

Wärmenutzung bei Biogasanlagen

Schriftenreihe der Sächsischen Landesanstalt für Landwirtschaft Heft 17/2007

Sächsische Landesanstalt für Landwirtschaft

Erarbeitung methodischer Grundlagen für die wirtschaftliche Gestaltung von Wärmeabnahmestellen und Wärmetransportsystemen zur Nutzung der Kraft-Wärme-Kopplung bei Biogasanlagen in der Landwirtschaft

Prof. Dr. Joachim Zielbauer, Renate Gaida, Guido Knott

Inhaltsverzeichnis

1	Ve	eranlassung und Zielstellung	1
2	Fal	allbeispiel Wärmeversorgungskonzept Biogas	anlage MIKU Oberseifersdorf2
	2.1	Biogasanlage MIKU Oberseifersdorf	2
	2.2	Ermittlung von Strom und Wärmeleistung der	\nlage3
	2.3	Ermittlung des Eigenwärmeverbrauches und z	u erwartenden Wärmeüberschusses 4
	2.3	.3.1 Ausgangssituation	4
	2.3	3.2 Erstellung der Wärmeversorgungskonze	ption6
	2.4	Anteil Wärmenutzung bei Betrieb von Ferment	er, Sozialgebäude und Sauenstall9
	2.5	Wärmeüberschuss der Anlage bei Betrieb von	Fermenter, Sozialgebäude und
		Sauenstall	10
	2.6	Getreidetrocknung	10
	2.7	Anteil Wärmenutzung bei Betrieb einer zusätzl	ichen Getreidetrocknung12
	2.8	Milchkühlung	12
	2.9	Anteil Wärmenutzung bei Betrieb von Ferment	er, Sozialgebäude, Sauenstall und
		Milchkühlung	13
3	Un	Intersuchungen zu wirtschaftlichen Nutzungsr	nöglichkeiten des Wärme-
	üb	berschusses an Biogasanlagen	14
	3.1	Überblick zu Nutzungsmöglichkeiten der Abwä	rme14
	3.2	Eigenverbrauch Fermenter	15
	3.3	Eigenversorgung	15
	3.3	.3.1 Beheizung/Warmwasserbereitung von e	igen genutzten Gebäuden und
		Stallungen	15
	3.3	.3.2 Getreidetrocknung	16
	3.3	.3.3 Wärme-Kälte-Anlagen zur Milchkühlung	16
	3.4	Wärmelieferung an Fremde	16
	3.4		16
	3.4	.4.2 Wärmetransport mittels mobiler Speiche	r17
4	Zu	usammenfassung	19
5	Lite	iteraturverzeichnis	19
Δ	nhand	na	20

Abbildungsverzeichnis

Abbildung 1: Lageplan der Gebäude

Abbildung 2: Möglichkeiten der Abwärmenutzung am Standort MIKU Oberseifersdorf

Abbildung 3: Wärmeleistungen der einzelnen Abnehmer in MWh_{th}/a

Abbildung 4: Heizlastverhalten ganzjährig

Abbildung 5: Leistungsangebot- und -Abnahme ganzjährig

Abbildung 6: Ganzjähriger- und saisonaler Leistungsüberschuss

Abbildung 7: Möglichkeiten der Abwärmenutzung bei landwirtschaftlichen Biogasanlagen

Tabellenverzeichnis

Tabelle 1: Jährliche Stromeinspeiseerlöse

Tabelle 2: Jährliche mögliche KWK – Einsparerlöse

Tabelle 3: Wärmeleistungen der einzelnen Abnehmer

Tabelle 4: Elektrische und thermische Leistungen bei unterschiedlicher Benutzungs-

stundenzahl

Tabelle 5: Energieverbrauch und Einspeiseerlöse für Heizenergie

Tabelle 6: Zulässige Getreidetemperaturen in °C beim Trocknungsvorgang

Tabelle 7: Benötigte Wärmemenge für die Getreidetrocknung

Tabelle 8: Energieverbrauch und Einspeiseerlöse für Heizenergie und Getreidetrocknung

Tabelle 9: Arbeits- und Leistungsbilanz Milchkühlung

Tabelle 10: Energieverbrauch und Einspeiseerlöse für Heizenergie, Getreide-

Trocknung und Milchkühlung

Tabelle 11: Spezifischer Wärmeverbrauch nach Gebäudeart

Tabelle 12: spezifischer Wärmeverbrauch pro Tag für Getreidetrocknung

Tabelle 13: Wärmeverbrauch bei der Milchkühlung

Tabelle 14: Wärmetransportkosten in Abhängigkeit von Rohrdurchmesser und

übertragener Leistung

Tabelle 15: Wärmepreis in Abhängigkeit vom Speichermedium und der jährlichen

Wärmemenge

Tabelle 16: Wärmepreis in Abhängigkeit vom Speichermedium und der jährlichen

Wärmemenge ohne Investition Zugmaschine

1 Veranlassung und Zielstellung

Biogasanlagen in der Landwirtschaft, die mit Nachwachsenden Rohstoffen (NaWaRo) betrieben werden, arbeiten bereits durch ihre hohe Stromeinspeisevergütung nach dem Erneuerbare-Energien-Gesetz (EEG) vom 01.08.2004 wirtschaftlich. Dazu zählt auch der Einsatz von Gülle.

Neben der Stromeinspeisevergütung, welche sich aus der Grundvergütung je nach Leistungsgröße der Anlage plus dem Bonus für NaWaRo in Höhe von 6 Cent/kWh zusammensetzt, kann der Landwirt nach § 8 Abs. 3 EEG auch einen sogenannten Kraft-Wärme-Kopplungsbonus (KWK-Bonus) in Höhe von 2 Cent/kWh erhalten, soweit es sich um Strom im Sinne von § 3 Abs. 4 des Kraft-Wärme-Kopplungsgesetzes handelt und dem Netzbetreiber ein entsprechender Nachweis vorliegt. Für serienmäßig hergestellte KWK-Anlagen mit einer Leistung von bis zu 2 Megawatt können vom Hersteller geeignete Unterlagen vorgelegt werden, aus denen die thermische und elektrische Leistung sowie die Stromkennzahl hervorgehen.¹

Der KWK-Bonus wird aber nur auf den Teil der Wärmenutzung gezahlt, der außerhalb der Anlage erfolgt. Der Eigenverbrauch des Fermenters gehört nicht dazu. Der Verbrauch muss über einen Wärmemengenzähler, der in der Regel im Wärmerohr nach dem Notkühler untergebracht ist, nachgewiesen werden.

KWK-Strom = genutzte thermische Energie mal der Stromkennzahl Stromkennzahl = erzeugte elektrische Energie/erzeugte thermische Energie

Mit der zu erwartenden Änderung der Einspeisevergütung für Anlagen ab 2007, die stärker an die Wärmenutzung gekoppelt werden soll, wird die Nutzung der Wärme sicher noch attraktiver. Neben Möglichkeiten der Nutzung im eigenen Landwirtschaftsbetrieb gewinnt die Wärmelieferung an fremde Abnehmer mittels Nahwärmenetzen oder mobilen Speichern zunehmend an Bedeutung.

Die komplette Nutzung von Kraft und Wärme bedeutet nicht zuletzt auch eine Steigerung der Energieeffizienz und dadurch Verbesserungen beim Klimaschutz durch Reduzierung von Schadstoffemissionen.

Mit dem Betrieb einer Biogasanlage wird der Landwirt nicht nur zum Energieerzeuger, sondern er profitiert zusätzlich von Vorteilen wie z. B.

- der Gewinnung hochwertiger Energie aus Gülle und Nachwachsenden Rohstoffen,
- der Verringerung der Geruchsintensität von Gülle,
- der Verringerung der Ätzwirkung von Gülle,
- der Verminderung der Methan- und Ammoniakbelastung in der Luft,

¹ EEG vom 01.08.2004, § 8 Abs. 3

- der Verbesserung der Pflanzenverträglichkeit und
- der Homogenisierung der Gülle.

Der erste Teil des Projektes befasst sich mit der Ermittlung des vorhandenen Wärmebedarfspotenzials am Fallbeispiel MIKU Oberseifersdorf. Darauf aufbauend werden Gestaltungsmöglichkeiten für eine optimale Wärmeversorgungskonzeption aufgezeigt.

2 Fallbeispiel Wärmeversorgungskonzept Biogasanlage MIKU Oberseifersdorf

2.1 Biogasanlage MIKU Oberseifersdorf

Die MIKU Agrarprodukte GmbH ist ein landwirtschaftliches Unternehmen mit Sitz in Oberseifersdorf. Oberseifersdorf liegt in der Oberlausitz, etwa 6 km von Zittau entfernt.

Das Unternehmen betreibt in Oberseifersdorf eine Milchvieh- und Schweinezuchtanlage. In den Stallanlagen fallen jährlich ca. 3 100 m³ Schweinegülle und 27 000 m³ Rindergülle an. Diese Nebenprodukte sollen in Zukunft in einer Biogasanlage verwertet werden. Zusätzlich zur Gülle stehen auch noch Co-Fermente (Mais/Getreide) zur Verfügung.

Die Baugenehmigung für die geplante Biogasanlage liegt bereits vor. Die Anlage befindet sich in der Realisierungsphase und wird Ende 2006 in Betrieb gehen. Mit dem erzeugten Gas sollen zwei Blockheizkraftwerke mit einer elektrischen Leistung von 500 kW (zwei Zündstrahlmotoren mit einer Leistung von 250 kW) betrieben werden. Der erzeugte Strom wird in das Energieversorgungsnetz eingespeist. In der vorliegenden Wirtschaftlichkeitsberechnung geht man von einem jährlichen Stromeinspeiseerlös in Höhe von 546 000 Euro aus.

Die thermische Leistung des BHKW's beträgt 522 kW. Um auch den zusätzlichen Wärmebonus von 2 Cent/kWh zu erhalten, muss allerdings die anfallende Wärme außerhalb der Biogasanlage genutzt werden.

Die MIKU Oberseifersdorf GmbH will soviel Abwärme wie möglich selbst nutzen, weil in ihrem Umfeld keine weiteren Wärmekunden vorhanden sind. Auch möchte das Unternehmen die vorhandenen Gewächshäuser aus der Zeit vor 1990 nicht wieder in Betrieb nehmen und selbst bewirtschaften. Kann die Wärme nicht vollständig im eigenen Betrieb genutzt werden, bleibt allerdings die Option der Nutzung der Gewächshäuser durch einen Pächter offen.

