•] g/tU 150,5 239,75 76,4 300,0 73,2	Liti lo S S S S S S S S S S S S S S S S S S	10- g. Lab. An. EH	Stra- tigr. t ₁ s t ₁ ps ₁ t ₁ p- Aquiv. t ₁ t _s cm ₂		
1. und Pr.Nr. 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	2. EH Teufe (m) von-bis 227,0- 227,2 228,0 229,5 230,0 230,5 230,75 230,92 231,05 231,20 231,37 231,60 232,15 232,90 233,20 233,20 233,20 235,20 235,20 235,20 235,20 235,20 235,20 237,0	5,35 Mäch- tigk. m 0,20 0,80 0,50 0,50 0,50 0,50 0,50 0,50 0,5	i,b 623 1.1 U g/t 27 53 55 100 64 148 230 360 950 1600 1400 605 36 183 28 70 44 33 40 61	Bl. 2368 Th g/t 13,5 14,5 14,5 14,5 14,5 14,5 14,0 15,0 17,5 19,0 21 26 34 6,7 2,6 <1,0 2,0 ~1,3 2,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,	3332,5 Erzin- terv. m'g/tU 115 90 161,5 208 210 102,85	Li I T T T T T T T T T T T S t S S S S S S S	III. S tho- og.	t ₁ t _s	 Pr.Nr Pr.Nr 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195	tenrand von-bis 148- 152,5 155,6 156,0 156,4 156,75 157,10 157,95 159,95 160,25 161,00 162,10 163,20 166,10 166,20 166,45 166,70	2.1 Mäch- tigk. m 4,50 3,10 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0	Bl. 2330 U g/t 21 14 20 29 430 685 191 8,2 10,5 15,5 3000 244,0 15 6,9 18 16 32 39 86 400	g/t 3,0 3,5 3,2 3,0 3,5 3,2 4,0 4,4 3,3 2,8 2,2 3,1 39 15 1,2 1,4 <1,0	bb. 44) Erzin- terv. m [·] g/tU 150,5 239,75 76,4 300,0 73,2	Liti lo S S S S S S S S S S S S S S S S S S	10- g. Lab. An. EH	Stra- tigr. t ₁ s t ₁ ps ₁ t ₁ p- Aquiv. t ₁ t _s cm ₂ Alt-		
1. und Pr.Nr. 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	2. EH Teufe (m) von-bis 227,0- 227,2 228,0 229,5 230,0 230,5 230,05 230,05 230,05 231,20 231,37 231,60 232,15 232,90 233,20 233,20 233,20 233,20 234,00 235,20 234,00 235,20 237,6	5,35 Mäch- tigk. m 0,20 0,80 0,50 0,50 0,50 0,50 0,50 0,50 0,5	i,b 623 1. U g/t 27 53 55 100 64 148 230 360 950 1600 1483 28 70 44 33 40 61 67	Bl. 2368 Th g/t 13,5 14,5 14,5 14,5 14,5 14,5 14,0 15,0 17,5 19,0 21 26 34 6,7 2,6 <1,0 2,0 ~1,3 2,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,	3332,5 Erzin- terv. m'g/tU 115 90 161,5 208 210 102,85	Li I T T T T T T T T St S S S S S S S S S S	III. S tho- og.	t ₁ t _s	 Pr.Nr Pr.Nr 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196	tenrand von-bis 148- 152,5 155,6 156,0 156,4 156,75 157,10 157,95 159,95 160,25 161,00 162,10 163,20 166,10 166,10 166,10 166,45 166,70 167,05	2.1 Mäch- tigk. m 4,50 3,10 0,40 0,40 0,40 0,40 0,35 0,35 0,40 0,45 1,55 0,35 0,10 0,30 0,75 1,10 1,10 1,10 1,50 0,25 0,25 0,35	Bl. 2330 U g/t 21 14 20 29 430 685 191 8,2 10,5 15,5 3000 244,0 15 6,9 18 16 32 39 86 400 11,5	g/t 3,0 3,5 3,2 3,0 3,5 3,2 4,0 4,4 3,3 2,8 2,2 3,1 39 15 1,2 1,4 <1,0	bb. 44) Erzin- terv. m·g/tU 150,5 239,75 76,4 300,0 73,2	Liti lo S S S S S S S S S S S S S S S S S S	Lab An.	Stra- tigr. t ₁ s t ₁ ps ₁ t ₁ p- Aquiv. t ₁ t _s cm ₂ Alt- pal.		
1. und Pr.Nr. 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	2. EH Teufe (m) von-bis 227,0- 227,2 228,0 229,5 230,0 230,5 230,05 230,05 230,05 231,20 231,20 231,37 231,60 232,15 232,15 232,90 233,20 233,20 233,20 233,20 233,20 233,20 235,20 237,6 237,82	5,35 Mäch- tigk. m 0,20 0,80 0,50 0,50 0,50 0,50 0,50 0,50 0,5	i,b 623 1.1 U g/t 27 53 55 100 64 148 230 360 950 1600 1483 28 70 44 33 40 61 67 312	Bl. 2368 Th g/t 13,5 14,5 14,5 14,5 14,5 14,5 14,0 15,0 17,5 19,0 21 26 34 6,7 2,6 <1,0 2,0 ~1,3 2,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,	3332,5 Erzin- terv. m'g/tU 115 90 161,5 208 210 102,85 68,64	Li I T T T T T T T T T T T T T T T T T St S S S S	III. S tho- og. 1. EH	t ₁ t _s	 Pr.Nr Pr.Nr 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197	tenrand von-bis 148- 152,5 155,6 156,0 156,4 156,75 157,10 157,95 159,95 159,95 160,25 161,00 162,10 163,20 164,60 166,10 166,10 166,45 166,70 167,05 167,35	2.1 Mäch- tigk. m 4,50 3,10 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0	Bl. 2330 U g/t 21 14 20 29 430 685 191 8,2 10,5 15,5 3000 244,0 15 6,9 18 16 32 39 86 400 11,5 1,5	g/t 3,0 3,5 3,2 3,0 3,5 3,2 4,0 4,4 3,3 2,8 2,2 3,1 39 15 1,2 1,4 <1,0	bb. 44) Erzin- terv. m·g/tU 150,5 239,75 76,4 300,0 73,2	Liti lo S S S S S S S S S S S S S S S S S S	Lab. An. I. EH	Stra- tigr. t ₁ s t ₁ ps ₁ t ₁ p- Aquiv. t ₁ t _s cm ₂ Alt- pal.		
1. und Pr.Nr. 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	2. EH Teufe (m) von-bis 227,0- 227,2 228,0 229,5 230,0 230,5 230,05 231,05 231,05 231,05 231,20 231,37 231,60 232,15 232,90 233,20 233,20 233,20 233,20 233,20 233,20 235,20 237,6 237,82 237,97	5,35 Mäch- tigk. m 0,20 0,80 0,50 0,50 0,50 0,50 0,50 0,50 0,5	i,b 623 1.1 U g/t 27 53 55 100 64 148 230 360 950 1600 148 230 360 950 1600 1400 605 36 183 70 44 33 40 61 67 312 303	Bl. 2368 Th g/t 13,5 14,5 14,5 14,5 14,5 14,5 14,5 14,5 14,5 14,5 14,5 14,5 14,5 14,5 14,5 14,5 14,5 14,5 14,5 17,5 19,0 21 26 34 6,7 2,6 <1,0	3332,5 Erzin- terv. m'g/tU 115 90 161,5 208 210 102,85 68,64 45,45	Li I T T T T T T T T T T T T T T T Stt S S S S	III. S tho- og. 1. EH	t ₁ t _s cm ₂	Lagerstätt Pr.Nr 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 Labiat	tenrand von-bis 148- 152,5 155,6 156,0 156,4 156,75 157,10 157,50 157,95 159,95 160,25 161,00 162,10 163,20 164,60 166,10 166,20 166,45 166,70 167,05 167,35 tus-Anom.	2.1 Mäch- tigk. m 4,50 3,10 0,40 0,40 0,40 0,35 0,35 0,40 0,45 1,55 0,35 0,10 0,30 0,75 1,10 1,10 1,50 0,25 0,35 0,30 1,10	Bl. 2330 U g/t 21 14 20 29 430 685 191 8,2 10,5 15,5 3000 244,0 15 6,9 18 16 32 39 86 400 11,5 1,5 424	9 (siehe A Th g/t 3,0 3,5 3,2 4,0 4,4 3,3 2,8 2,2 3,1 39 15 1,2 1,4 <1,0	bb. 44) Erzin- terv. m·g/tU 150,5 239,75 76,4 300,0 73,2 466,65	Liti lo S S S S S S S S S S S S S S S S S S	Lab An.	Stra- tigr. t ₁ s t ₁ ps ₁ t ₁ p- Aquiv. t ₁ t _s cm ₂ Alt- pal.		
1. und Pr.Nr. 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	2. EH Teufe (m) von-bis 227,0- 227,2 228,0 229,5 230,0 230,5 230,05 230,05 231,05 231,05 231,05 231,20 231,37 231,60 232,15 232,90 233,20 233,20 233,20 235,20 235,20 235,20 237,6 237,82 237,97 239,00	5,35 Mäch- tigk. m 0,20 0,80 0,50 0,50 0,50 0,50 0,50 0,50 0,5	i,b 623 1.1 U g/t 27 53 55 100 64 148 230 360 950 1600 148 230 360 950 1600 1400 605 36 183 28 70 44 33 40 61 67 312 303 2,9	$\begin{array}{c c} Bl. 2368 \\ \hline Th \\ g/t \\ 13,5 \\ 14,5 \\ 14,5 \\ 14,5 \\ 14,5 \\ 14,0 \\ 15,0 \\ 17,5 \\ 19,0 \\ 21 \\ 26 \\ 34 \\ 6,7 \\ 2,6 \\ <1,0 \\ 2,6 \\ <1,0 \\ 2,0 \\ <1,0 \\ <2,0 \\ <1,0 \\ <2,2 \\ 57 \\ 59 \\ 62 \\ \end{array}$	3332,5 Erzin- terv. m'g/tU 115 90 161,5 208 210 102,85 68,64 45,45	Li I T T T T T T T T T T T T T T T T Stt S S S S	III. S tho- og. 1. EH	idlicher Stra- tigr. t ₁ t _s cm ₂	Lagerstätt Pr.Nr 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 Labia 1. EH	tenrand von-bis 148- 152,5 155,6 156,0 156,4 156,75 157,10 157,95 159,85 159,95 160,25 161,00 163,20 164,60 166,10 166,10 166,55 166,70 166,45 166,70 167,05 167,35	2.1 Mäch- tigk. m 4,50 3,10 0,40 0,40 0,35 0,35 0,40 0,45 1,55 0,35 0,10 0,30 0,75 1,10 1,10 1,40 1,50 0,25 0,25 0,35 0,30 1,10 0,45 1,55 0,35 0,10 0,55 0,30 0,10 0,40 0,40 0,40 0,45 1,55 0,30 0,75 1,10 0,25 0,25 0,30 0,10 0,40 0,40 0,40 0,55 0,30 0,75 1,10 1,10 0,25 0,25 0,30 0,10 0,040 0,40 0,40 0,40 0,40 0,40 0,55 0,30 0,75 1,10 0,10 0,25 0,25 0,30 0,10 0,25 0,35 0,25 0,25 0,25 0,35 0,40 0	Bl. 2330 U g/t 21 14 20 29 430 685 191 8,2 10,5 15,5 3000 244,0 15 6,9 18 16 32 39 86 400 11,5 1,5 5 424 933	9 (siehe A Th g/t 3,0 3,5 3,2 4,0 4,4 3,3 2,8 2,2 3,1 39 15 1,2 1,4 <1,0	bb. 44) Erzin- terv. m·g/tU 150,5 239,75 76,4 300,0 73,2 466,65 373,2	Litit lo S S S S S S S S S S S S S S S S S S	Lab An.	Stra- tigr. t ₁ s t ₁ ps ₁ t ₁ p- Aquiv. t ₁ t _s cm ₂ Alt- pal.		
1. und Pr.Nr. 75 76 77 78 79 80 81 82 83 84 85 86 87 88 86 87 88 89 90 91 92 93 94 95 96 97 97 98	2. EH Teufe (m) von-bis 227,0- 227,2 228,0 229,5 230,0 230,5 230,05 230,05 231,20 231,25 231,20 231,25 231,20 231,37 231,60 232,15 232,90 232,15 232,90 233,20 235,20 235,20 235,20 237,6 237,82 237,97 239,00 EH EL	5,35 Mäch- tigk. m 0,20 0,80 0,50 0,50 0,50 0,50 0,50 0,50 0,5	i,b 623 1 g/t 27 53 55 100 64 148 230 360 950 1600 148 230 360 950 1600 1400 605 363 28 70 44 33 40 61 67 312 303 2,9 418 200	$\begin{array}{c c} Bl. 2368 \\ \hline Bl. 2368 \\ \hline Th \\ g/t \\ 13,5 \\ 14,5 \\ 14,5 \\ 14,5 \\ 14,5 \\ 14,0 \\ 15,0 \\ 17,5 \\ 19,0 \\ 21 \\ 26 \\ 34 \\ 6,7 \\ 2,6 \\ <1,0 \\ 2,6 \\ <1,0 \\ 2,0 \\ <1,0 \\ <2,0 \\ <1,0 \\ <2,2 \\ 57 \\ 59 \\ 62 \\ \hline \end{array}$	3332,5 Erzin- terv. m`g/tU 115 90 161,5 208 210 102,85 208 210 102,85 68,64 45,45 1106,88	Li I T T T T T T T T T T T T T T T T T T	III. S tho- og. 1. EH	iidlicher I Stra- tigr. t ₁ t _s cm ₂ Alt- pal.	Lagerstätt Pr.Nr 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 Labia 1. EH	tenrand Von-bis 148- 152,5 155,6 156,0 156,4 156,75 157,10 157,95 159,85 159,95 160,25 161,00 163,20 164,60 166,10 166,10 166,55 166,70 167,35 tus-Anom.	2.1 Mäch- tigk. m 4,50 3,10 0,40 0,40 0,40 0,35 0,35 0,40 0,45 1,55 0,35 0,10 0,30 0,75 1,10 1,40 1,50 0,25 0,25 0,35 0,30 1,10 0,45 1,55 0,30 0,10 0,10 0,20 0,10 0,30 0,75 1,10 0,25 0,35 0,25 0,30 0,10 0,40 0,40 0,45 1,10 0,30 0,25 0,35 0,25 0,30 0,10 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,45 1,100 1,100 1,400 0,25 0,35 0,30 0,100 0,25 0,35 0,30 0,100 0,25 0,30 0,4	Bl. 2330 U g/t 21 14 20 29 430 685 191 8,2 10,5 15,5 3000 244,0 15 6,9 18 86 400 11,5 1,5 1,5 5 2424 933	P (siehe A Th g/t 3,0 3,5 3,2 4,0 4,4 3,3 2,8 2,2 3,1 39 15 1,2 1,4 <1,0	bb. 44) Erzin- terv. m·g/tU 150,5 239,75 76,4 300,0 73,2 466,65 373,2	Litit lo S S S S S S S S S S S S S S S S S S	Lab An.	Stra- tigr. t ₁ s t ₁ p ₁ Aquiv. t ₁ t _s cm ₂ Alt- pal.		

