LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE

Erdbebenbeobachtung in Mitteldeutschland

Dreijahresbericht 2013 – 2015

Inhalt

	Vorwort	03
1	Seismologische Überwachung in Mitteldeutschland	04
2	Seismische Aktivität in Mitteldeutschland (Sachsen,	
	Sachsen-Anhalt und Thüringen) und im regionalen Umfeld	06
2.1	Seismische Aktivität in Mitteldeutschland und in der	
	westlichen Tschechischen Republik	06
2.1.1	Erdbeben vom 16. April 2015 bei Gröbers	18
2.1.2	Erdbebenserie Mai bis August 2014 im Herdgebiet Nový Kostel	23
2.2	Seismische Aktivität außerhalb von Mitteldeutschland	30
3	Seismologische Netze in Mitteldeutschland	33
3.1	Sachsennetz (SXNET) mit Stationen von Sachsen-Anhalt	33
3.1.1	Online-Stationsnetz (permanentes Netz)	33
3.1.2	Offline-Stationsnetz (mobiles Netz)	37
3.2	Thüringer Seismologisches Netz (TSN)	41
3.3	Automatische Auswertung von Erdbeben	44
4	Führen Erdbeben im Vogtland zu geodätisch	
	messbaren Deformationen der Erdoberfläche?	45
	Begriffserklärungen	50
	Literatur	53
	Fragebogen zur Erdbebenbeobachtung	54

Vorwort

Erdbeben gehören zu den Naturereignissen, deren Auftreten durch den Menschen nicht verhindert oder vorhergesagt werden kann. Die schädigenden Auswirkungen können aber durch vorbeugende Maßnahmen reduziert werden.

Die Beobachtung und Bewertung der seismischen Aktivität ist daher von großer Bedeutung für den Schutz der Bevölkerung, aber auch von wissenschaftlichem Interesse. Weil Erdbeben keine Ländergrenzen kennen, arbeiten wissenschaftliche Einrichtungen und staatliche Stellen in Mitteldeutschland (Sachsen, Sachsen-Anhalt und Thüringen) auf diesem Gebiet zusammen.

In Mitteldeutschland wird die Erdbebenüberwachung vom Seismologie-Verbund zur Erdbebenbeobachtung durchgeführt. In diesem haben sich das Sächsische Landesamt für Umwelt, Landwirtschaft und Geologie (LfULG), das Landesamt für Geologie und Bergwesen Sachsen-Anhalt (LAGB), die Thüringer Landesanstalt für Umwelt und Geologie (TLUG), die Universität Leipzig, die TU Bergakademie Freiberg und die Fried-rich-Schiller-Universität Jena mit ihren seismologischen Observatorien sowie Unternehmen und Einrichtungen, die seismologische Messungen durchführen, zusammengeschlossen.

Die Koordination erfolgt durch das Sächsische Landesamt für Umwelt, Landwirtschaft und Geologie.

Im Rahmen des Seismologie-Verbundes wurde ein gemeinsamer Kartendienst »Erdbeben in Mitteldeutschland« (http://antares.thueringen.de/cadenza/seismo) eingerichtet. Er wird von der Thüringer Landesanstalt für Umwelt und Geologie finanziert und betreut. Seit Anfang Juni 2015 können sich hier Nutzer schnell und übersichtlich über das Erdbebengeschehen in Mitteldeutschland informieren. Ein bedeutender Baustein bei diesem Internetauftritt sind die automatisch ermittelten Erdbeben ab Magnitude = 2.5, die innerhalb weniger Minuten tabellarisch und kartenmäßig dargestellt werden. Charakteristisch für die Region Vogtland/NW-Böhmen, die zu den bekannten Erdbebengebieten in Deutschland und im regionalen Umfeld gehört, ist das Auftreten von Erdbebenschwärmen. Dabei folgt eine große Anzahl von Einzelbeben, die räumlich sehr nah beieinander liegen, in kurzer Zeit aufeinander. Außerhalb des Vogtlandes treten in Mitteldeutschland meist Einzelbeben auf.