Am Beispiel der Biogasanlage der MIKU Oberseifersdorf sollen Bausteinmodule zur Eigennutzung des anfallenden Wärmeüberschusses und methodische Grundlagen für den wirtschaftlichen Wärmetransport mittels Nahwärmenetzen und mobilen Wärmespeichern zur modellhaften Nachnutzung bei der Errichtung künftiger Anlagen erarbeitet werden.

2.2 Ermittlung von Strom und Wärmeleistung der Anlage

Laut Planungsbüro ergeben sich für die Anlage die folgenden Parameter: Es werden zwei Zündstrahlaggregate mit einer jeweiligen elektrischen Leistung von 250 kW und einer thermischen Leistung von 261 kW betrieben. Damit ergibt sich eine Gesamtleistung von 500 kW elektrisch und 522 kW thermisch. Die Benutzungsstundenzahl bewegt sich zwischen 6 500 und 7 500 Stunden pro Jahr. Im Folgenden wird mit durchschnittlich 7 000 Volllaststunden gerechnet.

Nach der vorliegenden Wirtschaftlichkeitsberechnung ergeben sich bei der gegenwärtigen Einspeisevergütung folgende Stromerlöse:

Tabelle 1: Jährliche Stromeinspeiseerlöse

BHKW-Leistung	2 x 250 kW
Benutzungsstunden	7000 h/a
Stromerzeugung	3.500.000 kWh
Grundvergütung (nach EEG)	9,60 ct/kWh
NAWARO-Zuschlag	6,00 ct/kWh
Stromeinspeisevergütung	15,60 ct/kWh
Stromeinspeiseerlöse	546.000,00 <i>€</i> a

Der erzeugte Strom wird in das Energieversorgungsnetz eingespeist. Wird die anfallende Wärme ebenfalls genutzt, gibt es noch einen Kraftwärmekopplungszuschlag. Der maximal mögliche Kraftwärmekopplungszuschlag errechnet sich bei 7 000 Volllaststunden wie folgt:

max. Stromeinspeiseerlös = max. nutzbare Energie_{th} * Stromkennzahl * 2 Cent/kWh

mit max. nutzbare Energie_{th} = :erzeugte Energie_{th} minus Energie_{Fermenter}) mit Stromkennzahl = Energie_{el} / Energie_{th} = 520 kW/522 kW = 0,958

Tabelle 2: Jährliche mögliche KWK-Einspeiseerlöse

max. KWK-Einspeiseerlöse	53.207	∉ a
KWK-Zuschlag	2	ct/kWh
KWK-Strom	2.660.366	kWh
Extern nutzbare Wärme	2.777.000	kWh
Fermenterverbrauch	877.000	kWh
Wärmeerzeugung	3.654.000	kWh
Stromerzeugung	3.500.000	
Benutzungsstunden	7000	h/a
BHKW-Leistung thermisch	522	kW
BHKW-Leistung elektrisch	500	kW

2.3 Ermittlung des Eigenwärmeverbrauches und zu erwartenden Wärmeüberschusses

2.3.1 Ausgangssituation

Nachfolgender Lageplan zeigt die Verteilung der Gebäude und Stallungen auf dem zu untersuchenden Standort.

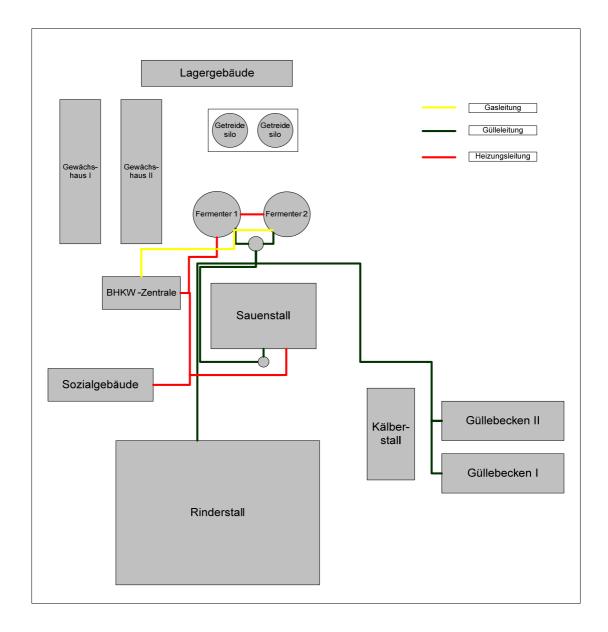


Abbildung 1: Lageplan der Gebäude

Die Gewächshäuser wurden schon lange vor 1990 errichtet und stehen leer. Eine Nutzung durch die MIKU selbst ist in nächster Zeit nicht vorgesehen. Die beiden Getreidesilos sind im Bau und sollen für die Getreidetrocknung genutzt werden. Das Sozialgebäude wird derzeit mit einem Ölkes-

sel und der Sauenstall mit einer Flüssiggasanlage beheizt. Diese beiden Abnehmer sollen künftig von den Blockheizkraftwerken versorgt werden. Die Rohrleitungsführung dafür wurde bereits realisiert.

Weitere Wärmekunden sind im Umfeld der MIKU Oberseifersdorf leider nicht vorhanden, so dass nur eine Eigennutzung der Abwärme in Frage kommt. Auch eine Umstellung der Milchkühlung, welche jetzt elektrisch erfolgt, auf Wärme-Kälte-Maschinen könnte den Wärmenutzungsgrad der Anlage erhöhen.

Die anfallende Gülle vom Sauen- und Rinderstall wird direkt über Rohrleitungen zum Fermenter geführt. Hier erfolgt die Vergasung der Gülle mit der Möglichkeit des externen Zusatzes von Co-Fermenten, wie Mais oder Getreide. Damit kann man eine gleichbleibende Gasqualität gewährleisten. Das Gas wird der BHKW-Zentrale zugeführt und treibt die Zündstrahlmotoren an. Der erzeugte Strom wird in das Energieversorgungsnetz eingespeist und die anfallende Wärme über Rohrleitungen zum Fermenter, dem Sozialgebäude und dem Sauenstall zugeführt. Die entgaste Gülle wird in den vorhandenen Güllebecken zwischengelagert und danach auf die Felder ausgebracht.

Arbeitet der Fermenter im Dauerbetrieb, ist Zufluss der unverarbeiteten Gülle aus den Stallungen gleich Abfluss der entgasten Gülle aus dem Fermenter in das Güllebecken.

Abbildung 2: Möglichkeiten der Abwärmenutzung am Standort MIKU Oberseifersdorf

2.3.2 Erstellung der Wärmeversorgungskonzeption

Für die Erstellung eines Wärmeversorgungskonzeptes ist die Ermittlung des vorhandenen Wärmebedarfs eine wichtige Ausgangsgröße.

Wichtige Parameter des Wärmebedarfs sind

- der jährliche Wärmebedarf,
- die Spitzenlast der Wärmeleistung,
- der saisonale Verlauf der Wärmelast und
- die geordnete Jahresdauerlinie.

Fermenter, Sozialgebäude und Sauenstall sind bereits rohrleitungstechnisch verbunden und sollen als erste Verbraucher an die Blockheizkraftwerke angeschlossen werden. Laut den Berechnungen in Anlage1 "Wärmebedarfsermittlung MIKU Oberseifersdorf – Ist-Zustand" ergibt sich folgende Leistungsbilanz:

Tabelle 3: Wärmeleistungen der einzelnen Abnehmer

Leistungsbilanz			
Schweinestall	218	kW	
Fermenter	125	kW	
Sozialgebäude	74	kW	
Rohrleitungsverlust	4	kW	

Der Wärmebedarf des Fermenters ist stark abhängig von der Ausführung der Biogasanlagen sowie dem Standort der Anlage und der Jahreszeit. In der Literatur² findet man als Eigenbedarf für den Fermenter Angaben von etwa 20 bis 30 Prozent der thermischen Gesamtleistung des BHKW`s. Im Sommer sinkt dieser Verbrauch etwa um 20 Prozent.

Für die Biogasanlage der MIKU Oberseifersdorf wurde mit einem thermischen Wärmeverbrauch des Fermenters in Höhe von 24 Prozent der Gesamtwärmeleistung der BHKW's gerechnet.

In folgender Tabelle sind die Anteile der elektrischen und der thermischen Energie der BHKW-Module bei verschiedenen Benutzungsstundenzahlen berechnet.

² Landwirtschaftskammer Nordrhein-Westfalen: Abschlußbericht 2004 "Projekt Biogas Rheinland"; Ergebnisse messtechnischer Untersuchungen an landwirtschaftlichen Biogasanlagen im Rheinland, Seite 106 ff.

Tabelle 4: Elektrische und thermische Leistungen bei unterschiedlicher Benutzungsstundenzahl

Betriebs- stunden- zahl	elektrische Leistung	thermische Leistung	Anteil elektrische Energie	Anteil thermische Energie	benötigte Heizwärme für Gebäude	benötigte Heizwärme für Fermenter ca.24% E _{thermisch}	Restwärme
in h/a	in KW	in KW	in MWh el /a	in MWh th /a	in MWh th /a	in MWh th /a	in MWh _{th} /a
8000	500	522	4000	4176	490,68	1002,24	2683,08
7000	500	522	3500	3654	490,68	876,96	2286,36
6000	500	522	3000	3132	490,68	751,68	1889,64

Aus den benötigten Wärmemengen wurden die Leistungen der einzelnen Wärmeabnehmer berechnet und 7 000 Betriebsstunden (80 Prozent Auslastung) als Berechnungsgrundlage angenommen. Dies entspricht den Werten aus der bereits erfolgten Planung der Anlage. Vorgesehen sind ca. 90 Tage für Wartung, Reparaturen und außerplanmäßige Stillstandszeiten.

Ist die Anlage dann später eingefahren, sollte schon eine Auslastung von mindestens 90 Prozent erreicht werden.

Abbildung 3: Wärmeleistungen der einzelnen Abnehmer in MWhth/a

In Abbildung 3 sind die Heizlastverläufe der einzelnen Wärmeabnehmer über die Jahresdauerganglinie dargestellt. Der Fermenter und der Sauenstall benötigen ganzjährig Wärme, das Sozialgebäude wird in den Sommermonaten nicht beheizt. Die benötigte Gesamtleistung geht im Sommer bis auf 60 Prozent zurück. Ausgehend von den Monatsdurchschnittstemperaturen zeigt die folgende Abbildung den Heizlastverlauf während eines Jahres.