Fortsetzung Tab. 6

IV. Nördliches Randgebiet (Erzfeld Thürmsdorf)													
Bl. 2630/89 (siehe Abb. 45)													
Pr.Nr.	Teufe	Mäch-	U	Th	Erzin-	Lit	holo	g.	Stra-				
	(m)	tigk.			terv.				tigr.				
	von-bis	m	g/t	g/t	m [·] g/tU		-						
63	239,4-	2,60	3,8	16,5		Т							
	242,0												
64	245,0	3,00	6,3	17,0		Т			t ₁ t _s				
65	248,5	3,50	4,2	17,0		Т							
66	249,0	0,50	126	7,7		St	1.	H					
67	249,9	0,90	18,0	<1,0		S							
68	250,9	1,00	14,0	<1,0		S							
69	252,7	$1,80$ $14,0$ $\sim 1,0$		S			cm ₂						
70	252,9	0,20	13,5	<1,0		S							
71	253,8	0,90	21,0	<1,0		S							
72	255,6	1,80	18,5	1,7		S							
73	257,1	1,50	14,0	<1,0		S							
74	257,3	0,20	265	1,4		S							
75	257,4	0,10	620	6,5		Т							
76	257,5	0,10	253	16,0		S							
77	257,7	0,20	148	6,7		S	2.						
78	258,15	0,45	65	5,6		S							
79	258,45	0,30	135	7,5		ST							
80	259,90	0,45	46	4,5		S	Е	а					
81	260,30	1,40	105	1,6		S	Н						
82	260,40	0,10	99	<1,0		S							
83	260,65	0,25	85	<1,0		S							
84	260,75	0,10	105	1,5		S							
85	260,85	0,10	128	1,3		S							
86	261,00	0,15	155	1,6	15.0	S			cm_1				
87	261,10	0,10	179	1,3	17,9	S							
88	261,25	0,15	241	5,9	36,15	ST							
89	261,35	0,10	1800	14,5	180,00	T		1					
91	261,40	0,05	14,5	5,5 21	0,72	<u></u> З		b					
90	201,50	0,10	970	21	97,00	I C							
92	201,72	0,22	1050	0,0 7 0	231,00	5							
95	201,85	0,15	101	7,0	149,50	5							
94	262,40	0,55	101	3,0	10.20	5							
95	262,50	0,10	01	2,0	10,20	5							
90	262,70	0,20	91 800	12.5	10,20	ст СТ							
97	262,03	0,15	224	12,3	33 60	51 СТ		6					
90	203,00	0,15	156	24	22,40	51		C					
99 100	203,13	0,15	130	24	23,40	C		L	A 14				
100	203,30	0,35	15,0	18,0		Gd			Alt-				
2 EU	204,30	0,60	15,0	21	072.22	Gu	I		pai.				
2. EH	(0+C)	2,15	433		913,22								

S: Sandstein

St: Sandstein, durch Ton und Schluff feingeschichtet, gemasert und geflasert

T: Ton- und Schluffstein

Gr: Granit

Gd: Granodiorit

EH Erzhorizont

a, b, c Teilabschnitte des 2. EH

Farb- und Permeabilitätskontrast. Die Grenzlinien zwischen oxidiertem Unterquader und seiner Hangend- und Liegendvererzung verlaufen in den Bohrkernen (Abb. 46) und Grubenaufschlüssen (Abb. 58) gewöhnlich messerscharf und wie mit einem Lineal gezogen.

Der 2. Erzhorizont ist im Lagerstättenkern noch reichhaltiger als der 1. ausgebildet. Er ist auf das engste mit dem Wurmsandstein verknüpft. Die Erzführung beschränkt sich nicht mehr, wie noch am Beginn der Erzkontur in Bohrung 2127/80 gezeigt, auf dessen Oberkante am Übergang zum Unterquader (Abb. 42). Sie erfaßt den Wurmsandstein lokal in seiner gesamten bis 5 Meter betragenden Mächtigkeit (Abb. 46). Die Ursache für diese Abweichung vom "Normalmodell" ist zum einen auf die noch zu erörternde Einwanderung des Urans in die steileinfallende Gesteinsklüftung zurückzuführen. Zum anderen steht sie mit der sedimentär bedingten Durchlässigkeitsstruktur des Wurmsandstein-Intervalles im Zusammenhang.

Das Intervall verhält sich im Unterschied zum 1. Erzhorizont nicht nur als Kollektor für das ihm aus dem Unterquader im Grundwasser gelöst zugeführte Uran. Es enthält als Bestandteil des 4. Grundwasserleiters einen eigenen wasserdurchlässigen und der Uranzuführung dienlichen Profilabschnitt. In dessen Dach und Sohle hat die Vererzung lokal zwei weitere Uranflügel ausgebildet (b und c, Tab. 6). Von beiden ist der obere, (b), an den Übergang des basalen grobkörnigen Wurmsandsteins in seine schluffige Hangendfazies gebunden. Der untere, (c), legt sich in der Wurmsandsteinsohle an den erwähnten kohligtonigen "Eierhorizont" sowie die Brandschiefer und Tonsteine an, die, wie beschrieben, im Schichtenprofil den Übergang von der terrestrischen in die lagunär-marine Sedimentation einleiten. Der obere Flügel ist vom Haupterzflügel, (a), der an der Unterkante des Unterquaders, in der schluffigen Wurmsandstein-Oberkante verläuft, je nach lithofazieller Ausbildung des Wurmsandsteins durch ein 1-2 m mächtiges steriles Zwischenintervall getrennt. Stellenweise lagert er sich dem Haupterzflügel unmittelbar an oder prägt sich ihm auf, wodurch dieser nach Mächtigkeit und Urangehalt extrem hohe Werte annimmt. Einzellagen erreichen bis 0,7 und maximal bis über 1 % Uran. Örtlich wachsen beide zusätzlichen Neben-Uranflügel von unten und oben fortschreitend in den zwischenlagernden Basissandstein hinein und schließen sich in ihrem Querschnitt lokal zu rollerzartigen Gebilden zusammen (Abb. 34; Bl. Nr. 1521 in Abb. 47; Bl. Nr. 2547 in Abb. 48).

Insgesamt betrachtet, erweist sich die Wurmsandsteinvererzung im Grund- und Aufriß an kompliziert verlaufende Grenzlinien der Grundwasserdurchlässigkeit und teilweisen Gesteinsoxidation gebunden. Im Kern des Zentralfeldes der Lagerstätte bildet sie ein 3-6 m mächtiges, 1,5 km langes und 50-150 m breites, überaus reiches, NNEstreichendes Lager mit einem durchschnittlichen Urangehalt von 0,1-0,3 % [38]. Trotz seiner komplexen Zusammensetzung aus mehreren Gliedern wurde das Lager aus bergbautechnischen Gründen zum 2. Erzhorizont zusammengefaßt. Es bildete den ergiebigsten Teil der Erzstruktur.