Mit dieser Veröffentlichung wird die Folge der Berichte zur Erdbebenbeobachtung im Freistaat Sachsen fortgesetzt. Die Broschüre informiert über die seismischen Ereignisse in Mitteldeutschland (Sachsen, Sachsen-Anhalt und Thüringen) und dem Herdgebiet Nový Kostel (westliche Tschechische Republik) und über die seismologischen Netze in Sachsen, Sachsen-Anhalt und Thüringen im Zeitraum 2013 bis 2015.

Eine Besonderheit ereignete sich im Zeitraum Mai bis August 2014 im Gebiet Nový Kostel. Die aufgetretenen Erdbeben hatten nicht die Merkmale eines Schwarmes, deshalb werden sie als Serien beschrieben. Das stärkste Erdbeben in diesem Zeitraum am 31. Mai 2014 wurde für geodätische Untersuchungen hinsichtlich erdbebenbedingter Deformationen der Erdoberfläche im Vogtland genutzt.

4. Di de hou

Norbert Eichkorn Präsident des Sächsischen Landesamtes für Umwelt, Landwirtschaft und Geologie

1 Seismologische Überwachung in Mitteldeutschland

Der Seismologie-Verbund zur Erdbebenbeobachtung in Mitteldeutschland

Die seismologische Überwachung der Bundesländer liegt in der Länderhoheit. In Mitteldeutschland (Sachsen, Sachsen-Anhalt und Thüringen) wird diese Aufgabe durch den Seismologie-Verbund zur Erdbebenbeobachtung gewährleistet. Er koordiniert die staatliche Erdbebenüberwachung und sichert die seismologische Registrierung, führt wissenschaftliche Untersuchungen durch und informiert die staatlichen Stellen, die Medien und die Bevölkerung. Die Ergebnisse werden in Forschungsberichten, wissenschaftlichen Publikationen, Pressemitteilungen und Broschüren zusammengestellt und veröffentlicht. Das vorliegende Heft ist der 7. Bericht, in dem die Arbeitsergebnisse und für Mitteldeutschland relevante seismische Informationen für den Zeitraum 2013 – 2015 zusammengestellt sind.

Im Seismologie-Verbund zur Erdbebenbeobachtung in Mitteldeutschland hatten sich im Jahr 1996 seismologisch tätige Einrichtungen zusammengeschlossen, um die vorhandenen Erfahrungen und Kenntnisse gemeinsam zu nutzen. Dabei werden die bestehenden seismologischen Observatorien und Stationen in die Untersuchungen einbezogen. Derzeit arbeiten folgende Institutionen und Einrichtungen im Seismologie-Verbund zusammen:

- Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie
- Landesamt für Geologie und Bergwesen Sachsen-Anhalt
- Thüringer Landesanstalt für Umwelt und Geologie
- Universität Leipzig mit dem Geophysikalischen Observatorium Collm
- TU Bergakademie Freiberg mit dem Seismologischen Observatorium Berggießhübel
- Friedrich-Schiller Universität Jena mit dem Seismologischen Observatorium Moxa
- I TU Dresden, Institut für Planetare Geodäsie
- Wismut GmbH
- Landestalsperrenverwaltung des Freistaates Sachsen

Der Seismologie-Verbund hat folgende Aufgaben:

- Ausbau, Optimierung und Betrieb eines seismischen Stationsnetzes
- schnelle Bestimmung von Epizentren, Magnituden und weiteren Herdparametern bei stärkeren Ereignissen
- Vermittlung aktueller Informationen an staatliche Stellen, Medien und die Bevölkerung
- Monitoring seismisch aktiver Gebiete zur Verbesserung der Datenbasis für Risikoanalysen sowie zur Erstellung von Seismizitätskarten
- Aussagen zu standortspezifischen seismischen Risiken und ingenieurseismologische Untersuchungen
- Untersuchung von tektonisch aktiven Gebieten und Krustendeformationen
- Untersuchungen zum Einfluss von Windkraftanlagen auf seismologische Messungen

Der Schwerpunkt der seismischen Aktivität in Mitteldeutschland liegt im westsächsisch-ostthüringischen Raum. Ausgehend vom Vogtland verläuft die erdbebengefährdete Zone über das Gebiet von Zwickau und Gera-Ronneburg bis in den Raum von Leipzig (Zone von Leipzig-Regensburg). Dies ist auch das Schwerpunktgebiet, in dem Messstationen online (permanent) und offline (mobil) das seismische Geschehen registrieren.