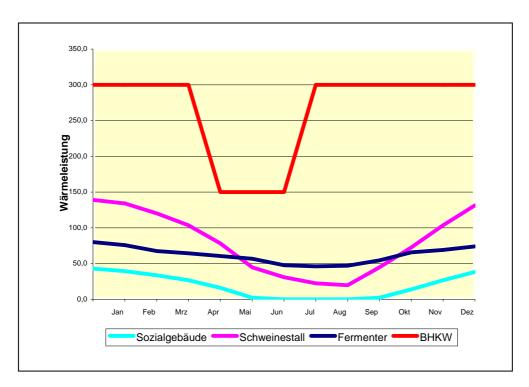


Abbildung 4: Heizlastverhalten ganzjährig

Es wird deutlich, dass während der Wintermonate mehr Wärme abgenommen wird. Daher ist es auch empfehlenswert, die jährlichen Wartungszeiten der beiden BHKW's in die Sommermonate zu verschieben. In den Sommermonaten kann man die benötigte Wärme mit einem BHKW abdecken. Der plötzliche Leistungsabfall des BHKW-Moduls in der Zeit Mai/Juni beruht darauf, dass in dieser Zeit nur ein BHKW-Modul in Betrieb ist.

Das BHKW ist mit einer Volllaststundenzahl von 7 000 h/a geplant. Die Differenz zu 8 760 Jahresstunden sind Ausfallzeiten des BHKW. Vorgesehen sind ca. 90 Tage, um Reparaturen und Wartungen durchzuführen. In dieser Zeit erzeugt nur ein Modul Strom und Wärme. Die restlichen Stunden sind ungeplante Ausfälle bzw. Havarien an der Anlage, in denen nicht die volle oder sogar keine Leistung erzeugt wird.

Ist die Anlage dann später eingefahren, sollte schon eine Auslastung von mindestens 90 Prozent erreicht werden.

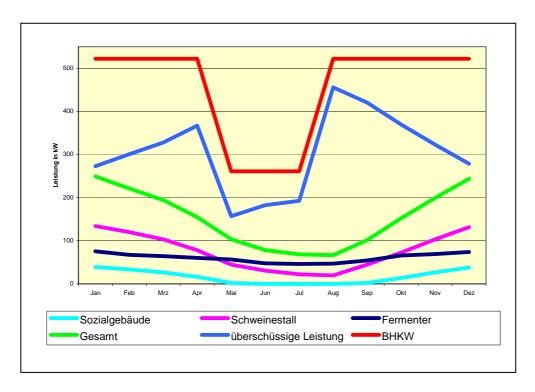


Abbildung 5: Leistungsangebot- und -abnahme ganzjährig

2.4 Anteil Wärmenutzung bei Betrieb von Fermenter, Sozialgebäude und Sauenstall

Bei Inbetriebnahme der Biogasanlage können diese Wärmeverbraucher sofort versorgt werden. Bei 7 000 Betriebsstunden produziert die Anlage insgesamt 3 654 MWh Wärmeenergie, verbraucht werden durch den Eigenverbrauch des Fermenters und der Beheizung von Sozialgebäude und Sauenstall nur 1 368 MWh. Der Verbrauch von 877 MWh/a für den Fermenter wird nicht mit dem KWK-Einspeisebonus vergütet.

Tabelle 5: Energieverbrauch und Einspeiseerlöse für Heizenergie

Extern nutzbare Wärme	2.777.000 kWh
KWK-Strom	2.660.366 kWh
KWK-Zuschlag	2 ct/kWh
max. KWK-Einspeiseerlöse	53.207 € a
Verbrauch Sozialgebäude	111.000 kWh
Verbrauch Sauenstall	380.000 kWh
Summe Heizenergie	491.000 kWh
KWK-Strom für Heizenergie	470.378 kWh
KWK-Einspeiseerlös	9.408 € a
Nutzungsgrad	18 %

Mit der Beheizung des Sozialgebäudes und des Sauenstalles kann ein zusätzlicher KWK-Einspeiseerlös von 9 408 €/Jahr erzielt werden. Das entspricht einem Nutzungsgrad der von der Anlage zur Verfügung stehenden Nutzwärme von 18 Prozent.

2.5 Wärmeüberschuss der Anlage bei Betrieb von Fermenter, Sozialgebäude und Sauenstall

Die nachfolgende Grafik zeigt, dass sich der noch vorhandene Nutzwärmeüberschuss der Anlage in einen ganzjährigen und einen saisonaler Wärmeüberschuss aufteilt.

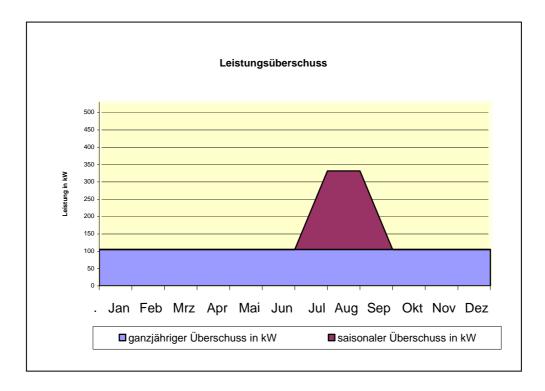


Abbildung 6: Ganzjähriger und saisonaler Leistungsüberschuss

Der stetige Leistungsüberschuss beträgt etwa 100 kW und kann als Grundlast für Wärmeprozesse ganzjährig genutzt werden. Der saisonale Überschuss, welcher etwa 230 kW beträgt, kann von Wärmeabnehmern genutzt werden, die während der Sommermonate Wärme benötigen.

Mit einer Getreidetrocknung und/oder der Umstellung der Milchkühlung auf Adsorptionskältemaschinen kann die MIKU weitere Wärmemengen in eigenen Unternehmen nutzen.

2.6 Getreidetrocknung

Die MIKU betreibt neben der Viehzucht auch noch Getreideanbau. Daher will die MIKU die überschüssige Wärme, welche saisonal im Sommer anfällt (ca. 230 kW) für eine Getreidetrocknung verwerten. Mit dem Bau der Biogasanlage sind gleichzeitig zwei Getreidesilos mit einem jeweiligen Fassungsvermögen von 527 Tonnen errichtet worden.

Durch einen Wärmetauscher, der sich am Getreidesilo befindet, wird heißes Kühlwasser der BHKW-Module durchgeleitet. Hinter dem Wärmetauscher ist ein Gebläse angebracht, welches die erwärmte Luft über ein Rohrsystem in das Silo bläst. Im Silo befinden sich Spaltböden, die eine Luftzirkulation zwischen dem eingelagerten Getreide gewährleisten. Außerdem wird das Getreide durch ein sich im Silo befindliches Stangenrührwerk bewegt. Das geerntete Getreide kann so im Silo getrocknet werden, bleibt länger lagerfähig und behält seine Qualität.

Die Trocknungsleistung wird dabei durch einige Parameter wie die Außentemperatur, die relative Luftfeuchtigkeit und die Getreidefeuchte beeinflusst. Außerdem darf die Getreidetemperatur beim Trocknungsvorgang nicht zu hoch sein.

Einige Richtwerte zur Getreidetrocknung sind in folgender Tabelle dargestellt:

Tabelle 6: Zulässige Getreidetemperaturen in °C beim Trocknungsvorgang

(Quelle: STREHLER)

Kornfeuchte (in %)	Weizen	Roggen, Hafer, Gerste	Saatgut, Brau- gerste
16	55	65	49
18	49	59	43
20	43	53	38
22	37	47	34
24	35	40	30

Laut Anlage 2 "Berechnung der Wärmeleistung zur Getreidetrocknung"" ergibt sich folgende Arbeits- und Leistungsbilanz:

Tabelle 7: Benötigte Wärmemenge für die Getreidetrocknung

	zu erwärmende Luftmenge	thermische Arbeit pro Stunde	thermische Arbeit pro Tag	thermische Leistung
1 Stück LH100-4	max. 7700 m ³ /h	69,3 kWh	1,66 MWh	69,3 kW
2 Stück LH100-4	max. 15400 m ³ /h	138,6 kWh	3,32 MWh	138,6 kW

Die Erntezeiten der verschiedenen Getreidesorten liegen in den Monaten Juni bis September. Bei einem durchgehenden Trocknungsprozess in dieser Zeit kommt man auf maximal 100 Betriebstage. Zu bedenken ist aber dabei, dass die volle Trocknungsleistung für das Getreide nur in sehr feuchten Sommern benötigt wird.

2.7 Anteil Wärmenutzung bei Betrieb einer zusätzlichen Getreidetrocknung

Zur Trocknung des Getreides können maximal 100 Tage (Monate Juni bis September) angesetzt werden. Damit können weitere 332 MWh an Wärme, für die es den KWK-Bonus gibt, genutzt werden.

Tabelle 8: Energieverbrauch und Einspeiseerlöse für Heizenergie und Getreidetrocknung

Extern nutzbare Wärme	2.777.000 kWh
KWK-Strom	2.660.366 kWh
KWK-Zuschlag	2 ct/kWh
max. KWK-Einspeiseerlöse	53.207 € a
Heizenergie	491.000 kWh
Getreidetrocknung	332.000 kWh
Summe Verbrauch	823.000 kWh
KWK-Strom dafür	788.434 kWh
KWK-Einspeiseerlös	15.769 € a
Nutzungsgrad	30 %

Mit der Beheizung des Sozialgebäudes, des Sauenstalles und der Getreidetrocknung kann ein zusätzlicher KWK-Einspeiseerlös von 15. 769 €/Jahr erzielt werden. Das entspricht einem Nutzungsgrad der von der Anlage zur Verfügung stehenden Nutzwärme von 30 Prozent.

2.8 Milchkühlung

Außer dem saisonalen Überschuss in den Monaten Juni bis September zeigt die Wärmebilanz für die MIKU Oberseifersdorf auch noch einen ganzjährigen Wärmeüberschuss von etwa 100 kW und eignet sich daher für die Verwendung bei gleichbleibenden technologischen Prozessen, z. B. bei der Milchkühlung.

Die Milch wird gegenwärtig mit einer Kompressionskältemaschine gekühlt. Bei Umstellung auf eine Adsorptionskältemaschine kann die bisher benötigte Elektroenergie durch die anfallende Wärmenergie bei den Blockheizkraftwerken ersetzt und der Auslastungsgrad bei der Wärmenutzung entscheidend verbessert werden.

Im Gegensatz zur Verdichterkältemaschine hat die Absorptionskältemaschine keinen mechanischen, sondern einen thermisch wirkenden Verdichter. Die Verdichtung erfolgt mittels kombiniertem Kältemittel- und Lösungsmittelkreislauf. Ebenso wie bei anderen Verfahren wird auch hier elektrische Energie benötigt. Dieser Anteil an Energie beträgt jedoch im Gegensatz zu mechanischen Verdichtern (Kompressionskältemaschinen) nur einen geringen Teil, so dass elektrische Energie eingespart werden kann.