In den durch die Lagerstätte führenden Profilen nimmt die im Westen zögerlich einsetzende Vererzung beider Horizonte fortschreitend in Richtung nach Osten zu. Diese Entwicklung steht offensichtlich mit dem allmählichen

Abb. 45: Bohrprofile durch den nördlichen Rand der Lagerstätte

2. und 1. Erzhorizont

64

Abb. 46: Bohrkernprofile durch den zentralen Teil der Lagerstätte

Abb. 48: Erkundungsschnitt Nr. 46

Auskeilen des zwischenlagernden Unterquaders an der begrenzenden Grundgebirgshochlage im Zusammenhang. Nicht mehr als ca. 1 km von der Abbaukontur der Horizonte weiter nach Westen zu ist selbst in der Kleinlagerstätte Pirna von der Uranführung dieser Profilabschnitte fast noch nichts zu bemerken. Die Kontakte des dort noch 20 m mächtigen und durchgängig oxidierten roststreifigen Unterquaders mit den Übergangsschichten im Hangenden und dem Wurmsandstein im Liegenden wurden sorgfältig überprüft. Danach erreicht der Urangehalt in je einer millimeter- bis zentimeterstarken schluffigen Grenzlage der üblichen lithofaziellen Ausbildung maximal 70 bzw. 17 g/t. Der Übergang von diesen beiden unbedeutenden Anomalien in den 1. und 2. Erzhorizont der Lagerstätte wurde anhand eines lithologisch-geochemischen Schnittes durch das marine Cenoman in Abb. 49 gesondert dargestellt. Längs des dazu genutzten Bohrerkundungsprofiles wachsen beide unscheinbaren Uran-Maxima bis zum Beginn der Abbaukontur des 2. Erzhorizontes an der Bohrung Nr. 1925 auf eine Entfernung von 330 m auf 230 g/t im Dach und 437 g/t in der Sohle des Unterquaders an. Dagegen nimmt die Mächtigkeit des Unterquaders bis auf 10 Meter ab. Während die Urankonzentration an beiden Unterquader-Kontakten allmählich und stetig ansteigt, wächst sie innerhalb des Wurmsandsteins in Abhängigkeit von seiner Durchlässigkeitsstruktur absetzig und sprunghaft an. Man erkennt an den Bohrungen Nr. 1923 und Nr. 1925 die Herausbildung der beiden zusätzlichen aus dem Wurm-Basissandstein heraus ernährten Erzintervalle.

Weiter ostwärts geht in der Abbaukontur die Entwicklung beider Erzhorizonte mit der fortschreitenden Abnahme der Mächtigkeit des zwischenlagernden Unterquaders und dem Ausklingen seiner Oxidationsmerkmale einher. Beide Erzflügel rücken im Profil auf Kosten der Ausdünnung der Sandsteinzwischenschicht bis auf 3 und 1 m Abstand aufeinander zu. Außerdem dehnen sie sich beiderseits von oben und unten in den Sandstein selbst hinein. Längs einer im Grundriß schmalen und unregelmäßig begrenzten Zone schließen sie sich an der Grenzlinie der Zwischenschichtoxidation zu dem für die Lagerstätte charakteristischen zweiflügeligem, im Querschnitt rollenartig gebauten Großerzkörper zusammen (Abb. 3, 34, 47, 48). Die Rostfleckigkeit des Unterquaders setzt an dieser Linie aus. Sie macht einer Weißverfärbung des Sandsteins Platz, welche ihrerseits weiter ostwärts in die normale primäre Grautönung des Sandsteins übergeht. Der beide Erzflügel miteinander verbindende Profilabschnitt bildet ein bis 5 und maximal bis 9 m mächtiges, vornehmlich aus Sandstein bestehendes Erzintervall mit einem durchschnittlichen Urangehalt von 0,034-0,06 %. Die maximale Uranführung ist jedoch auch in dieser Zone an die schluffigen Ablagerungen in Dach und Sohle des Unterquaders gebunden (Tab. 6-III). Die beiden Erzflügel behalten dadurch ihre Eigengestaltigkeit weiter bei. Sie setzen sich jenseits der Zone ihres Zusammenschlusses gewöhnlich wieder getrennt voneinander fort. Doch schwächen sie sich nunmehr zügig ab. An der Unterquader-Auskeillinie sind sie zu unbedeutenden Ausläufern verkümmert. Über der Königsteiner Schwelle verlieren sie sich in der Diskordanz, die das Grundgebirge im Liegenden vom auflagernden Labiatuspläner im Hangenden trennt (Abb. 48, 147).

Aus einer speziellen Überprüfung geht hervor, daß sich gemeinsam mit der Herausbildung der beiden Erzflügel der Hintergrundgehalt des Urans in der auskeilenden Sandstein-Zwischenschicht kontinuierlich erhöht. Urangehalt und Mächtigkeit des Sandsteins verhalten sich im Schnitt durch die Lagerstätte zueinander umgekehrt proportional. Der Mächtigkeitsabfall des Sandsteins von 20 bis auf 5 Meter geht mit einem Konzentrationsanstieg des Urans von im Mittel ~1 g/t auf ca. 100 g/t einher. Die Durchschnittsgehalte erreichen mit der weiteren Sandsteinausdünnung auf zwei Meter in der Zone der Vereinigung beider Erzhorizonte 300 g/t und sinken dahinter allmählich wieder ab. Im Zusammenhang mit dieser Entwicklung verändert sich auch das Konzentrationsverhältnis des Urans zu seinem Endzerfallsprodukt Blei. Die festgestellten Werte des Verhältnisses Pb-206 : U-238 steigen westwärts in Richtung der Rostfleckigkeit und Mächtigkeitszunahme des Sandsteins extrem hoch an und fallen ostwärts in Richtung seiner Weiß- und Grauverfärbung und Ausdünnung extrem tief ab. Sie liegen nach Westen in der Zone des Beginns der Herausbildung der beiden Uranerzflügel bei ca. 0,3 und fallen nach Osten zu bis in den Bereich der Vereinigung dieser Flügel und der Sandstein-Weißverfärbung auf 0,003. Sie weisen auf eine beträchtliche Störung im Gleichgewicht zwischen Uran und seinen Zerfallsprodukten hin. Die Störung drückt sich einerseits in viel zu hohen und andererseits viel zu niedrigen Werten des untersuchten Werteverhältnisses aus. Letzteres ist mit etwa 0,01 als normal für Kreideablagerungen anzunehmen. Das Ungleichgewicht wird durch die Trennung des Urans-238 von seinem Zerfallsprodukt Blei-206 infolge unterschiedlichen Migrationsverhaltens beider Elemente hervorgerufen. Es läßt darauf schließen, daß das Uran langzeitig schrittweise aus der westlichen oxidierenden rostfleckigen in die östliche reduzierende graufarbige Zone des Unterquadersandsteins hineinmigrierte. Die Untersuchungsbefunde zum auskeilenden Zwischenintervall sind in Abb. 50 graphisch dargestellt.

Das Uran des zweiflügeligen Großerzkörpers wirkt im Querschnitt durch die Lagerstätte wie von dem sich an der Bahra-Königsteiner Grundgebirgsschwelle schließenden Sandsteinkeil aufgefangen. Anscheinend wurde es an der geöffneten Seite des Keils von Westen her in ihn hineingeleitet, in ihm fixiert und langzeitig angereichert. Der Sandsteinkeil bildet insofern gleichermaßen eine lithofazielle wie auch strukturelle Elementfalle. In ihm verschärfen sich randwärts zunehmend die intraformationellen Diskordanzen und lithologischen Kontraste. So geht

Abb. 49: Geochemischer Schnitt durch den 1. und 2. Erzhorizont am Westrand der Lagerstätte

2. und 1. Erzhorizont

Abb. 50: Geochemischer Schnitt durch den auskeilenden Unterquadersandstein

eine randwärts fortschreitende Kornvergröberung im Unterquader mit einer allgemeinen Verschluffung und Kornverfeinerung des unter ihm auskeilenden und hochvererzten Wurmsandsteins einher. Die einzelnen Zonen der Limonitisierung, Weißverfärbung und Grautönung des Unterquaders folgen nacheinander von West nach Ost. Sie widerspiegeln das in dieser Richtung abnehmende Oxidationspotential in der Grundwasserführung des Sandstein-Intervalles. Der Erzkörper legt sich aureolenartig um die Schichtoxidation herum. Er ist an den Übergang von einem oxidierenden in ein reduzierendes Milieu gebunden. Zugleich befindet er sich im Bereich eines vertikalen und lateralen Schichtwasserstaues, an der äußersten Grenze des 4. Grundwasserleiters. Er besitzt, wie auch die Erzkörper des 3. Horizontes eine oxidierende Vorder- und reduzierende Rückseite. Im Unterschied zu diesen steht er jedoch nicht mit einer aus der Grundgebirgsumrahmung beckenwärts, sondern einer aus der Paläosenke zur östlichen Grundgebirgsschwelle hin ausgerichteten Grundwasserbewegung und Fazieszonalität im Zusammenhang.

4.4 Die klüftungsgebundene Erzführung

Das Kluftsystem der Kreidetafel ist in der Pirnaer Paläosenke im Ergebnis cenomaner Bewegungen, die die Senke zum Teil bedingen und ausgestalten, verhältnismäßig hoch entwickelt. Aus einer Kluftrosendarstellung für die Lagerstätte geht hervor, daß die Hauptkluftrichtung im Fundament der Kreidetafel herzyn, parallel zur Elbtalzone und Lausitzer Überschiebung, in der auflagernden Kreideformation hingegen erzgebirgisch, im Einfallen der Tafel verläuft. Hier streicht sie spitzwinkelig zur Lagerstätte und der sie nach Osten begrenzenden granitischen Grundgebirgshochlage. Für den Granodiorit des Fundamentes wurden 130°, für den Granit von Markersbach 120° und für den Unterquader, als typischsten Vertreter des Cenomans, 40° im Hauptstreichen der Gesteinsklüftung ermittelt (Abb. 51). Die Klüftung ist in der Lagerstätte orts- und gesteinsabhängig unterschiedlich stark ausgeprägt. Von den verbreitetsten uranführenden Gesteinsarten sind die harten cenomanen Quarz-Sandsteinbänke, wie z. B. der Unterquader (cm₂), der Wurmsandstein (cm₁), die gemaserten Sandsteine der Übergangsschichten (c₁s_{mas}) und die terrestrischen Flußsandsteine, am meisten, und die schmiegsameren Schluff- und Tonsteinlagen am wenigsten geklüftet (Tab. 7).

Der Einfluß der Gesteinsklüftung auf die Lagerstätte zeigt sich in den geologischen Dokumentationen in engräumigen Anschwellungen und Veredelungen der schichtkonformen Erzkörper an. Die drei Erzhorizonte sind längs von nordost-streichenden Klüften morphologisch modifiziert. In ihren Grundrissen zeigen sie nach Nordosten gerichtete Auslenkungen und in ihren vertikalen Schnitten keil- und sackförmige Ausstülpungen.