Seit 1962 wird dieser Bereich seismologisch intensiver überwacht. Aber erst im Ergebnis des starken Bebenschwarmes von 1985/86 begann die Umrüstung der bis dahin bestehenden seismischen Analogstationen auf eine digitale Basis. In den 90er Jahren wurde mit dem Aufbau des Sachsennetzes (SXNET) und des Thüringer Seismologischen Netzes (TSN) eine neue Qualität der Registrierung und damit auch der Auswertung von Erdbeben erreicht. In Thüringen wurde ab 2010 das Stationsnetz umfangreich erweitert, so dass neben dem ostthüringischen Raum auch andere Gebiete (Nordthüringen und Harz, Südwestthüringen und Thüringer Wald) seismologisch überwacht werden. Diese Netze werden immer wieder erweitert und verbessert.

Neben der Darstellung der automatisch ermittelten Erdbeben ab Magnitude = 2.5 kann man im gemeinsamen Kartendienst »Erdbeben in Mitteldeutschland« (http://antares. thueringen.de/cadenza/seismo) die älteren lokalen Beben, die Tagesplots der Online-Stationen, die für die Auswertung herangezogen werden und Seismogrammausschnitte abrufen. Die Stationen des Sachsennetzes mit den Stationen von Sachsen-Anhalt (SXNET), des Thüringer Seismologischen Netzes (TSN) und weiterer angrenzender Netze werden dargestellt und erläutert. Neben den interaktiven Karten stehen weitere Informationen zur Erdbebenkunde zur Verfügung.

Überregionale Zusammenarbeit

Der Seismologie-Verbund Sachsen arbeitet auch mit Institutionen außerhalb von Mitteldeutschland zusammen. Ein wichtiger Partner ist die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) in Hannover. Das seismologische Datenzentrum der BGR ist die zentrale Sammelstelle und das Datenarchiv der verschiedensten seismologischen Einrichtungen in Deutschland. Die BGR betreibt auch das Deutsche Regionalnetz seismologischer Breitbandstationen (GRSN). Ebenso erfolgt ein intensiver Datenund Erfahrungsaustausch mit seismologischen Einrichtungen in Bayern und der Tschechischen Republik.

2 Seismische Aktivität in Mitteldeutschland (Sachsen, Sachsen-Anhalt und Thüringen) und im regionalen Umfeld

2.1 Seismische Aktivität in Mitteldeutschland und in der westlichen Tschechischen Republik

Die Magnitude

wurde 1935 von Charles Richter eingeführt. Sie wird aus der gemessenen Erschütterungsamplitude berechnet und ist ursprünglich für relativ nahe Beben definiert. Für Entfernungen bis 1000 km wird eine sogenannte Lokalbebenmagnitude ML bestimmt. Die Magnitude steht in Beziehung zu der seismischen Energie, die bei einem Erdbeben freigesetzt wird.

Das Hypozentrum

ist die räumliche Lage des punktförmig angenommenen Erdbebenherdes und wird mit Hilfe der Auswertungen von mindestens vier Seismogrammen bestimmt. Die seismische Aktivität in den Jahren 2013 bis 2015 wurde von drei Bebenserien im Gebiet Nový Kostel dominiert. Sie begannen am 24. Mai, 31. Mai. und 03. August 2014 (Kap. 2.1.2). Das Hauptbeben dieser Erdbebenserien war am 31. Mai 2014 mit ML = 4.2 und war damit das stärkste Nahbeben seit 1985.

Das Beben am 16. April 2015 bei Gröbers (Kap. 2.1.1), nordwestlich von Schkeuditz, mit einer Lokalmagnitude ML = 3.2 war ebenso ein bemerkenswertes Ereignis, welches von der Bevölkerung gespürt wurde.