Die MIKU Oberseifersdorf produziert etwa 21 000 Liter Milch mit einer Temperatur von 35 °C pro Tag. Um die Milch ordnungsgemäß zu hältern, muss diese bei einer Temperatur von 5 °C gelagert werden. Die Lagerdauer der Milch in den Milchtanks beträgt zwischen 12 und 24 Stunden.

Laut den Berechnungen in Anlage 3 "Berechnung der Wärmeleistung zur Milchkühlung" ergibt sich folgende Arbeits- und Leistungsbilanz:

Tabelle 9: Arbeits- und Leistungsbilanz Milchkühlung

Installierte Leistung	80 kW	
Wärmeverbrauch	701 MWh pro Jahr	

2.9 Anteil Wärmenutzung bei Betrieb von Fermenter, Sozialgebäude, Sauenstall und Milchkühlung

Stellt die MIKU die Milchkühlung auf Absorptionskältemaschinen um, können weitere 701 MWh pro Jahr an Wärme genutzt werden, für die ebenfalls der KWK-Einspeisebonus gezahlt wird.

Tabelle 10: Energieverbrauch und Einspeiseerlöse für Heizenergie, Getreidetrocknung und Milchkühlung

Extern nutzbare Wärme	2.777.000 kWh
KWK-Strom	2.660.366 kWh
KWK-Zuschlag	2 ct/kWh
max. KWK-Einspeiseerlöse	53.207 € a
Heizenergie	491.000 kWh
Getreidetrocknung	332.000 kWh
Milchkühlung	701.000 kWh
Summe Verbrauch	1.524.000 kWh
KWK-Strom dafür	1.459.992 kWh
KWK-Einspeiseerlös	29.200 € a
Nutzungsgrad	55 %

Mit der Beheizung des Sozialgebäudes, des Sauenstalles, der Getreidetrocknung und der Milch-kühlung kann ein zusätzlicher KWK-Einspeiseerlös von 29 200 €/Jahr erzielt werden. Das entspricht einem Nutzungsgrad der von der Anlage zur Verfügung stehenden Nutzwärme von 55 Prozent. Weitere eigene Wärmeverbraucher sind nicht vorhanden.

Der vorhandene ganzjährige Überschuss von ca. 100 kW deckt die Milchkühlung (ca. 80 kW Anschlussleistung) gut ab und es bleibt eine Reserve für die benötigte Heizenergie offen. Hier sollten keine weiteren Verbraucher angeschlossen werden. Reserven liegen noch im saisonalen Überschussangebot von ca. 230 kW im Juni bis September, von denen ca. 140 kW durch die Getreidetrocknung gebunden sind. Zum derzeitigen Zeitpunkt können dafür keine wirtschaftlichen Nutzun-

gen aufgezeigt werden, weil die Wärme zu einem Zeitpunkt anfällt, in dem die MIKU keine Nutzungsmöglichkeit hat.

3 Untersuchungen zu wirtschaftlichen Nutzungsmöglichkeiten des Wärmeüberschusses an Biogasanlagen

3.1 Überblick zu Nutzungsmöglichkeiten der Abwärme

Einen Überblick über die Nutzungsmöglichkeiten der Abwärme gibt Abbildung 7.

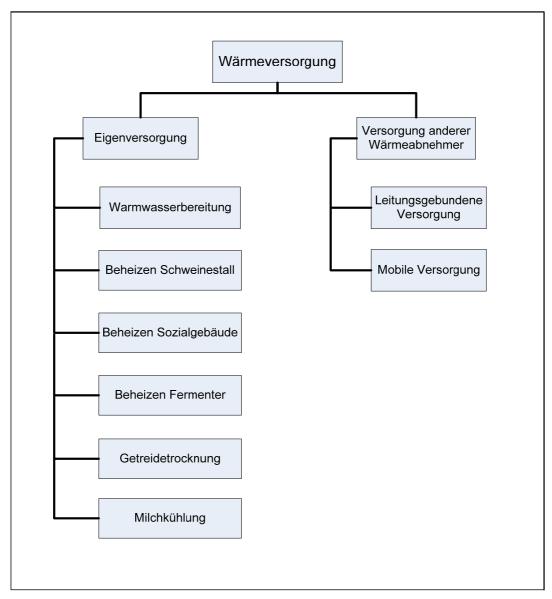


Abbildung 7: Möglichkeiten der Abwärmenutzung bei landwirtschaftlichen Biogasanlagen

14

Die Wärmeversorgungsmöglichkeiten untergliedern sich in zwei Gruppen.

Eigenversorgung

Am günstigsten erweist sich immer der Eigenverbrauch, weil hier nicht mit Problemen der Versorgungssicherheit und Vertragsgestaltung an Lieferung Fremder zu rechnen ist.

Die Wärme kann für die Beheizung des Fermenters, der Sozialanlagen, der Ferkelaufzuchtanlagen sowie für die Warmwasserbereitung, die Getreidetrocknung und zur Milchkühlung genutzt werden. Außer für den Verbrauch im Fermenter wird für alle diese Abnahmestellen der KWK-Bonus gezahlt.

Wärmelieferung an Fremde

Sind keine eigenen Wärmeabnahmestellen vorhanden, sollten die Möglichkeiten der Lieferung an Dritte mittels Nahwärmenetzen und /oder mobiler Speicher geprüft werden. Auch hier wird der KWK-Bonus für die gelieferte Wärme gezahlt.

3.2 Eigenverbrauch Fermenter

Der Wärmebedarf des Fermenters ist stark abhängig von der Ausführung der Biogasanlagen sowie dem Standort der Anlage und der Jahreszeit.

In der Literatur³ findet man als Eigenbedarf für den Fermenter Angaben von **etwa 20 bis 30 Prozent der thermischen Gesamtleistung des BHKW's** im Jahr. Der zeitliche Bedarf schwankt je nach Dämmung der Fermenterbehälter. Während bei guter Dämmung der Verbrauch über das ganze Jahr relativ gleich bleibt und unter 20 Prozent liegt, steigt der Verbrauch bei wenig gedämmten Anlagen im Winter wesentlich an und kann bis zu 30 Prozent der Jahresleistung des BHKW's betragen.

Der Wärmeverbrauch im Fermenter wird nicht mit dem KWK Bonus vergütet.

3.3 Eigenversorgung

3.3.1 Beheizung/Warmwasserbereitung von eigen genutzten Gebäuden und Stallungen

Der Wärmebedarf errechnet sich aus dem Produkt des spezifischen Wärmebedarfs, der Nutzfläche des Gebäudes und den Benutzungsstunden.

Benutzungsstunden für Wohngebäude: 1 700 Stunden pro Jahr
zeitlicher Anfall: September bis Mai
Benutzungsstunden für Sauenstall: 2 200 Stunden pro Jahr

- zeitlicher Anfall ganzjährig

³ Landwirtschaftskammer Nordrhein-Westfalen, Abschlußbericht 2004 "Projekt Biogas Rheinland"; Ergebnisse messtechnischer Untersuchungen an landwirtschaftlichen Biogasanlagen im Rheinland, Seite 106 ff.

Tabelle 11: Spezifischer Wärmeverbrauch in W/m² nach Gebäudeart (Quelle: eigene Darstellung)

	Raum-	Altbau	Neubau	Niedrigenergie-	Stall
ter	nperatur			haus	
	15°C	70	55	40	80
	22°C	110	80	45	130
	27°C	140	120	65	180

3.3.2 Getreidetrocknung

Getreidesilos (Höhe 10,75 m, Durchmesser 12,51 m) mit Wolf Lufterhitzer LH 100-4

Betriebstage für Trocknung max. 100 Tagezeitlicher Anfall: Juni bis September

Tabelle 12: Spezifischer Wärmeverbrauch pro Tag

	zu erwärmende Luftmenge	thermische Arbeit pro Stunde	thermische Arbeit pro Tag	thermische Leistung
1 Stück LH100-4	max. 7700 m ³ /h	69,3 kWh	1,66 MWh	69,3 kW
2 Stück LH100-4	max. 15400 m ³ /h	138,6 kWh	3,32 MWh	138,6 kW

3.3.3 Wärme-Kälte-Anlagen zur Milchkühlung

Für die Kühlung von täglich 20 000 Liter Milch beträgt die thermische Leistung je nach Kälteleistungszahl 80 bis 100 kW. Das entspricht einem jährlichen Wärmeverbrauch von 701 MWh.

- zeitlicher Anfall: ganzjährig

Tabelle 13: Wärmeverbrauch bei der Milchkühlung

Milchmenge	Leistung thermisch	Wärmeverbrauch/Jahr
10. 000 Liter	40-50 kW	350 MWh
20. 000 Liter	80-100 kW	700 MWh
30. 000 Liter	120-150 kW	1050 MWh

3.4 Wärmelieferung an Fremde

3.4.1 Wärmelieferung über Nahwärmenetze

Bei Wärmelieferung an Dritte entscheiden die Rohrverlegungskosten über deren Wirtschaftlichkeit. In Tabelle 14 sind die entstehenden Kosten in Abhängigkeit vom Durchmesser des verlegten Rohres sowie der Entfernung dargestellt. Die entsprechenden Berechnungsgrundlagen finden sich in Anlage 4 "Wärmetransport mittels Fernwärmeleitungen".

Tabelle 14: Wärmetransportkosten in Abhängigkeit von Rohrdurchmesser und übertragener Leistung mit Annuität

Maximale Länge des Nahwärmenetzes bei Grenzkosten von 6 Cent/kWh

Nutzungsdauer: 20Jahre

Zinssatz: 5%

Betriebskosten ca. 1 % der Investitionskosten

Benutzungsstunden: 1700 h

Rohrleitungs- durchmesser in mm	Wärmeleistung in kW	Kosten in Cent pro kWh pro 100 m	maximale Entfernung in m bei K _{wgrenz =} 6 Cent pro kWh
25	60	3,05	197
40	160	1,19	506
50	320	0,65	928
65	480	0,45	1332
80	840	0,28	2178
100	1200	0,22	2789
125	2000	0,15	4110
150	2800	0,11	5380

Grenzkosten in Höhe von 6 Cent/kWh für den maximalen Wärmeabgabepreis entsprechen dem derzeitigen Ölpreis. Die Hausanschlusskosten (Übergabestation) sind in der Berechnung nicht enthalten. Diese trägt in der Regel der Wärmeabnehmer selbst.