Die Auslenkungen der Vererzungen in ihren Grundrissen

Tab. 7:	Durchschnittliche Klufthäufigkeiten in den einzelnen Gesteinsarten der Lagerstätte n.	E. MEICHSNER, J.
	BECHER, J. HERHOLD u. a. [25]	

Gesteinsart	Stratigraphie	Klüfte pro 10 m
Granodiorit		17
Markersbacher Granit	Grundgebirge	18
Quarzporphyr		19
Wechsellagerung, terrestrisches Cenoman	$\operatorname{ctr}(c_1 c_{\mathrm{wl}})$	8
Wurmsandstein	$cm_1(c_1c_{wu})$	11
Unterquadersandstein	$cm_2(c_1s_{qu})$	25
Gemaserter Sandstein der Übergangsschichten	t _{sgem} (c ₁ s _{mas})	20
Grünsandstein der Übergangsschichten	$t_{sglk} (c_1 s_g)$	9
Turonton	$t_1 t$	5
Labiatuspläner	t ₁ p	2

1 Granodiorit, 2 Markersbacher Granit, 3 cenomaner Unterquader

Abb. 51: Kluftrosen für das Grund- und Deckgebirgsstockwerk der Lagerstätte Königstein, nach W. I. WASSILJEV (1973)

heben sich am auffälligsten im Niveau des 3. Erzhorizontes hervor. Hier sind sie am deutlichsten an den Kreuzungen der nordost-streichenden Klüfte mit den quer verlaufenden Zuflußsenken zu erkennen. Die im Maßstab 1 : 10 000 dokumentierten und in Abb. 29 dargestellten Erzkonturen der Zuflußsenken weisen 20 bis maximal 100 m breite und bis zu 500 m lange Ausbuchtungen auf. Die an die Zuflußsenke "Schacht 387-Forsthausweg" gebundene Erzkontur erscheint insgesamt aus der paläogeographischen Flußlauf- in die tektonische Nordostrichtung eingeregelt. In den Dokumentationen der untertägig im Maßstab 1 : 2 000 ausgeführten Detailerkundung drückt sich diese Umorientierung noch deutlicher aus. Die letztgenannte Fläche zerfällt in dieser präzisierten geologischen und in Abb. 52 enthaltenen Aufnahme in viele kleine einzelne, z. T. kompliziert miteinander verbundene, längsgestreckte Teilabschnitte. Die Teilgebilde streichen quer zur Achse der erzkontrollierenden Zuflußsenke nach Nordosten. Sie enden beiderseits der Senke plötzlich oder lösen sich allmählich auf.

Die vertikalen taschen-, sack- und keilförmigen Ausweitungen der Erzkörper sind am deutlichsten im 2. Erzhorizont ausgebildet. Längs der steil durchsetzenden Klüfte erstrecken sich die Auswüchse aus dem vererzten Wurmsandstein über eine Länge von mehreren Metern bis tief in die liegenden See-Sumpf-Ablagerungen hinein (Abb. 53). Dabei werden sie von Oxidationseffekten aus der hangenden Unterquader-Sandsteinbank heraus begleitet. Beobachtbar sind fleckige Limonitisierungen und grünlichgraue Ausbleichungen im dunklen kohlenstoffhaltigen Nebengestein. Die Klüfte sind gewöhnlich dicht geschlossen, vereinzelt aber auch auf Halb-Zentimeterbreite geöffnet und mit rostfleckigem Lockersand aus dem hangenden Unterquader ausgefüllt. Die an sie gebundene Erzführung ist von den erwähnten, im Wurmsandstein entwickelten kleinen Erzrollen, gewöhnlich nur schwer zu unterscheiden. Auch liegen beide verschiedenen Vererzungsformen stellenweise miteinander verwachsen vor. Sie getrennt voneinander auszugliedern war nur von Fall zu Fall möglich und nur unter Berücksichtigung des jeweils lokal gegebenen metallogenetischen Gesamtzusammenhanges.

Die modifizierten Erzkonturen sind am ausgeprägtesten in schmalen Zonen mit einer verdichteten Gesteinsklüftung festzustellen. Insgesamt werden im Gebiet der Lagerstätte vier entsprechende Strukturen unterschieden. Nebeneinanderverlaufend wurden sie, von West nach Ost folgend, als "Zwischen-", "West-", "Zentral-" und "Kontaktzone" ausgegliedert und benannt. Die drei ersten streichen mit 30-40° und die vierte bereits erwähnte mit 40-50° nach Nordosten. Das Schema einer Kluftzonenausbildung ist in Abb. 54 dargestellt.

In Kreuzungen dieser Zonen mit den Erzflächen des 3. Horizontes in den Zuflußsenken regelt sich die Uranführung nicht nur, wie in Abb. 52 im Grundriß zu erkennen, in die Nordostrichtung ein, sondern nimmt auch beträchtlich an Mächtigkeit zu. Sie ist im Schichtenprofil hier

Abb. 52: Der 3. Erzhorizont im Kreuzungsbereich der Zuflußsenke "Schacht 387-Forsthausweg" mit der NOstreichenden Hauptkluftrichtung. Grundrißdarstellung einer Abbauscheibe.

nicht, wie allgemein üblich, auf die kohlenstoffhaltigen Schluff- und Tonsteinlagen der Flußauensedimente beschränkt. Sie schließt auch weitgehend die zwischenlagernden fluviatilen Sandsteinbänke mit in sich ein, so daß sie sich nicht mit den charakteristischen vielfachen Unterbrechungen, sondern durchgängig über mächtige Profilabschnitte erstreckt.

In der vom Bergbau nicht erfaßten "Zwischenzone" wurden derartige Profilabschnitte durch eine Verdichtung des bestehenden Bohrlochnetzes nachgewiesen. Diese Zone verläuft westlich der Abbaukontur der beiden oberen Erzhorizonte. Sie durchzieht den östlichen Rand der an die Bahra-Kirchberger-Zuflußsenke gebundenen Pirnaer Vererzungsfläche. Eine hier intensivierte Erzführung wurde auf 500 Meter nord-nordoststreichender Länge innerhalb eines schmalen Streifens festgestellt. Die beiderseits dieses Abschnittes im Profil der Flußauenschichten aufeinanderfolgenden und durch taube Zwischenlagen unterbrochenen kleinen Erzintervalle gehen in einer Breite von 20-25 m in ein geschlossenes 10-18 m mächtiges Lager über. Das Lager wurde durch vier, im Abstand von 100 m von Süd nach Nord aufeinanderfolgende, Bohrprofile mit Bohrabständen von 12-25 m erkundet. Seine durchschnittlichen

Urangehalte betragen 0,04-0,07 % mit Spitzenwerten in Einzellagen des lithologischen Profiles von 0,30-0,38 % (Tab. 8-I). In den Bohrungen geht die Vererzungsintensität beiderseits der Zone, und besonders abrupt nach Osten zurück. So erschloß die Bohrung Nr. 1265/81 im südlichen Verlaufsabschnitt der Zone das Erzintervall in einer Mächtigkeit von 12 m. Sein durchschnittlicher Urangehalt betrug 0,073 % und die maximale Strahlungsintensität in der Bohrlochmessung erreichte über 1 000 μ R/h. Die Nachbarbohrung Nr. 1266/81, 25 m daneben niedergebracht, traf dasselbe Intervall in der gleichen Schichtenfolge nur noch mit einer Radioaktivität von 20-70 μ R/h und Urangehalten von nicht mehr als maximal 0,01 % in zentimeterstarken Einzellagen an. Die Situation ist in Abb. 55 wiedergegeben.

Östlich der "Zwischenzone" durchziehen die "West-", "Zentral"- und "Kontaktzone" die Konturen der gemeinsam zu dritt im Schichtenprofil übereinander ausgebildeten Erzhorizonte. Die kluftgebundene Vererzung ist hier entsprechend stärker ausgeprägt. In der Zentral- und Kontaktzone, die im Kern der Lagerstätte im spitzen Winkel aneinanderscharen (Abb. 41), erlangt sie lokal eine beherrschende Rolle. Darauf weisen die an den Erzkonturen

Abb. 53: Schnitte durch Kluftvererzungen im 2. und 3. Erzhorizont

in Abb. 29 vorhandenen Auslenkungen und Auflösungen in schmale nordoststreichende Streifen bereits unverkennbar hin. Im Schnitt durch diese Konturen und die mit ihnen verbundenen Zuflußsenken setzt sich die in der untertägigen Detailerkundung ausgegliederte und zum Abbau vorgesehene Reichvererzung aus bis 20 m mächtigen, 10-40 m breiten und bis 100 m langen Körpern zusammen, die in der Schichtenfolge kulissenartig neben- und übereinander liegen. Die Gebilde gehen mit fließenden Grenzen ineinander über und durchsetzen in säuligen Morphologien fast das gesamte terrestrische Cenoman. Sie streichen generell nordost und sind örtlich mit den Auswüchsen des 2. Erzhorizontes verbunden, die keil- und sackförmig in das Liegende gerichtet sind. So erschloß in der Zentral- und Kontaktzone die Bohrung Nr. 1694 über der Zuflußsenke "Schacht 387" zunächst die beiden oberen Erzhorizonte und darunter, in der Senke, ein mächtiges Erzlager des 3. Horizontes (Abb. 56). Die Urangehalte und Mächtigkeiten betragen, der Tab. 8.II entsprechend, im 1. Horizont 0,045 % und 0,9 Meter und im miteinander verSchema einer Kluftzonenausbildung in verschiedenen Lithologien der Kreideablagerungen der Lagerstätte Königstein (MEICHSNER, E.; BECHER, J.; HERHOLD J.)

bundenen 2. und 3. Horizont 0,062 % und 17,9 Meter. Auf den gesamten cenomanen 25,8 Meter mächtigen Profilabschnitt einschließlich des 1. Horizontes bezogen, erreicht der Urangehalt 0,046 %.

Einen Querschnitt durch die Lagerstätte an der Zuflußsenke "Breite Heide" mit ihren dort angefahrenen Reicherzkörpern zeigt die Abb. 57. Die Erzführung erstreckt sich stellenweise auch hier bis 30 Meter mächtig durch das gesamte Cenoman und steht mit den oberen Horizonten im Verbund. Ein nach gleichem Verfahren konstruierter Schnitt durch die in Abb. 52 gezeigten Erzkonturen der Zuflußsenke "Schacht 387-Forsthausweg" würde zu Abb. 57 ein analoges Bild ergeben. Jedoch stellte der Autor der Abb. 57 die Vererzung nur auf das Kluftsystem bezogen dar. Die an die Zuflußsenke gebundene schichtlinsenförmige Uranführung wurde von ihm nicht gesondert ausgehalten. Dennoch vermittelt die Darstellung eine überzeugende Vorstellung über das erreichte Ausmaß des Umbaues von einer primären schichtkonformen flußlaufgebundenen in eine sekundär vertikal ausgerichtete klüftungsabhängige Vererzungsform besonders anschaulich. Die Erzkörper wurden bei ihrer Gewinnung im konventionellen Verfahren in bis zu 5 nacheinander folgenden Scheiben von oben nach unten abgebaut.