Anders als im Vogtland und in NW-Böhmen treten die Beben im nördlich von Plauen gelegenen Teil der Zone von Leipzig – Regensburg (auch Zone von Regensburg – Leipzig – Prignitz genannt) fast immer als Einzelbeben auf. So folgte auf das größere Beben bei Gröbers am 16. April 2015 nur ein Nachbeben.

Eine Ausnahme stellt das Gebiet um Werdau dar, wo gelegentlich auch Schwärme auftreten. Der letzte Schwarm fand im April/Mai 2016 östlich von Seelingstädt statt. Die auf der Nebenkarte dargestellten Beben bei Pirna (Abb. 1a) zählten zu den eher seltenen Ereignissen.

Einen für das Gebiet Nový Kostel/Luby typischen Schwarm gab es Ende April/Anfang Mai 2013, aber ohne makroseismische Wahrnehmung.

Im oberen Vogtland wurde eine größere Anzahl Beben beobachtet, die zeitlich auf einen oder wenige Tage begrenzt waren. Sie ereigneten sich in den Regionen südwestlich und südöstlich von Plauen, nordöstlich von Oelsnitz und Klingenthal sowie nördlich von Bad Brambach. Die Herdtiefen der Beben südwestlich von Plauen sind durchwegs größer (>12 km) als die der Beben südöstlich (8 – 12 km) von Plauen bzw. nordöstlich von Oelsnitz.

In der Summe war die Anzahl der ausgewerteten Nahbeben nur wenig verschieden vom vorigen Dreijahreszeitraum 2010 bis 2012. Das Jahr 2015 war im Vergleich zu der erhöhten Aktivität 2014 in Westböhmen ein ausgesprochen ruhiges Jahr.

Ausnahmslos alle detektierten Beben mit Herd in Sachsen, Ostthüringen und Sachsen-Anhalt, die an den Stationen des Sachsennetzes (SXNET), des Thüringer Seismologischen Netzes (TSN) und einzelner Stationen in Nordfranken sowie der Station Nový Kostel (NKC) in Westböhmen aufgezeichnet wurden, sind ausgewertet worden. In seismisch ruhigen Zeiten liegt in Westböhmen die Magnitudengrenze, ab der Vollständigkeit vorliegt, bei ML = -0.5, während sie bei Bebenschwärmen oder -serien bis ML = 1.5 ansteigt. Die günstige Stationskonfiguration im oberen Vogtland hat bei der routinemäßigen Auswertung mittlere Lokalisierungsfehler von 1.0 km in der geographischen Länge, 0.6 km in der Breite und 1.0 km in der Herdtiefe zur Folge. Bei der Anwendung von Stationskorrekturen können diese Fehler merklich verkleinert werden.

In Tab. 1 sind alle ausgewerteten tektonischen Beben (48) in Mitteldeutschland (im Koordinatenbereich 49.90°N – 51.90°N/11.30°O – 15.10°O) ab Magnitude \geq 0.8 aufgelistet und in der Epizentrenkarte (Abb. 1) einschließlich der laufenden Nummern aus der Tabelle dargestellt. Hinzu kommen die beiden induzierten Ereignisse nördlich von

Bad Schlema. Abb. 1 enthält zusätzlich alle weiteren Epizentren in der westlichen Tschechischen Republik (im Koordinatenbereich $50.13^{\circ}N - 50.33^{\circ}N/12.40^{\circ}O - 12.50^{\circ}O$) außerhalb der Serien von 2014 ab ML ≥ 0.8 und im Zeitraum der Serien ab ML ≥ 1.5 . Die 729 Erdbeben, deren Epizentren in Abb. 1 dargestellt wurden, sind in Abb. 2 als zeitlicher Verlauf im Verhältnis von der bestimmten Lokalmagnitude zu sehen. In der zeitlichen Verteilung der Lokalmagnituden sind die Herde in der Tschechischen Republik durch Dreiecke, im oberen Vogtland durch Kreise und für die übrigen Regionen durch Quadrate und Rhomben symbolisiert.

In der zeitlichen Magnitudenverteilung Abb. 2 dominieren die Serien im Mai/Juni 2014 das Bild.