Die wirtschaftlichen Entfernungen liegen je nach Rohrdurchmesser und übertragener Leistung zwischen 197 m bei Nennweite 25 mm und 5 380 m bei Nennweite 150 mm. Je niedriger die abgenommene Leistung ist, umso kürzer ist die wirtschaftliche Entfernung des Nahwärmenetzes.

3.4.2 Wärmetransport mittels mobiler Speicher

Mobile Speicher machen den Transport von Wärme ohne Rohrleitungen möglich. Ihre Entwicklung steht aber noch am Anfang, derzeit existieren viele Speicherformen und -arten.

Handelsüblich sind folgende Ausführungen:

Wärmespeicher mit dem Speichermedium Wasser:

- Speicherkapazität: ca. 60 kWh/m³ (bei gleichbleibendem Aggregatzustand)

- Wärmeverluste: ca. 5 Prozent der Speichermenge (je nach Umgebungstemperatur)

Wärmespeicher mit einem Wärmeträgeröl als Speichermedium:

- Speicherkapazität: ca. 95 kWh/m³ (bei gleichbleibendem Aggregatzustand)

- Wärmeverluste: ca. 8 Prozent der Speichermenge (größere Verluste durch höheres Δt und größere Speicherleistung)

Latente Speicher

- Speicherkapazität: ca. 120 kWh/m³ (bei gleichbleibendem Aggregatzustand)
- Wärmeverluste: ca. 3 Prozent der Speichermenge (je nach Umgebungstemperatur

In Tabelle 15 sind die entstehenden Kosten in Abhängigkeit vom Speichermedium und der jährlich benötigten Wärmemengen dargestellt. Die Berechnungsgrundlagen sind in Anlage 5 "Wärmetransport mittels mobiler Speicher" dargestellt.

Tabelle 15: Wärmepreis in Abhängigkeit vom Speichermedium und der jährlichen Wärmemenge

Investition Zug- maschine	Annuität Zug- maschine	Investition Anhänger	Annuität Anhänger	Investition Speicher- medium	Annuität Speicher- medium	jährliche Wärme- menge	Wärme- preis
100000 €	0,1424		0,1098	119 €	0,0944	100000 kWh	0,27 ∉ kWh
100000 €	0,1424	120000 €	0,1098	119 €	0,0944	200000 kWh	0,14 € /kWh
100000 €	0,1424	120000 €	0,1098	52500 €	0,0944	100000 kWh	0,32 <i>€</i> kWh
100000 €	0,1424	120000 €	0,1098	52500 €	0,0944	200000 kWh	0,16 <i>€</i> /kWh

Zeile 1 und 2 der Tabelle enthalten die Werte für Wasser als Speichermedium und Zeile 3 und 4 die Werte für Öl als Speichermedium

Der Wärmepreis, zu denen die Wärme kostendeckend geliefert werden müsste, liegt hier bereits zwischen 14 und 32 Cent/kWh (abhängig von der jährlichen Wärmeabnahmemenge).

Nimmt man an, dass die Zugmaschine für den Wärmetransport nicht neu angeschafft werden muss, sondern nur der Anhänger mit dem Speichermedium, dann verringert sich der Wärmepreis auf 7 bis 18 Cent/kWh. Das liegt aber immer noch über dem angenommenen maximalen Wärmepreis von 6 Cent/kWh (jetziger Ölpreis).

Tabelle 16: Wärmepreis in Abhängigkeit vom Speichermedium und der jährlichen Wärmemenge ohne Investition Zugmaschine

		Investition	Annuität	jährliche	
Investition	Annuität	Speicher-	Speicher-	Wärme-	Wärme-
Anhänger	Anhänger	medium	medium	menge	preis
120000 €	0,1098	119 €	0,0944	100000 kWh	0,13 <i>€</i> kWh
120000 €	0,1098	119 €	0,0944	200000 kWh	0,07 <i>€</i> /kWh
120000 €	0,1098	52500 €	0,0944	100000 kWh	0,18 <i>€</i> /kWh
120000 €	0,1098	52500 €	0,0944	200000 kWh	0,09 <i>€</i> /kWh

Zeile 1 und 2 der Tabelle enthalten die Werte für Wasser als Speichermedium und Zeile 3 und 4 die Werte für Öl als Speichermedium

Kann die Fahrtätigkeit nicht mit von den vorhandenen Beschäftigten abgesichert werden, müssen auch noch Personalkosten für eine zusätzliche Arbeitskraft mit eingerechnet werden. Der Einsatz

von mobilen Speichern lohnt sich bei den gegenwärtigen Energiepreisen für solche geringe Abnahmemengen noch nicht.

4 Zusammenfassung

Die Nutzung der thermischen Wärme bringt für die Biogasanlagenbetreiber einen zusätzlichen Erlös.

Kann die Wärme im eigenen Unternehmen genutzt werden, bringt das viele Vorteile. Man hat keine Probleme mit der Versorgungssicherheit und Vertragsgestaltung bei Belieferung Fremder. Das setzt jedoch voraus, dass geeignete Wärmeabnehmer zur Verfügung stehen oder geschaffen werden.

Sind keine Wärmeabnehmer im eigenen Unternehmen vorhanden, sollte die Möglichkeit der Lieferung von Wärme an Dritte über Nahwärmenetze geprüft werden. Diese sind umso effektiver, je höher der Leistungsdurchsatz ist.

Mobile Speicher lohnen sich durch ihre hohen Betriebs- und Investitionskosten bei den heutigen Energiepreisen für kleine Abnahmemengen noch nicht.

5 Literaturverzeichnis

www.landwirtschaftskammer.de www.energieberater.sachsen.de www.web.regionalberatung.de www.biogas.org-datenbank.de www.landwirtschaft.sachsen.de

EEG vom 01.08.2004

Landwirtschaftskammer Nordrhein-Westfalen, Abschlußbericht 2004 "Projekt Biogas Rheinland"; Ergebnisse messtechnischer Untersuchungen an landwirtschaftlichen Biogasanlagen im Rheinland, Seiten 106 ff.

Anhang

Anlage 1: Wärmebedarfsermittlung MIKU Oberseifersdorf – Ist-Zustand

1 Bestandsaufnahme

Sauenstall

L x B: 51 m x 24 m = $\frac{1 \cdot 224 \text{ m}^2}{1 \cdot 224 \text{ m}^2}$

TH = 4,75 m

Sozialgebäude

L x B: $48,5 \text{ m} \text{ x } 12,5 \text{ m} = \underline{606,25 \text{ m}^2}$

TH = 3,62 m

Kälberstall

L x B: $40 \text{ m} \text{ x } 12,5 \text{ m} = 500 \text{ m}^2$

TH = 3,45 m

Rinderställe

L x B:1x 100 m x 24,5 m = 2 450 m²

 $L \times B:1 \times 95 \text{ m} \times 23,5 \text{ m} = 2 \times 232,5 \text{ m}^2$

 $L \times B:3 \times 88 \text{ m} \times 23,5 \text{ m} = 2068 \text{ m}^2$

gesamt:= 10 886,5 m²

TH = 3,90 m

Gewächshäuser

L x B:2x 48 m x 24 m = 1 152 m²

gesamt:= 2 304 m²

TH = 3,15 m

Nebengebäude (BHKW-Raum)

 $L \times B$: 36 m x 11 m = 396 m²

TH = 3,65 m

Laut einer Bestandsaufnahme werden derzeit nur der Sauen- bzw. Schweinestall und das Sozialgebäude beheizt. In den anderen Gebäuden wird keine Wärme benötigt.

2 Berechnungen für den Sauenstall bzw. Schweinestall

Im Schweinestall herrscht eine Raumtemperatur zwischen 25 und 28 °C. Die Heizungsanlage besteht aus Gasbrennern, welche ein Warmwasserheizungssystem mit Wand- und Deckenheizkörpern erwärmen. Der Brennstoff Flüssiggas wird in oberirdischen Tanks gelagert.

2.1 Berechnungen nach dem Energieverbrauchsverfahren

Brennstoff: Flüssiggas

Brennstoffkosten: 27 000 – 29 000 Euro/Jahr Brennstoffpreis: 50,45 Euro/100 Liter

2.1.1 Ermittlung des Brennstoffbedarfs

Brennstoffbedarf: 53 518 – 57 483 Liter/Jahr (errechnet)

Berechnungsformel:

 $Brennstoffbedarf = \frac{Brennstoffkosten}{Brennstoffpreis}$

Brennstoffbedarf = $\frac{27000}{0.5045}$ = 53518,331/a

Brennstoffbedarf = $\frac{29000}{0.5045}$ = 57482,66 l/a

2.1.2 Ermittlung des Energieverbrauches

Heizwert Flüssiggas: = 6,8 kWh/l

Berechnungsformel:

Energieverbrauch = Brennstoffbedarf * Heizwert

Energieverbrauch = 53518 Liter * 6,8 kWh/Liter = 363922,4 kWh = 363,92 MWh

Energieverbrauch = 57483 Liter * 6,8 kWh/Liter = 390884,4 kWh = 390,88 MWh

Heizwert Flüssiggas: = 12,8 kWh/kg = 6,8 kWh/l

Berechnungsformel: in kWh

Energieverbrauch = Brennstoffbedarf * Heizwert

Energieverbrauch = 53518 Liter *12,8 kWh/kg = 685030 kWh (1,kg) = 364377 kWh = 364,4MWh *Energieverbrauch* = 57483 Liter *12,8 kWh/kg = 735782,4 kWh (1,kg) = 391373 kWh = 391,4 MWh

Umrechnungsformel:

Flüssiggas bei 15 °C : 1kg ≈ 1,88 Liter (je nach Propan/ Butananteil)

2.2 Berechnung des Energieverbrauchs mittels überschlägigem Indikatorenverfahren

Beim überschlägigen Indikatorverfahren sind die Raumgröße und die Raumtemperatur wichtige Orientierungsgrößen.

Die Gebäudemaße sind:

L x B: 51 m x 24 m = 1224 m²

TH = 4,75 m

Der spezifische Wärmebedarf beträgt ca. 180 Watt/m².