Am Beispiel zweier Aufschlüsse aus dem Grubengebäude wurde die Orientierung von Urananreicherungen an die nordoststreichende Gesteinsklüftung metallometrisch quantitativ überprüft. Dazu wurden die beiden typischsten Fälle von Klufterzbildungen ausgewählt.

Im ersten Fall handelt es sich um einen sackförmigen Auswuchs des 2. Erzhorizontes in das Liegende. Der Fortsatz zieht sich aus dem oberen Wurmsandstein in die liegende See-Sumpf-Serie hinein. Er wurde im Ort 2 des Abbaublockes 1615 beiderseits einer steil einfallenden Kluft angefahren. Die terrestrische Wechsellagerung wurde an der

1. Südabschnitt (Bohrprofil Nr. 62)

2. Mittelabschnitt (Bohrprofil Nr. 61)

3. Nordabschnitt (Bohrprofil Nr. 56)

Klufterze

Abb. 56: Bohrprofile durch den 1., 2. und 3. Erzhorizont im zentralen Teil der Lagerstätte

Klufterze

Abb. 57:

Schnitt durch die Erzkörper der Lagerstätte Königstein, mit dem 3. Erzhorizont in der Zulaufsenke "Breite Heide-Dürrer Grund" (nach G. F. NIKOLAEV)

Kluft und je in Abständen von 0,75, 1,50 und 2,50 m beprobt und chemisch analysiert. Das Analysenergebnis bestätigt den radiometrisch angezeigten steilen Abfall der Vererzungsintensität mit wachsendem Abstand von der Kluft. Die mittleren Urangehalte gehen in den 4 untersuchten Profilen unter gleichbleibenden lithologischfaziellen Bedingungen nacheinander von 0,24 auf 0,026 und weiter auf 0,017 und 0,006 % zurück (Tab. 9-I). In den Profilen ist das Uran wie in den schichtkonformen Vererzungen ungleichmäßig und deutlich gesteins- und permeabilitätsabhängig verteilt. Seine maximalen Konzentrationen, die an der Kluft bis 0,7 % ansteigen, sind, wie allgemein in der Lagerstätte üblich, jeweils auch hier an die Kontakte der wechsellagernden Ton-Schluff- und Sandsteinbänke gebunden. Die vorgefundene Verteilung wurde im Zusammenhang mit den beiden oberen Erzhorizonten in Abb. 58 schematisch dargestellt. Sie ist eindeutig auf die Zufuhr des Urans längs der verbindenden Kluft aus dem hangenden Wurmsandstein zurückzuführen. Das Uran wanderte, im Grundwasser gelöst, aus der Kluft in das Nebengestein ein. Hier wurde es in Abhängigkeit von der Durchlässigkeit und dem Adsorptions- und Reduktionsvermögen der Sedimente aus der Lösung wieder abgeschieden.

Der zweite Fall betrifft in der Zentralzone den 3. Erzhorizont in der Zuflußsenke "Schacht 387" am Steigort 1, nahe der untersuchten Bohrung Nr. 1694. Es handelt sich um den in Abb. 52 gezeigten Bereich mit den quer zur Senkenachse nach Nordosten streichenden Erzkonturen. Das Cenomanprofil war hier am Steigort in seiner typischen Ausbildung von der präcenomanen Verwitterungskruste bis hinauf zum Wurmsandstein und Unterquader durch-

gängig aufgeschlossen. Der 3. Erzhorizont zeigte sich regelgemäß in der üblichen schicht-linsenförmigen Ausbildung konform in den Schichtenverband eingeordnet. Etwa 8 m mächtig, verlief das uranführende Intervall zwischen den rotbuntfarbigen Basisschichten im Liegenden und den schwärzlichen See-Sumpf-Ablagerungen im Hangenden in den graufarbigen Flußauenschichten. Das Intervall setzte sich aus vergleichsweise schwach vererzten reinen Quarz-Sandsteinbänken und hochvererzten cm- bis dm-starken Ton-Schluffsteinzwischenlagen zusammen. **Beiderseits** von steil- bis senkrecht in das Intervall einfallenden und etwa mit 40° NE streichenden Klüften wurden jeweils hohe Anstiege der Urankonzentrationen festgestellt. Jedoch betrifft der Konzentrationsanstieg nicht nur die kohlenstoffreichen tonig-schluffigen Sedimente der Schichtenfolge, sondern voll und intensiv auch die mächtigen zwischenlagernden Sandsteinbänke selbst. Das Intervall geht an diesen Stellen in eine durchgängige Vererzung über. Von vier an einer Kluft und weiter im Abstand von 0,5, 1,0 und 3,5 m durch das Erzintervall gelegten metallometrischen Profilen betrugen die durchschnittlichen Urankonzentrationen in der genannten Reihenfolge je 0,35, 0,22, 0,16 und 0,08 %. Die Spitzenwerte in den Einzellagen der Profile erreichen in und an der Kluft 2,1 bis 5,8 % (Tab. 9 II). Das Uran-Verteilungsbild weist auf die modifizierende und veredelnde Einflußnahme der durchsetzenden Klüfte betreffs Morphologie und Intensität der schichtlinsenförmigen Vererzung bestätigend hin.

Beiderseits des Einflußbereiches der untersuchten Kluft setzt sich die Uranführung des Intervalles in der charakteristischen, durch sterile Sandsteinbänke unterbrochenen, Weise und allgemein abgeschwächt im Schichtenstoß fort.

Sandstein, fein-, mittel- und grobkörnig Sandstein mit reichlichem Tonund Schluffzement Sandstein, durch Beimengungen von Ton, Schluff und organische Substanz gemasert und geflasert Schluffstein, mehr oder weniger feinsandig ausgebildet Tonstein, überwiegend schlecht geschichtet, oft Sandbeimengungen Limonitfleckig und -streifig Inkohlter Pflanzenhäcksel, Wurzelreste 40 "Wurmfraßspuren" und Muschelabdrücke Intensive Gesteinszerklüftung Urangehalte: a) 0,05-0,3% b) 0,3-1,0%, c) >1,0%

Abb. 58: Schnitt durch die Kluftvererzung, Ort 2/Block 1615. Urangehalte vgl. Tab. 9! Eine überdurchschnittliche Klüftungsverdichtung, wie sie für einen Teilabschnitt der Zentralzone zu erwarten gewesen wäre, wurde am Aufschluß nicht beobachtet. Außer der speziell untersuchten wurden nur noch fünf weitere vereinzelte Klüfte festgestellt. Sie sind steil einfallend 4-6 m voneinander entfernt und ebenfalls von Reicherzbildungen umgeben. Von Urangehalten bis 0,016 % auch im Niveau der hangenden See-Sumpf-Ablagerungen begleitet, verbinden die Klüfte den 3. mit dem 2. Erzhorizont. Der Zusammenhang wurde in Abb. 59 schematisch dargestellt.

Aus den Untersuchungen läßt sich zur Genese des kluftgebundenen Vererzungstypes entnehmen, daß seine Herausbildung auf einer sekundären Umverteilung von Uran aus den primär schichtkonformen Anreicherungen beruht. Er ist mit den drei Erzhorizonten räumlich eng verbunden und außerhalb ihrer Verbreitung nicht entwickelt. Er ist über allmähliche Übergänge mit ihnen verknüpft und lithologisch und nach der Uranverteilung im Profil nur schwer von ihnen abgrenzbar. Seine Uranführung ist

Klufterze

8

Metallometrische Bohrprofile durch die Klufterzzonen Tab. 8:

Г

				I. "Zwi	schenzon	e" ar	n Zufl	ußsenke "	Bahra-Kirchberg", östlich Erzfeld Pirna								
		1. Bl	2165/8	l (siehe A	Abb. 55-1)						2. E	31. 2179/7	79 (siehe	Abb. 39)			
Pr.Nr	Teufe	Mäch-	U	Th	Erzin-	Lit	ho-	Stra-	Pr.Nr	Teufe	Mäch-	U	Th	Erzin-	Lit	tho-	Stra-
	von-bis	m	g/t	g/t	m [·] g/tU	IC	og.	ugr.		von-bis	m	g/t	g/t	m [·] g/tU	IC	bg.	ugr.
37/1	-221,0	0,38	15	11,0					1	218,00	0,55	25	68		Т		
39/1	221,10	0,10	98	16,0	250	C			2	218,35	0,35	40	75		T s		ctr ₃
2	221,20	0,10	1900	20	230 95	S			4	218,07	0,33	100	82	480	T		
3	221,65	0,40	930	11,5	372	S			5	219,55	0,40	559	60	223,6	Т		
4	221,95	0,30	610	79 28	183	T			6	219,87	0,32	1000	56	320	T		
5 6	222,05	0,10	369 341	28 35	36,9 34,1	S S			8	220,20	0,33	360 493	9,3 70	118,8 98.6	ъ Т		
7	222,25	0,10	140	19,5	14	S			9	220,10	0,10	1800	118	180	T		
8	222,40	0,15	67	11,0	10,05	S			10	220,90	0,40	990	30	396	S		
9 10	222,50	0,10	337 234	60 25	33,7 35.1	T S			11	221,50	0,60	189 850	65 35	113,4 467.5	T S		
10	222,05	0,10	234 940	23 47	94,0	S	3.		12	222,03	0,05	3000	29	407,5 150	S		
12	223,00	0,25	257	20	64,25	S	EH		14	222,43	0,33	540	7,7	178,2	S		ctr ₂
13	223,32	0,32	770	17,5	246,4	S		- 1 -	15	222,82	0,39	1900	17,5	741	S	2	
14 15	223,40	0,08	3200 1650	20 14.0	236 660	s S		ctr ₂	10	223,43	0,61	420 655	7,0 64	236,2 275,1	ъ Т	э. EH	
16	223,90	0,10	670	9,6	67	S			18	224,07	0,22	206	19,5	45,32	S	2.1	
17	224,02	0,12	1750	13,5	210	S			19	224,95	0,28	160	78	44,8	Т		
18 10	224,05	0,03	3800	73 53	114 56	Т			20	224,75	0,40	158	31 78	63,2 73 5	S T		
20	224,23	0,20	143	56	24,31	T			21	225,80	0,75	113	33	33,9	S		
21	224,50	0,08	177	83	14,16	Т			23	226,10	0,30	209	76	62,7	Т		
22	224,65	0,15	103	34	15,45	S T			24	226,75	0,65	325	26	211,25	S T		
23 24	224,80	0,13	420 725	92 108	50.75	T			23	227,50	0,33	970 970	31	203,3 242,5	S		
25	225,00	0,13	1250	22	162,5	S			27	227,70	0,15	410	55	61,5	Т		
26	225,25	0,25	595	8,7	148,75	S			28	227,90	0,20	251	26	50,2	S		
27	225,50 225,60	0,25	510 570	12,5 81	127,50 57	ъ Т			29 30	228,50	0,60	325 276	11	195 138	S		
29	225,70	0,10	450	119	45	T			31	229,32	0,32	285	22	91,2	S		
30	225,80	0,10	134	37	13,4	S			32	229,75	0,43	440	70	189,2	Т		
31	226,00	0,20	90 800	79 100	18 200	Т			33	230,30	0,55	405	35	222,75	S T		
33	226,25	0,23	1000	62	100	T			35	230,90	0,55	173	40	95,15	T		
34	226,47	0,12	610	7,0	73,2	S			36	231,70	0,25	101	71	25,25	Т		
35	226,60	0,13	1080	10,5	140,4	S			37	232,05	0,35	149	11,5	52,15	S		
30 37	226,65	0,05	1070	74 35	150 267.5	S			38	232,55	1.10	560 112	30 16.5	280 123.2	s S		
38	227,05	0,15	970	14,5	145,5	S			40	233,80	0,15	640	75	96	Ť		
39	227,20	0,15	760	5,6	114	S			41	234,47	0,67	124	65	83,08	Т		
40 41	227,37	0,17	1020 2100	41 14 5	173,4 483	S			42	234,55	0,08	128	47	56 53.76	T		
42	227,83	0,23	1800	14,0	414	S			44	235,25	0,42	117	75	32,76	T		
43	228,25	0,42	675	85	283,5	Т			45	235,55	0,30	44	22	13,2	S		
44	228,45	0,20	1250	68 26	250	T			46	235,77	0,22	605 212	70	133,1	T		
43 46	228,90	0,43	480 630	20 86	126	ъ Т			47	236,12	0,33	470	29 62	178.6	ъ Т		
47	229,30	0,20	1400	25	280	Ŝ			49	237,05	0,55	64	19	,.	S		
48	229,50	0,20	840	8,2	168	S			50	237,25	0,20	75	47		Т		
49 50	229,60 229,70	0,10	745 310	04 48	74,5 31	T S			51	238,00	0,75	360 00	57 30		T s		
40/1	229,85	0,15	196	18,5	29,4	S			53	238,20	0,20	12,5	30		S		
41	229,90	0,05	1050	36	52,5	S			54	238,90	0,30	25	85		Т		
42 43	230,80	0,90	172	11,5 12.5	154,8 131.6	S c			3. EH		17,83	419		7475,72			
43 44	231,50	0.02	65	40	151,0	T											
45	232,00	0,48	22	11,5		S											
3. EH		10,40	734		7630,53												