Durch die Erdbeben wird im Herd (Hypozentrum) seismische Energie freigesetzt. Die Energiefreisetzung, die abhängig von der Anzahl der Ereignisse und deren Lokalmagnitude ist, kann Abb. 3 entnommen werden. Der Zusammenhang zwischen der zeitlichen Verteilung der Lokalmagnituden und der im Herd freigesetzten aufsummierten seismischen Energie ist deutlich erkennbar.

Die Kurve der aufsummierten Energiefreisetzung Abb. 3 weist eine Stufe von etwa 5 MWh, verursacht durch das Hauptbeben am 31. Mai 2014 (Tab. 6), auf.

Eine Änderung der Lokalmagnitude um eine Einheit bedeutet eine um den Faktor 90 geänderte Energiefreisetzung. Das erklärt die Stufen in Abb. 3.

lab.	1:	Seismische	Ereignisse	n Sachsen,	Sachsen–Anha	lt und	Ostthuringen	2013 -	2015 mit	Lokalmagnitud	de ML ≥	0.8
			-				-			-		

Ereignis Nr. Abb. 1 und 4	Datum	Herdzeit (UTC) h:min:s	Koordinaten geogr. Breite °N/ geogr. Länge °O	Herdtiefe km	Lokalmagnitude (ML) (Anzahl der Stationen)	Herdgebiet
1	07.01.2013	07:26:20.4	50.454/12.232	8.3	1.1 (8)	nordöstlich Oelsnitz
2	07.01.2013	13:30:24.6	50.454/12.232	8.4	1.1 (8)	nordöstlich Oelsnitz
3	07.01.2013	13:34:43.3	50.453/12.232	8.4	0.8 (8)	nordöstlich Oelsnitz
4	17.01.2013	19:46:20.5	50.984/12.384	15.6	2.4 (16)	westlich Altenburg
5	01.04.2013	05:24:55.2	50.461/12.150	13.1	0.9 (8)	südlich Plauen
6	05.04.2013	21:40:06.9	51.193/12.383	18.4	1.6 (16)	Böhlen
7	05.06.2013	18:46:21.3	50.472/12.205	9.8	1.9 (8)	südöstlich Plauen
8	16.06.2013	02:18:04.4	50.370/12.315	14.2	1.4 (8)	südwestlich Schöneck
9	23.09.2013	18:02:49.7	51.016/13.982	11.1	2.0 (16)	nordöstlich Pirna
10	23.09.2013	18:06:04.1	50.990/13.944	11.0	0.8 (12)	nördlich Pirna
11	01.10.2013	14:23:51.5	51.063/12.148	17.4	1.8 (17)	nordöstlich Zeitz
12	12.11.2013	14:15:43.1	51.019/12.194	12.1	1.7 (15)	südöstlich Zeitz
13	01.12.2013	03:12:26.8	50.463/12.122	15.6	0.9 (8)	südlich Plauen
14	16.12.2013	18:55:42.4	51.022/12.401	18.4	1.7 (16)	nordwestlich Altenburg
15	02.02.2014	04:47:50.3	50.586/12.371	13.1	2.1 (16)	nordöstlich Lengenfeld/V.
16	03.02.2014	17:17:13.4	50.586/12.374	13.1	1.1 (16)	nordöstlich Lengenfeld/V.
17	19.02.2014	01:40:11.6	51.657/12.206	22.9	0.8 (13)	westlich Bitterfeld
18	16.04.2014	17:03:42.4	51.378/12.274	12.2	1.0 (18)	nordwestlich Leipzig
19	29.04.2014	08:18:33.3	50.477/12.203	10.7	1.2 (10)	östlich Plauen
20	03.05.2014	03:46:01.3	51.151/12.200	15.1	2.4 (20)	nordwestlich Pegau
21	04.05.2014	21:48:55.7	51.028/12.187	10.0	1.1 (16)	südöstlich Zeitz
22	23.07.2014	06:49:46.9	50.379/12.382	12.5	1.2 (11)	südöstlich Schöneck
23	01.08.2014	22:56:52.3	50.341/12.286	10.5	0.9 (10)	nordöstlich Adorf
24	07.08.2014	16:05:22.5	50.581/12.985	5.5	1.1 (16)	nordöstlich Scheibenberg
25	13.08.2014	13:08:54.9	50.331/12.153	13.0	0.9 (9)	westlich Adorf
26 1)	11.09.2014	18:59:36.0	50.922/14.081	8.0	0.8 (15)	südöstlich Pirna
27	21.09.2014	03:42:07.0	51.026/12.125	12.1	1.8 (17)	südlich Zeitz
28	25.09.2014	05:10:50.7	51.023/12.127	12.1	1.3 (17)	südlich Zeitz