Berechnungsformel: bei 1 700 Betriebsstunden/a

Spezifischer Wärmebedarf = 180W/m²

Spezifischer Wärmebedarf * Quadratmeter = Wärmebedarf

Wärmebedarf * Betriebsstunden = Jahresenergiebedarf

$$\mbox{W\"{a}rmebedar} f = 180 \mbox{ W/m}^2 * 1224 \mbox{ m}^2 = 220320 \mbox{ W} = 220,32 \mbox{ kW}$$

$$\mbox{\it Jahresenergiebedar} f = 220,32 \mbox{ kW} * 1700 \mbox{ h/a} = 374544 \mbox{ kWh} = 374,54 \mbox{ MWh}$$

Berechnungsformel: bei Annahme des spez. Wärmebedarfs von 140 W/m² und 2200h/a

Spezifischer Wärmebedarf = 140W/m²

Spezifischer Wärmebedarf * Quadratmeter = Wärmebedarf

Wärmebedarf * Betriebsstunden = Jahresenergiebedarf

$$W\ddot{a}rmebedarf = 140 \text{ W/m}^2 * 1224 \text{ m}^2 = 171360 \text{ W} = 171,360 \text{ kW}$$

Jahresenergiebedarf = 171,36 kW * 2200 h/a = 376992 kWh = 376,99 MWh

Folgende Tabellen fassen die errechneten Werte zusammen.

Berechneter Wärmebedarf Schweinestall

Brennstoffbedarf		He	eizwert	U-faktor	Wärmeverb	rauch
53518	Liter	6,80	kWh/Liter	1,00	363,92	MWh
57483	Liter	6,80	kWh/Liter	1,00	390,88	MWh
53518	Liter	12,80	kWh/kg	1,88	364,38	MWh
57483	Liter	12,80	kWh/kg	1,88	391,37	MWh
			DS	377,64	MWh	

Überschlägiger Wärmebedarf Schweinestall

spez.Wärmebedarf	Raumgröße	Wärmebedarf	Betriebsstu	ınden	Jahreswärmebedarf
140 W/m²	1224 m²	171,36 kW	1700 h/a	а	291,31 MWh
180 W/m²	1224 m²	220,32 kW	1700 h/a	а	374,54 MWh
140 W/m ²	1224 m²	171,36 kW	2200 h/a	а	376,99 MWh
180 W/m²	1224 m²	220,32 kW	2200 h/a	а	484,70 MWh
				DS	381,89 MWh

An den durchschnittlich errechneten Werten ist erkennbar, dass die Berechnungen mittels des Energieverbrauchsverfahrens und dem überschlägigen Verfahren ähnliche Ergebnisse aufweisen. Damit liegt der Wärmeverbrauch etwa zwischen den Durchschnittswerten und die errechneten Werte können zu weiteren Berechnungen verwendet werden.

2.3 Ermittlung der Leistung

Um konkrete Aussagen über den Wärmebedarf zu machen, ist es sinnvoll, die Leistung zu berechnen. Dabei sollte der Nutzungsgrad beachtet werden, um genaue Werte zu erzielen.

Berechnungsformel mit berechnetem Energieverbrauch gegeben: Energieverbräuche, Betriebsstunden, Nutzungsgrad

Berechnungsbeispiel: 1700 h

$$Leistung = \frac{Energieverbrauch}{Bertiebsstunden}$$

$$P = \frac{363,92 \text{ MWh}}{1700 \text{ h}} = 214 \text{ kW}$$

$$korrigierte\ Leistung = \frac{Leistung}{Nutzungsgrad}$$

$$P_{korr} = \frac{214 \text{kW}}{0.90} = \frac{237,78 \text{kW}}{0.90}$$

Berechnungsformel mit überschlägigem Energieverbrauch

gegeben: Wärmebedarf, Nutzungsgrad

Berechnungsbeispiel:

$$korrigierte\ Leistung = \frac{W\"{a}rmebedarfsleistung}{Nutzungsgrad}$$

$$P_{korr} = \frac{220,32 \text{ kW}}{0,90} = \underline{244,8 \text{ kW}}$$

Die tabellarische Übersicht zeigt auch bei der Leistungsberechnung, dass beide Berechnungsverfahren geeignet sind und ähnliche Werte aufzeigen.

Tabellarische Übersicht:

Berechnete Leistungen Schweinestall

Energiev	erbrauch	Betriebss	tunden	Nutzungsgrad	Leistur	ng	korr. Leisti	ung
363,92	MWh	1700	h/a	0,90	214,07	kW	237,86	kW
363,92	MWh	2200	h/a	0,90	165,42	kW	183,80	kW
390,88	MWh	1700	h/a	0,90	229,93	kW	255,48	kW
390,88	MWh	2200	h/a	0,90	177,67	kW	197,41	kW
364,38	MWh	1700	h/a	0,90	214,34	kW	238,16	kW
364,38	MWh	2200	h/a	0,90	165,63	kW	184,03	kW
391,37	MWh	1700	h/a	0,90	230,22	kW	255,80	kW
391,37	MWh	2200	h/a	0,90	177,90	kW	197,66	kW
<u>-</u>					Durchschni	tt	218,77	kW

Überschlägige Leistung Schweinestall

Wärmebedarfsle	Wärmebedarfsleistung		korr. Leistung
171,36	171,36 kW		190,40 kW
220,32	220,32 kW		244,80 kW
· ·		Durchschnitt	217,60 kW

3 Berechnungen für das Sozialgebäude bzw. Verwaltungsgebäude

Im Sozialtrakt beträgt die Raumtemperatur ca. 22° C.

Ein Heizöl befeuerter Heizungskessel erwärmt die Warmwasserheizung. Die Wärme wird mittels Wandheizkörpern an die Raumluft abgegeben.

3.1 Berechnungen nach dem Energieverbrauchsverfahren

Brennstoff: Heizöl

Brennstoffbedarf: 10000 -12000 Liter/Jahr Brennstoffpreis: 57,15 Euro/100 Liter

3.1.1 Ermittlung der Brennstoffkosten

Brennstoffkosten: 5715 – 6858 Euro/Jahr (errechnet)

Berechnungsformel:

Brennstoffkosten = Brennstoffbedarf * Brennstoffpreis

Brennstoffkosten = 100001*0,5715 €1 = 5715 €

Brennstoffkosten = 12000 1 * 0,5715 €1 = 6858 €

3.1.2 Ermittlung des Energieverbrauches

Heizwert Heizöl: = 10 kWh/l =35MJ/l

Berechnungsformel:

Energieverbrauch = Brennstoffbedarf * Heizwert

Energieverbrauch = 10000 Liter *10 kWh/Liter = 100000 kWh = 100 MWh

Energieverbrauch = 12000 Liter *10 kWh/Liter = 120000 kWh = 120 MWh

Heizwert Heizöl: = 35 MJ/l =10kWh/l

Berechnungsformel:

Energieverbrauch = Brennstoffbedarf * Heizwert

Energieverbrauch = 10000 Liter * 35 MJ/Liter = 350 GJ/l = 97222 kWh = 97.2 MWh

Energieverbrauch = 12000 Liter * 35MJ/Liter = 420 GJ/l = 116666 kWh = 116,67 MWh

Umrechnungsformeln:

1 Wh = 3 600 Ws (Wattsekunde) = 3 600 Joule = 3,6 Kilojoule (kJ).

 $1\,kWh = 3.6*10^6\,J$ und $1\,J = 0.278*10^{-6}\,kWh$

3.2 Berechnung des Energieverbrauchs mittels überschlägigem Verfahren

Die Maße des Sozialgebäudes sind:

L x B: $48.5 \text{ m} \times 12.5 \text{ m} = 606.25 \text{ m}^2$; TH = 3.62 m

Der spezifische Wärmebedarf beträgt ca.110 Watt/m².

Berechnungsformel:

Spezifischer Wärmebedarf = 110W/m²

Spezifischer Wärmebedarf * Quadratmeter = Wärmebedarf

Wärmebedarf * Betriebsstunden = Jahresenergiebedarf

$$W\ddot{a}rmebedarf = 110 \text{ W/m}^2 * 606,25 \text{ m}^2 = 66687,5 \text{ W} = 66,687 \text{kW}$$

$$Jahresenergiebedarf = 66,687 \text{ kW} * 1700 \text{ h/a} = 113367,9 \text{ kWh} = 113,37 \text{ MWh}$$

Folgende Darstellungen fassen die errechneten Werte tabellarisch zusammen:

Berechneter Wärmebedarf Sozialgebäude

Brennstoffbedarf		Hei	zwert	U-faktor	Energieve	erbrauch
10000	Liter	10,00	kWh/Liter	1,00	100,00	MWh
12000	Liter	10,00	kWh/Liter	1,00	120,00	MWh
10000	Liter	35,00	MJ/Liter	3,6E+06	97,22	MWh
12000	Liter	35,00	MJ/Liter	3,6E+06	116,67	MWh
				DS	108,47	MWh

Überschlägiger Wärmebedarf Sozialgebäude

spez.Wärmebedarf Raumgröße		Зe	Wärmebe	darf	Betriebsstu	nden	Jahresene	ergiebedarf	
110	W/m²	606,25	m²	66,69	kW	1700	h/a	113,37	MWh

Bei Anwendung beiden Berechnungsverfahren erhält man in etwa die gleichen Ergebnisse.

3.3 Ermittlung der Leistung

Berechnungsformel mit berechnetem Energieverbrauch

gegeben: Energieverbräuche, Betriebsstunden, Nutzungsgrad

Berechnungsbeispiel: 1700 h

$$Leistung = \frac{Energieverbrauch}{Bertiebsstunden}$$

$$P = \frac{100 \text{ MWh}}{1700 \text{ h}} = 58,8 \text{ kW}$$

$$korrigierte\ Leistung = \frac{Leistung}{Nutzungsgrad}$$

$$P_{korr} = \frac{58,8 \text{ kW}}{0,90} = \underline{66,85 \text{ kW}}$$

Berechnete Leistung Sozialgebäude

Energieve	nergieverbrauch Betriebsstunden		Nutzungsgrad	Leist	Leistung korr. L		ung	
100,00	MWh	1700	h/a	0,88	58,82	kW	66,84	kW
120,00	MWh	1700	h/a	0,88	70,59	kW	80,21	kW
97,22	MWh	1700	h/a	0,88	57,19	kW	64,99	kW
116,67	MWh	1700	h/a	0,88	68,63 kW		77,99	kW
					Durchschi	nitt	72,51	kW

Berechnungsformel mit überschlägigem Energieverbrauch gegeben: Wärmebedarf, Nutzungsgrad Berechnungsbeispiel:

$$korrigierte\ Leistung = \frac{W\"{a}rmebedarfsleistung}{Nutzungsgrad}$$

$$P_{korr} = \frac{66,68 \,\mathrm{kW}}{0,88} = \frac{75,77 \,\mathrm{kW}}{0}$$

Überschlägige Leistung Sozialgebäude

Wärmebeda	ırfsleistung	Nutzungsgrad	korr. Leistung		
66,69	kW	0,88	75,78 kW		

Anlage 2: Berechnung der Wärmeleistung zur Getreidetrocknung

Berechnung der Wärmeleistung mittels Enthalpiedifferenz

Zum Einsatz kommen Wolf Lufterhitzer LH 100-4 die je nach Drehzahl einen Luftmengedurchsatz bis 7 700 m³/h haben.