79

ſ

Fortsetzung Tab. 8

II. Zentralzone an Zuflußsenke "Schacht 387-Forsthausweg"													
Bl. 1694 (siehe Abb. 56)													
Pr.Nr	Teufe	Mäch-	U	Th	Erzin-	Li	tho-	Stra-					
	(m)	tigk.			terv.	10	og.	tigr.					
	von-bis	m	g/t	g/t	m [·] g/tU			-					
1	205,75	0,45	90	nb		Т							
2	206,40	0,65	60	nb		St							
3	206,80	0,40	170	nb		St		$t_1 t_s$					
4	207,20	0,40	470	nb	188	St	1.						
5	207,55	0,35	350	nb	122,5	St	EH						
6	207,70	0,15	650	nb	97,5	St							
7	208,35	0,65	90	nb		S							
8	209,20	0,85	30	nb		S							
9	209,90	0,70	60	nb		S		cm_2					
10	210,20	0,30	20	nb		S							
11	210,90	0,70	40	nb		S							
12	212,15	1,25	80	nb		S							
13	212,70	0,55	10	nb		S							
14	213,90	1,20	60	nb		S							
15	214,30	0,40	100	nD	1000	<u></u> з							
10	214,70	0,40	2700	nb	1088	I	2						
1/	214,90	0,20	100	nD	02 55	1	2. EU						
10	215,45	0,55	210	nb	169	SU	ЕП	cm_1					
19	210,23	0,80	210	nb	108	5							
20	210,00	0,55	250	nb	80,5 152	St St							
21	217,00	0,40	100	nb	30	St							
22	217,50	0,50	170	nb	76.5	т							
23	217,75	0,45	130	nb	70,5	I S							
24	218,05	0,50	160	nb	72	т		ctra					
26	219,00	0,45	210	nb	105	s		eus					
27	219,00	0.15	280	nb	42	Т							
28	219.50	0.35	100	nb	35	S							
29	220.20	0.70	20	nb	14	Š							
30	221,15	0,95	80	nb	76	Т							
31	222,00	0,85	360	nb	306	Т							
32	222,70	0,70	110	nb	77	Т							
33	223,50	0,80	80	nb	64	S							
34	224,15	0,65	1180	nb	767	T/S							
35	225,00	0,85	340	nb	289	T/S							
36	225,55	0,55	840	nb	462	S							
37	225,65	0,10	5450	nb	545	Т							
38	226,45	0,80	1390	nb	1112	S		ctr ₂					
39	226,60	0,15	1740	nb	261	Т	3.						
40	227,35	0,75	1660	nb	1245	S	EH						
41	227,50	0,15	5420	nb	813	Т							
42	228,35	0,85	580	nb	493	S							
43	228,85	0,50	730	nb	365	S							
44	229,15	0,30	970	nb	291	S							
45	229,45	0,30	2150	nb	645	S							
46	229,75	0,30	2720	nb	816	T							
4/	230,40	0,65	260	nb	104	S							
48	231,20	0,80	130	nb	104	S							
49	232,05	0,85	120	nb	102	ь т							
50	232,20	0,15	/00	IID m ¹ -	105			A 16 1					
31	232,90	0,70	90	nb	409	Ga	I	Aupai.					
1. EH	2 EU	0,90	453		408								
1 / lind	3. EH	17.90	n n 22		11126	1							

III. "Westzone" an Zuflußsenke "Breite Heide"														
Bl. 2149 (siehe Abb. 56)														
Pr.Nr	Teufe Mäch- U Th Erzin- Litho- Stra-													
	(m)	tigk.	terv.	lo	og.	tigr.								
	von-bis	m	g/t	g/t	m [·] g/tU									
1	193,70	0,90	90	nb		S		cm ₂						
2	194,40	0,70	1670	nb	1169	Т	2.							
3	196,65	2,25	120	nb	270	St	EH	cm1						
4	197,40	0,75	240	nb	180	S								
5	197,80	0,40	100	nb	40	T/S								
6	198,50	0,70	210	nb	147	T/S		ctr ₃						
7	199,50	1,00	130	nb	130	T/S								
8	200,50	1,00	300	nb	300	T/S								
9	202,30	1,80	980	nb	1764	St								
10	202,80	0,50	290	nb	145	St	3.							
11	203,30	0,50	100	nb	50	Т	EH	ctr ₂						
12	204,40	1,10	110	nb	121	S								
13	204,70	0,30	320	nb	96	T/S								
14	205,60	0,90	330	nb	297	St								
15	206,05	0,45	110	nb	49,5	S								
16	207,05	1,00	60	nb		St								
2. und	3. EH	12,35	385		4748,5									

S: Sandstein

St: Sandstein durch Ton und Schluff feingeschichtet, gemasert und geflasert

T: Ton- und Schluffstein

Gr: Granit

Gd: Granodiorit

EH Erzhorizont

nicht, wie in hydrothermalen Lagerstätten in von Salbändern begrenzten mineralisierten Erzgängen konzentriert. Das Uran ist beiderseits der Klüfte im Gestein nach denselben Grundregeln verteilt, wie sie auch für die schichtkonformen Erzkörper herausgefunden wurden. Zum einen migrierte das Uran, der Tinte in einem Löschblatt vergleichbar, aus den Klüften in das porige, wasser- und lösungsaufnahmefähige und zugleich adsorbierende und reduzierende Nebengestein hinein. Zum anderen wanderte es aus dem vererzten Nebengestein additiv auf die Klüfte zu. Eine im Vergleich mit den schichtigen Erzhorizonten besondere Herkunft des Klufturans anzunehmen, geben die Untersuchungsbefunde keine Veranlassung.

-	I. Ausweitungskeil des 2. Erzho	orizontes	in die lie	gende-Se	e-Sumpf	-Serie (c	tr ₃), Ort	2. Abbau	block 16	615 (siehe Abb. 58)			
Pr Nr.	Lithologie	Mäch- tigkeit		U	Т	ĥ	Ν	lo	F	ъ	0	Cu	
		m	g/t	g/t.m	g/t	g/t.m	g/t	g/t.m	g/t	g/t.m	g/t	g/t.m	
		•]	Profil 1, Ei	nfallende	Kluft							
1977	Wurmsandstein	0.47	542		9.7		20		50		20		
1976	Wurmsandstein cm ₁	0.15	10520		47		70		150		50		
1975	"Eiersandsteinhorizont"	0.10	2000		64		40		70		30		
1974	Sandstein	0.04	3600	144	23	0.92	50	2.0	400	16.0	70	2.8	
1973	Ton-Schluffstein}	0.05	5500	275	86	4.3	100	5.0	400	20.0	40	2.0	
1972	Ton-Schluffstein} Lage Nr. 3	0.05	4000	200	87	4.35	60	3.0	250	12.5	40	2.0	
1971	Ton-Schluffstein}	0.05	4380	219	93	4 65	100	5.0	400	20.0	70	3.5	
1970	Sandstein	0.11	7000	770	23	2.53	200	2.2	150	16.5	25	2.75	
1969	Sandstein	0.11	1350	148 5	22	2,33 2,42	25	2 75	60	6.6	20	2.2	
1968	Ton-Schluffstein}	0.05	1700	85	75	3 75	40	2,75	80	4.0	15	0.75	
1967	Ton-Schluffstein} Lage Nr 2	0.10	1100	110	69	6 90	20	2,0	100	10.0	50	5.0	
1965	Sandstein	0.07	1300	01	18	1.26	80	5.6	100	7.0	50	3,0	
1964	Sandstein	0.07	626	43.82	83	0.58	8	0.56	80	5.6	20	14	
1963	Sandstein	0.08	2700	216	22	1 76	6	0,50	40	3,0	50	4.0	
1962	Ton-Schluffstein	0,00	500	50	102	10.2	8	0,40		5,2 6,0	25	2,5	
1061	Ton Schluffstein] Lage Nr. 1	0,10	177	177	80	8.0	25	2,50	70	7.0	70	2,5	
1901	Sandstein	0,10	2200	220	31	3.1	100	10.0	80	8.0	70	7,0	
1900	Salustem	1.09	2200	220	51	54 72	100	10,0	80	142.4	70	16.4	
		1,00	2426	2020,02	50.7	54,72	40.6	43,89	122	142,4	42	40,4	
	Ø		2420 Profi	1.2 Abstar	JU,7	ft 0 85 m	40,0		132		43		
		r	1101	li 2, Abstai	iu zui Kiu	n 0,85 m	1	r		r	1	1	
1993	Ton-Schluffstein Lage Nr. 3	0,15	165	24,75	82	12,3	15	2,25	200	30,0	60	9,0	
1992	Sandstein	0,22	78	17,16	8,5	1,87	5	1,10	70	15,4	20	4,0	
1991	Ton-Schluffstein Lage Nr. 2	0,15	231	34,65	82	12,3	10	1,50	700	105,0	100	15,0	
1990	Sandstein	0,22	302	66,44	10	2,2	5	1,10	15	3,3	20	4,4	
1989	Ton-Schluffstein Lage Nr. 1	0,20	498	99,6	99	19,8	10	2,00	200	40,0	60	12,0	
	Σ	0,94		242,6		48,47		7,95		193,7		44,4	
	Ø		258		51,6		8,5		206		47		
			Prof	ïl 3, Absta	nd zur Klu	uft 1,5 m							
1988	Wurmsandstein	0,35	131		16,5		10		600		70		
1987	Wurmsandstein cm ₁	0,15	60		21		15		400		70		
1986	"Eiersandsteinhorizont"	0.10	252		43		20		100		40		
1985	Sandstein	0.24	141	33.84	11.5	2.76	10	2.4	700	168.0	60	14.4	
1984	Ton-Schluffstein-Lage Nr. 3	0.15	69	10.35	64	9.6	8	1.2	70	10.5	50	7.5	
1983	Sandstein	0.20	19.5	3.9	17.5	3.5	7	1.4	60	12.0	30	6.0	
1982	Ton-Schluffstein-Lage Nr. 2	0.11	127	13.97	75	8.25	25	2.75	300	33.0	60	6.6	
1981	Sandstein	0.25	107	26.75	8.9	2,22	5	1.25	40	10.0	25	6.25	
1980	Ton-Schluffstein} Lage Nr. 1	0.07	177	12,39	90	6.3	15	1.05	250	17.5	60	4.2	
1979	Ton-Schluffstein}	0.08	867	69.36	95	7.6	100	8.0	200	16.0	80	6.4	
1978	Sandstein	0.10	341	34.10	12.5	1.25	20	2.0	80	8.0	25	2.5	
1770	Σ	1 20	0.11	204.66	12,0	41.48	20	20.05	00	275.0	20	53.85	
	<u>Ø</u>	1,20	171	204,00	34.6	+1,+0	16.7	20,05	229	275,0	45	55,05	
	Ø		Prof	il 4 Absta	nd zur Kli	ıft 2.5 m	10,7		22)		ч.)		
1000	T 0.11.00 (1 X) 2 0	0.17	1101		70	,5 m	17	0.05	250	27.5	50		
1998	Ton-Schluttstein-Lage Nr. 3	0,15	63	9,45	73	9,45	15	2,25	250	37,5	50	7,5	
1997	Sandstein	0,20	18,5	3,7	18	3,60	20	4,00	70	14,0	100	20,0	
1996	Ton-Schluffstein-Lage Nr. 2	0,11	35	3,85	59	6,49	10	1,10	800	88	70	7,7	
1995	Sandstein	0,25	32	8,0	21	5,25	15	3,75	50	12,5	50	12,5	
1994	Ton-Schluffstein- Lage Nr.1	0,15	178	26,7	85	12,75	20	3,00	700	105,0	100	15,0	
	Σ	0,86	60	51,7	126	37,54	16.4	14,1	200	257,0	72	62,7	
1	Ŵ	1	00	1	43,0		10,4	1	299	1	13	1	