Ereignis Nr. Abb. 1 und 4	Datum	Herdzeit (UTC) h:min:s	Koordinaten geogr. Breite °N/ geogr. Länge °O	Herdtiefe km	Lokalmagnitude (ML) (Anzahl der Stationen)	Herdgebiet
29	30.09.2014	03:02:59.8	50.475/12.325	6.0	0.9 (12)	westlich Falkenstein
30	09.10.2014	04:12:42.7	51.341/12.619	16.7	1.6 (18)	westlich Wurzen
31	18.11.2014	23:29:09.3	50.785/12.437	14.0	1.1 (18)	südöstlich Crimmitschau
32	19.11.2014	11:50:33.9	50.621/12.680	1.0	0.8 (14)	nördlich Bad Schlema, ind.
33	22.11.2014	01:37:29.6	50.472/12.225	11.2	1.2 (9)	südöstlich Plauen
34	31.12.2014	22:35:18.3	50.367/12.486	8.5	1.0 (14)	östlich Klingenthal
35	10.02.2015	01:46:45.0	51.468/12.285	15.0	1.3 (17)	südwestlich Delitzsch
36	07.04.2015	04:31:57.3	51.229/12.310	21.7	0.8 (15)	nordwestlich Böhlen
37	16.04.2015	06:38:09.4	51.436/12.146	24.4	3.2 (23)	Gröbers
38	16.04.2015	07:35:51.9	51.435/12.145	24.0	1.7 (22)	Gröbers
39	21.04.2015	20:49:43.0	50.258/12.306	9.5	0.9 (9)	nördlich Bad Brambach
40	30.04.2015	09:12:01.1	50.260/12.301	8.9	1.4 (8)	nördlich Bad Brambach
41	02.05.2015	05:54:16.1	50.750/12.407	12.0	0.9 (15)	nordöstlich Werdau
42	30.05.2015	12:55:30.4	50.694/12.395	14.5	1.1 (18)	südlich Werdau
43	30.05.2015	12:58:31.4	50.692/12.390	14.1	0.9 (18)	südlich Werdau
44	28.06.2015	03:39:49.6	50.621/12.655	1.0	0.8 (17)	nördlich Bad Schlema, ind.
45	16.08.2015	07:38:16.4	50.258/12.303	9.5	2.1 (8)	nördlich Bad Brambach
46	29.08.2015	16:11:21.2	50.950/12.098	8.9	2.4 (21)	nördlich Gera
47	30.08.2015	18:38:33.6	50.342/12.202	17.3	0.8 (13)	nordwestlich Adorf
48	26.09.2015	23:25:33.8	51.426/12.611	19.4	0.9 (21)	südlich Eilenburg
49	09.12.2015	03:13:14.8	50.468/12.288	9.1	1.6 (11)	westlich Falkenstein/V.
50	09.12.2015	03:14:35.1	50.468/12.288	9.0	1.3 (11)	westlich Falkenstein/V.

1) Angaben nach Observatorium Berggießhübel (BRG)

Abb. 1a: Seismische Ereignisse in Sachsen 2013 – 2015 mit Lokalmagnituden ML \ge 0.8, Nebenkarte Pirna, Legende Abb. 1

Abb. 1: Seismische Ereignisse in Sachsen, Sachsen-Anhalt, Ostthüringen und in der westlichen Tschechischen Republik 2013 – 2015 mit Lokalmagnituden ML \ge 0.8

Abb. 2: Zeitliche Verteilung und die Anzahl der tektonischen seismischen Ereignisse in Sachsen, Sachsen-Anhalt, Ostthüringen und der westlichen Tschechischen Republik 2013 – 2015 mit Lokalmagnitude ML \ge 0.8