Zur Berechnung werden folgende Annahmen getroffen:

vor Erwärmung: 18°C Lufttemperatur, 65 % relative Luftfeuchte, h = 40 kJ/kg, nach Erwärmung: 45°C Lufttemperatur, 15 % relative Luftfeuchte, h = 67 kJ/kg.

daraus: $\Delta h = 27 \text{ kJ/kg}$

$$\dot{\mathbf{Q}}_{\mathrm{L}} = \frac{\varsigma * \dot{\mathbf{V}} * \Delta \mathbf{h}}{3600}$$

$$\dot{Q}_L = 1.2 \frac{kg}{m^3} * 7700 \text{ m}^3 * 27 \frac{kJ}{kg}$$

$$\overset{\bullet}{Q}_{L} = 249480 \text{ kJ}$$

 \dot{Q}_L : Wärmemenge

 ς : Dichte

V: Volumenstrom

Δh: Enthalpiedifferenz

Umrechnungsformeln:

1 Wh = 3.600 Ws (Wattsekunde) = 3.600 Joule = 3,6 Kilojoule (kJ).

$$1 \, kWh = 3.6 * 10^6 \, J \text{ und } 1 \, J = 0.278 * 10^{-6} \, kWh$$

Nach Umrechnung:

$$=\frac{249.480 \text{ J}}{3600}=69.3 \text{ kWh}$$

Weil der Volumenstrom pro Stunde angegeben ist, wird eine Wärmeleistung von ca.69, 3 kW benötigt, um diesen zu erwärmen.

28

2 Berechnung der Wärmeleistung mittels Temperaturdifferenz

Zum Einsatz kommen Wolf Lufterhitzer LH 100-4 die je nach Drehzahl einen Luftmengedurchsatz bis 7 700 m³/h haben.

Zur Berechnung werden folgende Annahmen getroffen:

vor Erwärmung: 18°C Lufttemperatur, 65 % relative Luftfeuchte,

nach Erwärmung: 45°C Lufttemperatur, 15 % relative Luftfeuchte.

daraus: $\Delta T = 27^{\circ}C$

$$\dot{\mathbf{Q}}_{L} = \mathbf{c}_{p} * \varsigma * \dot{\mathbf{V}} * \Delta \mathbf{T}$$

$$\dot{Q}_{L} = 1.0 \frac{kJ}{kg*K} * 1.2 \frac{kg}{m^3} * 7700 \text{ m}^3 * 27 \text{ K}$$

$$\dot{\mathbf{Q}}_{\mathrm{L}} = 249480 \,\mathrm{kJ}$$

Q_L: Wärmemenge

 $c_{\rm p}$: spezifische Wärmekapazität

 ς : Dichte

V : Volumenstrom

Δh: Enthalpiedifferenz

Umrechnungsformeln:

1 Wh = 3 600 Ws (Wattsekunde) = 3 600 Joule = 3,6 Kilojoule (kJ).

$$1 \, kWh = 3.6 \, *10^6 \, J \text{ und } 1 \, J = 0.278 \, *10^{-6} \, kWh$$

Nach Umrechnung:

$$=\frac{249.480 \text{ J}}{3600}=69.3 \text{ kWh}$$

Weil der Volumenstrom pro Stunde angegeben ist, wird eine Wärmeleistung von ca.69, 3 kW benötigt, um diesen zu erwärmen. Insgesamt sind zwei Luftheizer installiert, so dass sich auch die Verbräuche und Leistungen verdoppeln.

Die nachfolgende Tabelle zeigt die Leistungen und Verbräuche, die zur Lufterwärmung benötigt werden.

Benötigte Wärmemenge für die Getreidetrocknung

	überschüssige thermische Leistung in kW	thermische Arbeit in MWh pro Tag	zu verbrauchende thermische Arbeit in MWh/a	nötige Betriebszeit der Trocknung in Tagen
Trocknung ohne Milchkühlung	332	3,3	969	293
Trocknung mit Milchkühlung	252	3,3	269	82

Anlage 3: Berechnung der Wärmeleistung zur Milchkühlung

1 Einführung

Derzeit produziert die MIKU Oberseifersdorf 21 000 Liter Milch am Tag. Um die Milch ordnungsgemäß zu hältern, muss diese bei einer Temperatur von 5 °C gelagert werden. Die Lagerdauer der Milch in den Milchtanks beträgt zwischen 12 und 24 Stunden.

Nach Berechnungen in folgender Tabelle müsste eine Kompressionskältemaschine eine Kälteleistung von ca. 50 kW aufbringen, um die Milch zu kühlen.

Leistung der Milchkühlung (Quelle: Sächsische Landesanstalt für Landwirtschaft)

	Allgemein	MIKU		
Kälteleistung	2,3kW/1000kg Milch	21000 kg Milch	48,3	kW
elektrische Arbeit	17,8kWh/1000kg Milch	21000 kg Milch	373,8	kWh

Soll eine Absorptionskältemaschine zum Einsatz kommen, so ist die benötigte thermische Energie eine wichtige Ausgangsgröße, welche auf unterschiedliche Weise berechnet werden kann.

2 Berechnung der benötigten thermischen Energie mittels Temperaturdifferenz

Die Milch wird in einem Kühler, welcher von einem Kühlmittel durchflossen wird gekühlt. Das Kühlmittel wird dabei von 45 °C auf -5 °C abgekühlt, um die Milch von 35 °C auf 5 °C abzukühlen.

Die Berechnungsformel für die benötigte thermische Energie lautet:

$$Q = c_{Milch} * m * \Delta T$$

$$Q = 3.85 \frac{kJ}{kg * K} * 21000 kg * 30 K$$

$$Q = 2.425.500 \text{ kJ} = 2.426 \text{ MJ}$$

Q: Wärmemenge

c_{Milch}: spezifische Wärmekapazität von Milch

m: Masse

 ΔT : Temperatur differenz

Umrechnungsformeln:

1 Wh = 3.600 Ws (Wattsekunde) = 3.600 Joule = 3,6 Kilojoule (kJ).

$$1 \, kWh = 3.6 \, *10^6 \, J \text{ und } 1 \, J = 0.278 \, *10^{-6} \, kWh$$

Nach Umrechnung:

$$=\frac{2.425.500.000 \text{ J}}{3600000} = 673,75 \text{ kWh/d}$$

Um die Milchmenge von 21 000 kg von 35 °C auf 5 °C herunterzukühlen, werden ca. 674 kWh an Kältearbeit verrichtet. Weil die Milch den ganzen Tag gekühlt werden muss und eine Absorptionskältemaschine kontinuierlich arbeitet, wird von 12 Betriebsstunden pro Tag ausgegangen.

Bei dieser Annahme muss das Kühlaggregat eine Kälteleistung von ca. 56 kW besitzen. Die thermische Leistung beträgt je nach Kälteleistungszahl zwischen 80 und 100 kW. Der Nachteil einer Absorptionskältemaschine ist, dass bei einem Ausfall der Biogasanlage die BHKW-Module mit Heizöl betrieben werden müssen, um Heißwasser zu erzeugen.

3 Warmwasserzubereitung

Derzeit wird die Abwärme der Milchkühlung zur Warmwasserbereitung genutzt. Bei der Anschaffung einer neuen Milchkühlanlage kann das Warmwasser durch die Abwärme der Absorptionskältemaschine erzeugt werden. Die MIKU verbraucht täglich ca. 5 m³ Warmwasser. Das Wasser kommt mit ca. 10°C am Wärmetauscher an und verlässt diesen mit einer Temperatur von ca. 60°C.

Folgender Energiebedarf besteht, um die benötigte Menge Warmwasser zu erzeugen.

Berechnungsformel:

$$Q = c_n * m * \Delta T$$

$$Q = 4.18 \frac{kJ}{kg * K} * 5000 kg * 50 K$$

$$Q = 1.047.000 \text{ kJ} = 1047 \text{ MJ}$$

Q: Wärmemenge

c_n: spezifische Wärmekapazität

m: Masse

 ΔT : Temperatur differenz

Umrechnungsformeln:

1 Wh = 3.600 Ws (Wattsekunde) = 3.600 Joule = 3,6 Kilojoule (kJ).

$$1\,kWh = 3.6*10^6\,J$$
 und $1\,J = 0.278*10^{-6}\,kWh$

Nach Umrechnung:

$$= \frac{1.047.000.000 \,\mathrm{J}}{3600000} = 290,83 \,\mathrm{kWh}$$

Um die nötige Menge Warmwasser zu erzeugen, muss ca. 291 kWh thermische Energie eingesetzt werden.

Bei der Annahme, dass das Warmwasser innerhalb von 15 Stunden zur Verfügung stehen muss (Arbeitszeit in Milchviehanlage), müsste die Aufbereitungsanlage eine Leistung von ca. 19,3 kW oder bei 20 Stunden eine Leistung von ca. 14,5 kW besitzen.

Anlage 4: Wärmetransport mittels Fernwärmeleitungen

1 Kosten für die Verlegung einer Fernwärmeleitung

Rohrverlegekosten in € pro Meter nach Nennweite, (Quelle: AGFW Arbeitsgemeinschaft Fernwärme)

DN	Rohrverlegekosten in <i>€</i> m	Rohrverlegekosten mit fertiger Oberfläche in € m
25	215	297
40	216	301
50	226	314
65	245	338
80	268	364
100	311	416
125	350	465
150	389	509

Rohrverlegekosten in € pro Meter nach übertragener Wärmeleistung,

(Quelle: AGFW Arbeitsgemeinschaft Fernwärme)

Anschlußwert in kW	Rohrverlegekosten in <i>€</i> m
bis 50	303
bis 100	315
bis 200	332
bis 400	350
bis 600	374
über 600	398

2 Wärmeverluste

Quelle: AGFW Arbeitsgemeinschaft Fernwärme

NW	с	Qmax	Q _a	Dämmdicke	k _i -Wert		Verluste	
mm	m/s	kW	MWh/a	mm	W/m^2K	kWh/ma	%/100 m	Entf. für 10 %
25	1,2	60,4	121	25	2,91	80,1	13,26	75,4 m
40	1,3	167,8	336	34	2,01	88,3	5,26	190 m
65	1,41	479,1	958	44	1,45	103,3	2,16	463 m
100	1,5	1.209	2.419	52	1,12	123,3	1,02	980 m
150	1,59	2.881	5.762	60	0,91	149,7	0,52	1920 m

3 Ermittlung der Grenzkosten für die Verlegung einer Fernwärmeleitung

Kosten Wärmetrasse:

Die Kosten für eine Wärmetrasse setzen sich wie folgt zusammen:

$$k_{\rm Tr} = k_{\rm Rohrl} + k_{\rm Ver} + k_{\rm Betr}$$

$$\mathbf{k}_{\mathrm{Tr}} = \mathbf{I}_0 * a * l + \mathbf{k}_{\mathrm{Ver}} + \mathbf{k}_{\mathrm{Betr}}$$

$$k_{Tr}$$
: spez. Wärmetrassekosten $\frac{1}{a}$

$$k_{Rohrl}$$
: spez. Kosten für Material und Rohrverlegung
$$\frac{1}{e}$$

$$I_0$$
: Investitions summe Trasse
$$\frac{1}{m}$$

$$k_{\text{Ver}}$$
: spez. Kosten durch Wärmeverluste
$$\left[\frac{\mathbf{f}}{a}\right]$$

$$k_{Betr}$$
: spez. Betriebskosten
$$\frac{1}{a}$$

Wärmetransportkosten in Abhängigkeit von Rohrdurchmesser und übertragener Leistung ohne Annuität

Nutzungsdauer: 2 Benutzungsstund										
Rohrleitungs-		Investitions	Q-					Kosten in €	Kosten in Cen	maximale Entfernui
durchmesser in	Wärmeleistung in			Abschreibung auf	Verluste €/a	Betriebskosten in	Jahreskosten in		pro kWh	bei Kwarenz = 6 Cent p
mm	kW	/ 100 m		20 Jahre	(100m)	€/a (ca. 1%)	€/ 100m	(100m)	(100m)	kWh
25	60	30000		1500	271,32	300	2071,32	0,020	2,03	295
40	160	31000		1550	288,32	310	2148,32	0,008	0,79	760
50	320	33000		1650	391,68	330	2371,68	0,004	0,44	1376
65	480	35000		1750	359,04	350	2459,04	0,003	0,30	1991
80	840	37000		1850	428,4	370	2648,4	0,002	0,19	3235
100	1200	42000		2100	408	420	2928	0,001	0,14	4180
125	2000	47000		2350	510	470	3330	0,001	0,10	6126
150	2800	51000		2550	476	510	3536	0,001	0,07	8077

Wärmetransportkosten in Abhängigkeit von Rohrdurchmesser und übertragener Leistung mit Annuität

lutzungsdauer: 2 inssatz: 5% Benutzungsstund									
Rohrleitungs-		Investitions-	in€	Marketta Cla	Dataish also atom	:- lebaraharahar	Kosten in €	Kosten in Cent	maximale Entfernun bei K _{warenz} = 6 Cent pi
mm	Wärmeleistung in kW	/ 100 m	ın € Annuität in €/a	Verluste €/a (100m)		in Jahreskosten in 6) €/ 100m	pro kWh (100m)	(100m)	kWh
25	60	30000	2543	271.32	300	3114.32	0.031	3,05	197
40	160	31000	2628	288,32	310	3226,32	0,012	1,19	506
50	320	33000	2797	391,68	330	3518.68	0,006	0,65	928
65	480	35000	2967	359,04	350	3676,04	0,005	0,45	1332
80	840	37000	3136	428,4	370	3934,4	0,003	0,28	2178
100	1200	42000	3560	408	420	4388	0,002	0,22	2789
125	2000	47000	3984	510	470	4964	0,001	0,15	4110
150	2800	51000	4323	476	510	5309	0,001	0,11	5380

Anlage 5: Wärmetransport mittels mobiler Speicher

1 Speicherarten

Sensible Speicher: ca. 100 MJ/m³ = ca. 60 kWh/m³

Latentwärmespeicher: ca. 300-500 MJ/m³ = ca. 120 kWh/m³

Thermochemische Speicher: ca. 1000 MJ/m³ = ca. 200-500 kWh/m³

(Quelle: Workshop Zittau)

1.1 Sensible Speicher

Wärmespeicher mit dem Speichermedium Wasser:

Speicherkapazität: ca. 60 kWh/m³ (bei gleichbleibendem Aggregatzustand) Wärmeverluste: ca. 5 % der Speichermenge (je nach Umgebungstemperatur)

Wärmespeicher mit einem Wärmeträgeröl als Speichermedium:

Speicherkapazität: ca. 95 kWh/m³ (bei gleichbleibendem Aggregatzustand)

Wärmeverluste: ca. 8 % der Speichermenge (größere Verluste durch höheres Δt und größere Speicherleistung)

1.2 Latente Speicher

Speicherkapazität: ca. 120 kWh/m³ (bei gleichbleibendem Aggregatzustand) Wärmeverluste: ca. 3 % der Speichermenge (je nach Umgebungstemperatur

2 Beispiel: Mobiler Wärmespeicher mit ca. 35 m³ Speichervolumen

Speicherkapazität mit Speichermedium Wasser: ca. 2100 kWh

Speicherkapazität mit Speichermedium Wärmeträgeröl: ca. 3325 kWh

Investitionskosten

Investitionskosten Zugmaschine: 100.000 €

Investitionskosten Fass: 60.000 €, (2x Wechselfass)

Investitionskosten Speichermedium Wasser: ca. 1,70 €/m³

Investitionskosten Speichermedium Wärmeträgeröl: ca. 750 €/m³ (wenn zwei Fässer, dann doppelte Menge Speichermedium)

Wartungskosten

Wartungskosten Zugmaschine: 7000 €/a

Wartungskosten Fass: 1000 €/a, (2x Wechselfass)

(Kostenangaben Quelle: Diplomarbeit Israel)

Berechnung:

Die Formel für die Transportkosten lautet wie folgt:

$$\mathbf{K}_{\text{Transport}} = \frac{\mathbf{I}_{0 \, \text{Zugmaschine}} * a_{\text{Zugmaschine}} + \mathbf{I}_{0 \, \text{Anhänger}} * a_{\text{Anhänger}} + \mathbf{I}_{0 \, \text{Speichermedium}} * a_{\text{Speichermedium}}}{Q_a}$$

$$\mathbf{K}_{\text{Transport}} = \frac{\mathbf{I}_{\text{0 Zugmaschine}} * \frac{q^{N}*i}{q^{N}-1} + \mathbf{I}_{\text{0 Anhänger}} * \frac{q^{N}*i}{q^{N}-1} + \mathbf{I}_{\text{0 Speichermedium}} * \frac{q^{N}*i}{q^{N}-1}}{Q_{a}}$$

$$\mathbf{K}_{\text{Transport}} = \frac{100.000 \overset{\text{ex}}{=} \frac{1,07^{10} * 0,07}{1,07^{10} - 1} + 120.000 \overset{\text{ex}}{=} \frac{1,07^{15} * 0,07}{1,07^{15} - 1} + 119 \overset{\text{ex}}{=} \frac{1,07^{20} * 0,07}{1,07^{20} - 1}}{100.000 \text{ kWh}}$$

$$K_{\text{Transport}} = \frac{14240 \in +13176 \in +11,23 \in}{100,000 \,\text{kWh}}$$

$$K_{\text{Transport}} = 0.27 \frac{\text{€}}{\text{kWh}}$$

In nachfolgender Tabelle sind die berechneten Wärmepreise in Abhängigkeit der eingesetzten Speichermedien und der jährlich benötigten Wärmemengen dargestellt.

Investition Zug- maschine	Annuität Zug- maschine	Investition Anhänger	Annuität Anhänger	Investition Speicher- medium	Annuität Speicher- medium	jährliche Wärme- menge	Wärme- preis
100000 €	0,1424	120000 €	0,1098	119 €	0,0944	100000 kWh	0,27 <i>€</i> /kWh
100000 €	0,1424	120000 €	0,1098	119 €	0,0944	200000 kWh	0,14 <i>€</i> /kWh
100000 €	0,1424	120000 €	0,1098	52500 €	0,0944	100000 kWh	0,32 € /kWh
100000 €	0,1424	120000 €	0,1098	52500 €	0,0944	200000 kWh	0,16 € kWh

Der Wärmepreis, zu denen die Wärme kostendeckend geliefert werden müsste, liegt hier bereits zwischen 14 und 32 Cent/kWh (abhängig von der jährlichen Wärmeabnahmemenge).

Nimmt man an, dass die Zugmaschine für den Wärmetransport nicht neu angeschafft werden muss, sondern nur der Anhänger mit dem Speichermedium, dann verringert sich der Wärmepreis auf 7 bis 18 Cent/kWh. Das liegt aber immer noch über den angenommenen maximalen Wärmepreis von 6 Cent/kWh (jetziger Ölpreis).

Investition Anhänger	Annuität Anhänger	Investition Speicher- medium	Annuität Speicher- medium	jährliche Wärme- menge	Wärme- preis
120000 €	0,1098	119 €	0,0944	100000 kWh	0,13 € kWh
120000 €	0,1098	119 €	0,0944	200000 kWh	0,07 <i>€</i> kWh
120000 €	0,1098	52500 €	0,0944	100000 kWh	0,18 <i>€</i> /kWh
120000 €	0,1098	52500 €	0,0944	200000 kWh	0,09 <i>€</i> kWh

Impressum

Herausgeber: Sächsische Landesanstalt für Landwirtschaft

August-Böckstiegel-Straße 1, 01326 Dresden

Internet: www.landwirtschaft.sachsen.de/lfl/publikationen

Autoren: Zentrum für angewandte Forschung e. V. der Hochschule Zittau/Görlitz

(FH)

Prof. Dr. Joachim Zielbauer Dipl.-Ing. Renate Gaida Dipl.- Ing. Guido Knott Theodor-Körner-Allee 16

02763 Zittau

Telefon: 03583/611452 Telefax: 03583/611324 E-Mail: zaf@hs-zigr.de

Redaktion: siehe Autoren

Endredaktion: Sächsische Landesanstalt für Landwirtschaft

Anne-Christin Matthies-Umhau, Ramona Scheinert, Matthias Löwig

Telefon: 0351/2612-345 Telefax: 0351/2612-151

E-Mail: anne-christin.matthies@smul.sachsen.de

ISSN: 1861-5988

Redaktionsschluss: Juni 2007

Für alle angegebenen E-Mail-Adressen gilt:

Kein Zugang für elektronisch signierte sowie für verschlüsselte elektronische Dokumente

Verteilerhinweis

Diese Informationsschrift wird von der Sächsischen Staatsregierung im Rahmen der Öffentlichkeitsarbeit herausgegeben. Sie darf weder von Parteien noch von Wahlhelfern zum Zwecke der Wahlwerbung verwendet werden. Dies gilt für alle Wahlen.