Tab. 9: Metallometrie an Klüften des 2. und 3. Erzhorizontes in der Grube

Fortsetzung Tab. 9

	II. 3. Er	rzhorizont (ctr ₂) in	Zuflußse	enke "Sch	acht 38	7 -	Forstha	usweg", Aufsch	luß Steigort	1 (sieh	e Abb. 5	9)	
Pr.	Litholog	gie			U	Th		Pr.	Litholo	gie			U	Th
Nr.		-	m	g/t	g/t.m	g/t		Nr.		0	m	g/t	g/t.m	g/t
	Р	rofil 1. Einfa	llende K	lluft					Profil 3,	Abstand zur	Kluft 1,0	$m \rightarrow linl$	KS .	
1890	Sandstein, Firste	;	0,30	560	168	12		1951	Sandstein, First	e	0,40	341	136,40	6,9
1889	Schluffstein	Lage Nr. 4	0,08	2200	176	66		1950	Schluffstein	Lage Nr. 5	0,20	3800	760	79
1888	Sandstein		0,10	1250	125	17		1949	Sandstein		0,34	290	98,6	16
1887	Sandstein		0,14	930	130,2	17		1948	Schluffstein	Lage Nr. 4	0,06	4700	282	89
1886	Sandstein		0,12	2020	242,4	20		1947	Sandstein		0,15	904	135,6	24
1884	Sandstein		0,09	3420	307,8	34		1946	Sandstein		0,35	1150	402,5	16,5
1885	Sandstein		0,05	2860	143	23		1945	Sandstein		0,18	1800	324	25
1883	Sandstein		0,12	2390	286,8	18		1944	Schluffstein	Lage Nr. 3	0,12	13000	1560	95
1882	Schluffstein	Lage Nr. 3	0,14	20600	2884,0	87		1943	Sandstein		0,20	321	64,2	24
1881	Sandstein		0,16	1290	206,4	29		1942	Schluffstein}	Lage Nr, 2	0,10	867	86,7	79
1880	Schluffstein Lage Nr.		0,10	6970	697,0	109		1941	Schluffstein}		0,10	539	53,9	65
1879	Schluffstein		0,16	3910	625,6	68		1940	Sandstein		0,10	1350	135	43
1878	8 Sandstein		0,14	3700	518,0	43		1939	Sandstein, Sohl	e	0,20	133	26,6	15,5
1877	77 Sandstein		0,20	2850	570,0	24			Σ		2,50		4065,5	
1876	76 Sandstein		0,20	2670	534,0	26			Ø			1626		
1875	S75 Sandstein		0,10	1490	149,0	17								
1874	Sandstein		0,10	2070	207,0	23			Profil 4, A	bstand zur K	luft ~ 3.5	$m \rightarrow rec$	chts	
1873	Sandstein		0,10	1420	142,0	20		2000	Schluffstein}		0,10	491	49,1	104
1872	Schluffstein	Lage Nr. 1	0,10	9700	970,0	85		1999	Schluffstein}	Lage Nr. 3	0,10	1700	170	109
1871	Sandstein, Sohle	;	0,10	1150	115,0	18		2004	Sandstein		0,20	42	8,4	13
	Σ		2,60		9197,2			2001	Schluffstein	Lage Nr. 2	0,30	2300	690	96
	Ø			3537				2003	Sandstein		0,70	334	233,8	39
	D (10 4	A1 / 1 T	71 6 0 5		1.4			2002	Schluffstein	Lage Nr. 1	0,10	5000	500,0	88
	Prol11 2, F	Adstand zur F	Sun 0,5	$m \rightarrow rec$	nts			2004	Sandstein, Sohl	e	0,60	42	25,2	13
1911	Sandstein, Firste	•	0,16	210	33,6	7			Σ		2,10		1676,5	
1910	Sandstein		0,19	460	87,4	26			Ø			798		
1909	Schluffstein	Lage Nr. 4	0,03	57700	1731,0	142			•	•				
1908	Sandstein		0,20	1730	346,0	17								
1907	Sandstein		0,20	760	152	18								
1906	Sandstein		0,02	1590	31,8	27								
1905	Sandstein		0,20	1160	232	20								
1904	Schluffstein		0,06	27900	1674	100								
1903	Sandstein		0,06	580	34,8	53								
1902	Schluffstein	Lage Nr. 3	0,06	3330	199,8	89								
1901	Sandstein		0,12	240	28,8	27								
1900	Schluffstein}		0,15	1720	258	96								
1899	Schluffstein}	Lage Nr. 2	0,15	900	135	80								
1898	Schluffstein}		0,10	1370	137	72								
1897	Sandstein		0,20	740	148	19								
1896	Sandstein		0,20	570	114	15								
1895	Sandstein		0,10	980	98	14								
1894	Sandstein		0,10	1090	109	25								
1893	Sandstein	• • • •	0,10	630	63	30								
1892	Schluffstein	Lage Nr. 1	0,10	3360	336	76								
1891	Sandstein, Sohle	,	0,10	300	30	20								
	Σ		2,60		5858,2	ļ							<u>.</u>	
	Ø			2253										

4.5 Grundzüge der Erzlithologie und Erzmineralogie

Von Uraninfiltrationen sind in der Lagerstätte grundsätzlich alle Lithologien, Faziesarten und Stratigraphien betroffen, die im Schichtenprofil den 5. und 4. Grundwasserleiter begrenzen, zusammensetzen und untergliedern. Doch unterscheiden sich die Lithotypen erheblich nach ihrer Vererzbarkeit. Diese hängt unter sonst gleichen Bedingungen allein vom Grad der Befähigung einer Gesteinsart ab, durch Adsorption und Reduktion den Untergrundwässern gelöstes Uran zu entziehen. Das Spektrum uranhaltiger Lithologien ist daher weit gefächert. Es bezieht alle Ablagerungsarten von den Schluff- und Tonsteinen über die Brandschiefer bis zu Sandsteinen und Konglomeraten in sich ein. Selbst präcenoman verwittertes Grundgebirge und zersetzte tertiäre Basalte (Abb. 28) sind dabei mit einbegriffen. Infolge der Bindung des Urans im lithologischen Profil an markante Grenzen der Grundwasserdurchlässigkeit und des Übergangs der Ablagerungen von dem einen in den anderen Litho-Typ stellt das Erz gewöhnlich keine reine Gesteinsart dar. Vornehmlich an die Kontakte von Sand- und Schluffsteinlagen gebunden, besteht es aus einem Gemisch von beiden Litho-Typen.

Der in der Lagerstätte verbreitetste Träger des Urans mit dem 1. Platz in der bergmännischen Gewinnung ist komplex aus primär-detritischem Feinsand, sekundär detritischen tonigen Hydrolysaten und figurierter wie auch dispers zersetzter inkohlter pflanzlicher Substanz zusammengesetzt. Er enthält kaum Karbonat und ist durch ein kieseliges und toniges Bindemittel lithifiziert. Seine sedimentär-detritischen Bestandteile sind gut bis sehr gut sortiert und klassiert. Sie sind in veränderlichen Fein- und Feinstschichtungen voneinander getrennt und enthalten Einschlüsse von Pyrit, Markasit und gelegentlich von Sphalerit und Galenit. Je nach ihrer äußeren Beschaffenheit werden sie in den Dokumentationen der Bohrkerne und untertägigen Auffahrungen als gemaserte Sandsteine, sandige Schluffe und feinsandige Schiefertone beschrieben. Im Niveau des 3. Erzhorizontes und 5. Grundwasserleiters bilden sie die "Überschwemmungsfazies" der Flußauenschichten und untergliedern die fluviatilen Sandsteinbänke in den Zuflußsenken (Abb. 60, 61, 75, 76). Mit dem lagunären Wurmsandstein (Abb. 10, 17, 19, 77) bilden sie in der Sohle des Unterquaders und 4. Grundwasserleiters den 2. und mit den gemaserten und Glaukonit führenden marinen Sand- und Schluffsteinen in dessen Dach den 1. Erzhorizont.