Abb. 3: Aufsummierte Energiefreisetzung in den Herden der tektonischen seismischen Ereignisse in Sachsen, Sachsen-Anhalt, Ostthüringen und der westlichen Tschechischen Republik 2013 – 2015 mit Lokalmagnituden ML \ge 0.8

Seismische Aktivität im Vogtland

Für das Vogtland ist die seismische Aktivität detaillierter dargestellt. Es wurden 842 Beben mit einer Magnitude ML \geq -0.9 ausgewertet und abgebildet (Abb. 4). Die Epizentren von Beben mit ML \geq 0.8 sind mit der Nummer der Tab. 1 gekennzeichnet. Die Darstellung der Vogtlandbeben ab Magnitude -0.9 weist bei den Epizentren (Abb. 4) eine Häufung südwestlich und südöstlich von Plauen, nordöstlich von Klingenthal und nördlich von Bad Brambach auf.

Abb. 4: Seismische Ereignisse im oberen Vogtland 2013 – 2015 mit Lokalmagnitude ML \ge -0.9

Abb. 5: Zeitliche Verteilung und die Anzahl der tektonischen seismischen Ereignisse im oberen Vogtland 2013 – 2015 mit Lokalmagnituden ML \geq -0.9

Abb. 6: Energiefreisetzung in den Herden tektonischer seismischer Ereignisse im oberen Vogtland 2013 – 2015 mit Lokalmagnituden ML \geq -0.9

In der zeitlichen Darstellung der Magnituden sind Häufungen von Beben im Gebiet Plauen im Januar 2013, im Gebiet nordöstlich von Klingenthal zum Jahreswechsel 2014/2015 sowie nördlich von Bad Brambach im April 2015 zu erkennen. Die drei markanten Stufen in der Kurve der aufsummierten, freigesetzten Energie gehören zu den Beben südöstlich von Plauen (05. Juni 2013, ML = 1.9), nordöstlich von Lengenfeld/V. (02. Februar 2014, ML = 2.1) und nördlich von Bad Brambach (16. August 2015, ML = 2.1). Dabei liegt die aufsummierte freigesetzte Energie (Abb. 3) für alle Beben im Bereich von MWh (Megawattstunden) und für das Vogtland (Abb. 6) nur in der Größenordnung von kWh (Kilowattstunden). Betrachtet man den Zeitraum 2006 bis 2015, dann steigt die Anzahl der Beben in den Jahren vor den großen Schwärmen (2008 und 2011) oder der Serien (2014) an, um danach deutlich geringer auszufallen (2009, 2012 und 2015). Im Gegensatz zu dieser Periodizität weist die Anzahl der Beben aller übrigen Gebiete einen klaren Trend der Zunahme der ausgewerteten Beben auf. Diese Zunahme ist einerseits durch ein dichteres Stationsnetz und andererseits durch gewachsene Erfahrung bei der Auswertung bedingt (Abb. 7, Tab. 2).

Abb. 7: Anzahl der ausgewerteten Beben pro Jahr

Tab. 2: Anzahl der ausgewerteten Be	eben pro Jahr mit	t Lokalmagnitude ML ≥ -0	.9
-------------------------------------	-------------------	--------------------------	----

Jahr	alle Beben	nur Region Nový Kostel	Beben ohne Nový Kostel
2006	230	95	135
2007	848	653	195
2008	1129	938	191
2009	360	217	143
2010	600	275	325
2011	2812	2400	412
2012	1245	948	297
2013	1731	1351	380
2014	1860	1517	343
2015	867	284	583

In Abb. 8 sind alle Epizentren der tektonischen seismischen Ereignisse in der westlichen Tschechischen Republik und im oberen Vogtland im Zeitraum 2006–2015 mit Lokalmagnituden ML \geq -0.9 dargestellt.