Das gemeinsame Merkmal für in milieu-fazieller Hinsicht derartig unterschiedliche Ablagerungen besteht in deren schlierig-flaserig-strähniger Feinschichtungs- und Maserungstextur. Dieser Eigenschaft ist eine unter den gegebenen Bedingungen hohe metallogenetische Bedeutung zuzuschreiben. Die besondere Eignung der Feingliederungstextur zur Elementanreicherung dürfte auf ein gemeinsames Zusammenwirken der einzelnen Gesteinsbestandteile in stofflicher und struktureller Beziehung zurückzuführen sein. Zum einen gestattet diese Textur den Untergrundwässern, verhältnismäßig tief in die Ablagerung einzudringen. Zum anderen verfügt diese Mischung über ein großes Oberflächenvolumen. Sie vermag daher mit dem zugeführten Uran mittels ihrer adsorbierenden und reduzierenden tonigen und organischen Bestandteile innig zu reagieren. Der Ablagerungstyp kommt mit seinen stofflichen und texturellen Eigenschaften den Vorstellungen über natürliche Filter und potentielle Elementfallen von allen in der Lagerstätte vertretenen Gesteinsarten am nächsten.

Den 2. Platz in der Reihe des Fördererzes nimmt der Sandstein ein. Selbst er ist als Erzträger, sei es auch schwach und unscheinbar, schluffig, kohlig, eisensulfidisch oder eisenoxid-hydratisch texturiert, mit einem tonigen Bindemittel versehen oder von Tongallen durchsetzt (Abb. 62, 64, 69, 72, 78). Seine Vererzung ist jeweils räumlich eng beschränkt. Sie ist in der oberen Lagerstätten-Etage in der Zone des Zusammenschlusses von erstem und zweitem Erzhorizont auf den zwischenlagernden Unterquader und im 2. Erzhorizont auf Teilabschnitte des basalen Wurmsandsteins begrenzt. In der unteren Lagerstätten-Etage betrifft sie die fluviatilen Sandsteinbänke des 3. Erzhorizontes hauptsächlich in den Klüftungszonen.

Den 3. und letzten Platz in dieser Reihe belegen die kompakten, weniger strukturierten, längs der Kontakte der beiden Grundwasserleiter verlaufenden Ton-Schluffsteinund Brandschieferablagerungen. Eine Außenseiterrolle spielen zersetzter Granit aus der grundgebirgischen präcenomanen Verwitterungskruste und vertonte, die Grundwasserleiter durchsetzende Basaltoide. Die terrestrischen rotbuntfarbigen Basisschichten bleiben wegen ihres fehlenden Reduktions- und verminderten Adsorptionsvermögens im Kontakt mit den Grundwasserleitern steril. Im Falle ihrer den Unterquader unmittelbar unterlagernden und damit den 2. Erzhorizont ersetzenden Position führen die rotbuntfarbigen Basisschichten am Sandsteinkontakt zwar eine nachweisbare, doch wie in Abb. 44 an der Bohrung Nr. 2389 zu erkennen, wirtschaftlich bedeutungslose Anomalie.

Das Uran ist in seinen Wirtsgesteinen überwiegend feindispers verteilt. Die Art seiner Existenz ist in diesem Zustand selbst mit optischen Hilfsmitteln kaum zu diagnostizieren. Die unauffällig disperse Form bildet in der Lagerstätte die Hauptvererzungsart. Nur an exponierten Profilabschnitten wechselt das Uran von seinem feinstverteilten in einen beobachtbaren mineralischen Zustand über. Die Mineralisationen sind auf Kluft- und Schichtungsflächen sowie in Poren und Kavernen der Gesteine und an Grundwasserkontakten ausgebildet. Sie finden sich jeweils an vertikalen und horizontalen Wasserbewegungsbahnen mit sich wiederholender Auflösung, Weitertransport und Wiederabscheidung von Uran und insofern an Stellen erhöhter physiko-chemischer Unstetigkeit. Sie sind bevorzugt in den Reicherzpartien der Lagerstätte und dort in den Klüftungszonen zu beobachten. Die disperse und die mineralisierte Vererzungsform sind miteinander eng verbunden. Die letztere kommt nur mit der ersteren gemeinsam vor. Sie geht allem Anschein nach aus der ersteren hervor und prägt sich dieser auf. Sie bildet die so benannte Abfolge der Trümer-Fleckenerze. Beide Vererzungsformen seien nachfolgend kurz beschrieben.

Die Dispersvererzung wurde anhand hergestellter Makro-Autoradiographien von angeschliffenen Gesteinshandstücken kenntlich gemacht. Die Radiographien zeigen das Uran sehr ungleichmäßig in seinem Wirtsgestein und zwar in Abhängigkeit von dessen charakteristischer und beschriebener Textur verteilt. Die Schwärzungen sind nach Formung und Intensität stark gegliedert. Sie bilden in wolkigen Schleiern und Streifungen die schluffigen, tonigen und kohligen Zwischenlagen, Strähnen und Maserungen ab, welche die sandigen Gesteinspartien durchziehen.

Erforschungsgeschichte

 Abb. 60: (links Gesteinsaufnahme, rechts Radiographie): Sandstein, feinkörnig, mit kohlig-tonigen Schlieren und örtlich konkretionärem Pyrit. Erzfeld Pirna, 3. Erzhorizont. Terrestrisches Cenoman, Flußauenschichten (ctr₂), Bahra-Kirchberger Zuflußsenke, Bohrung 2722, Teufe 240 m, Probe 1441/78

 Abb. 61: (links Gesteinsaufnahme, rechts Radiographie): Quarzsandstein, fein- bis mittelkörnig mit kohlig-tonigen Flasern, inkohltem Pflanzenhäcksel, Kohlebröckchen. Erzfeld Pirna, 3. Erzhorizont. Terrestrisches Cenoman, Fluβauenschichten (ctr₂), Bahra-Kirchberger Zuflußsenke, Bohrung 2713, Teufe 240 m, Probe 1543/78

Abb. 62: (links Gestein, rechts Radiographie):

Erzfeld Pirna, Bahra-Kirchberger Zufluβsenke, Quarzsandstein, grobkörnig, hellgrau, kaolinitischer Zement, Fluβauenschichten (ctr₂), Bohrung 2110/79, Teufe 229,5 m, Probe 13

Abb. 63: (links Gestein, rechts Radiographie): Tonsteinzwischenlage im Sandstein der Bahra-Kirchberger Zuflußsenke, Erzfeld Pirna, Flußauenschichten (ctr₂), Boh-

rung 2110/79, Teufe 233,3 m,

Probe 31

Abb. 64: (links Gestein, rechts Radiographie):

Sandstein, grobkörnig, grau, mit Schrägschichtung, kaolinitisches Bindemittel, Erzfeld Pirna, 3. Erzhorizont. Terrestrisches Cenoman, Flußauenschichten (ctr₂), Bahra-Kirchberger Zuflußsenke, Bohrung 2110/79, Teufe 230,5 m, Probe 22

Abb. 65: (links Gestein, rechts Radiographie):

Quarzsandstein, grau, fein- bis grobkörnig mit Tongallen, kaolinitisches Bindemittel, oben mit inkohlten Wurzeln. Erzfeld Pirna, 3. Erzhorizont. Terrestrisches Cenoman, Flußauenschichten (ctr₂), Bahra-Kirchberger Zuflußsenke, Bohrung 2110/79, Teufe 231,5 m, Probe 24

Abb. 66: (links Gestein, rechts Radiographie):

Quarzsandstein, grau, feinkörnig mit kohlig-schluffigen Schlieren und feiner Durchwurzelung. "Zwischenzone", 3. Erzhorizont. Terrestrisches Cenoman, Flußauenschichten (ctr₂), Bahra-Kirchberger Zuflußsenke, Bohrung 2179/79, Teufe 221,5 m, Probe 12-1 Abb. 67: (links Gestein, rechts Radiographie):

Sandstein, feinkörnig, tonig. "Zwischenzone", 3. Erzhorizont. Terrestrisches Cenoman, Flußauenschichten (ctr₂), Bahra-Kirchberger Zuflußsenke, Bohrung 2179/79, Teufe 222,5 m, Probe 15

Abb. 68: (links Gestein, rechts Radiographie):

Quarzsandstein, fein- bis grobkörnig, kohlig-tonige Schlieren, kaolinitisches Bindemittel. Bohrung 2179/79, Teufe 222,1 m, Probe 13

Abb. 69: (links Gestein, rechts Radiographie):

Sandstein, grobkörnig, grau mit reichlich Tongallen. Erzfeld Pirna, 3. Erzhorizont. Terrestrisches Cenoman, Flußauenschichten (ctr₂), Bahra-Kirchberger Zuflußsenke, Bohrung 2111/79, Teufe 231,4 m

Abb. 70: (links Gestein, rechts Radiographie):

Sandstein, fein- bis mittelkörnig, grau mit Einlagerungen von Schluff und Ton. Erzfeld Pirna, 3. Erzhorizont. Terrestrisches Cenoman, Flußauenschichten (ctr₂), Bahra-Kirchberger Zuflußsenke, Bohrung 2111/79, Teufe 231,5 m

Die Radiographie zeigt Dispers-Uran mit Übergängen in die mineralisierte Form.

Abb. 71: (links Gestein, rechts Radiographie): Schluffsteinlage, Übergang in Sandstein, reichlich inkohltes Pflanzenhäcksel, Zuflußsenke "Schacht 387-Forsthausweg". Terrestrisches Cenoman, Flußauenschichten (ctr₂), Steigort 1, Probe 1872

Abb. 72: Sandstein, fein- und grobkörnig, inkohltes Pflanzenhäcksel, unten mit Uranschwärze, dunkelfleckig mit verwaschenen Grenzen, Einwanderung von Uran in die Gesteinsklüftung. ctr₂, Steigort 1, Probe 1882-2

Abb. 73: Sandstein, fein- bis mittelkörnig, durchsetzt mit dunkelgrauer disperser organischer Substanz. Die Radiographie zeigt deutlich das Einwandern von Uran in die Klüftung. Uranvorkommen Hinterhermsdorf, Basis Unterquader, über Crednerienschichten. Bohrung 2418A, Teufe 603 m.

Abb. 74: Quarzsandstein, grobkörnig, grau, Uranschwärze in dunklen verwaschenen Flecken (z. B. oben rechts), Zentralzone, 3. Erzhorizont, ctr₂, Zuflußsenke "Schacht 387-Forsthausweg", Steigort 1, Probe 1883

Erforschungsgeschichte

Abb. 75: (links Gestein, rechts Radiographie): Quarzsandstein, mischkörnig, schluffig-kohlig-tonig durchflasert. Auf der Radiographie oben links Uranabscheidung um konkretionären Pyrit. Zentralzone, 3. Erzhorizont, terrestrisches Cenoman, Flußauenschichten (ctr₂), Zuflußsenke "Schacht 387-Forsthausweg", Steigort 1, Probe 13

Abb. 76: (links Gestein, Radiographie dazu auf Seite 91):

Quarzsandstein, fein- und mischkörnig, grau, kohlig-tonige Schlieren. Uranschwärze verursacht im hellen Sandstein dunkle, verwaschene Flecken. 3. Erzhorizont, Zuflußsenke "Schacht 387-Forsthausweg", terrestrisches Cenoman, Flußauenschichten (ctr₂) Typische Uranerz-Fazies im 3. Horizont, Steigort 1, Probe 1882-1