Abb. 8: Epizentren der tektonischen seismischen Ereignisse in der westlichen Tschechischen Republik und im oberen Vogtland 2006 – 2015 mit Lokalmagnituden ML \geq -0.9

Charakterisierung der Seismizität der Region durch den b-Wert

Im Bereich der Zone von Leipzig – Regensburg unterscheiden sich das obere Vogtland und das Gebiet nördlich von Plauen deutlich durch die Anzahl der Beben mit kleinen Magnituden zu den mit größeren Magnituden. Das kommt in den Abbildungen 9a und 9b durch den Anstieg (b-Wert) der Geraden in der aufsummierten Bebensumme zum Ausdruck. Tab. 3 enthält die Anzahl von ausgewerteten Beben in den Gebieten oberes Vogtland, übriges Gebiet von Sachsen, Ostthüringen und Sachsen-Anhalt, Westböhmen »ohne die Serien 2014« und »nur die Bebenserien« 2014 mit einer Unterteilung in Magnitudenklassen. Die Anzahl von Beben pro Magnitudenklasse muss von größeren zu kleineren Magnituden zunehmen. Wenn das nicht der Fall ist, liegt die Grenze der Vollständigkeit in der kleineren Klasse oder sogar darüber. Der **b-Wert** gibt die Steigung der Magnitudenhäufigkeitsverteilung, d. h. das Verhältnis von kleinen zu großen Beben innerhalb einer Region an. Das zahlenmäßige Verhältnis von kleinen zu großen Beben weist charakteristische Unterschiede in den einzelnen Regionen auf.

Abb. 9 a: b-Wert (0.96) der kumulativen (aufsummierten) Magnitudenhäufigkeit der seismischen Ereignisse im oberen Vogtland 2013 – 2015

Abb. 9 b: b-Wert (0.69) der kumulativen (aufsummierten) Magnitudenhäufigkeit für den Bereich nördlich von Plauen im Zeitraum 2013 – 2015

Tab. 3: Anzahl der Erdbeben in Sachsen, Sachsen-Anhalt, Ostthüringen und in der westlichen Tschechischen Republik (ČR) 2013 – 2015 mit Unterteilung in Regionen und Magnitudenklassen

Lokalmagnitude (ML)	.) Anzahl der ausgewerteten Erdbeben				
	oberes Vogtland	übriges Gebiet von Sachsen,	westliche ČR		
		Ostthüringen, Sachsen-Anhalt	ohne Serien 2014	nur Serien 2014	
4.0 - 4.9	0	0	0	1	
3.0 - 3.9	0	1	0	4	
2.0 - 2.9	1	5	8	36	
1.0 – 1.9	12	15	150	334	
0.0 - 0.9	138	75	661	348	
-0.90.1	690	49	1870	33	
insgesamt	841	145	2689	756	
zum Vergleich 2010 – 2012	823	109	2954	670/Schwarm 2011	

Tab. 4: Seismische Ereignisse in Westthüringen 2013 – 2015 mit Lokalmagnitude ML \ge 0.8

Ereignis Nr. Abb. 10	Datum	Herdzeit (UTC) h:min:s	Koordinaten geogr. Breite °N/ geogr. Länge °O	Herdtiefe km	Lokalmagnitude (ML) (Anzahl der Stationen)	Herdgebiet
1	26.03.2013	20:10:55.8	51.395/10.862	0.4	1.2 (6)	Sonderhausen, induziert
2	31.07.2013	20:10:21.1	51.304/10.593	1.0	2.0 (8)	östlich Menteroda, induziert
3	01.10.2013	11:23:33.4	50.740/10.023	1.0	1.6 (15)	südöstlich Unterbreizbach, ind.
4	17.01.2014	00:42:54.9	50.828/10.004	3.5	1.0 (2)	nordöstlich Unterbreizbach, ind.
5	12.02.2014	01:53:07.3	51.380/10.811	1.0	1.1 (6)	nordwestlich Sondershausen, ind.
6	12.02.2014	03:47:41.9	51.450/10.874	1.0	1.4 (10)	südöstlich Nordhausen, ind.
7	13.02.2014	20:44:32.2	51.423/10.631	1.0	1.5 (10)	Bleicherode, induziert
8	09.03.2014	02:20:20.5	51.375/10.818	1.0	1.5 (8)	nordwestlich Sondershausen, ind.
9	17.03.2014	22:05:11.0	50.530/10.173	15.2	1.7 (12)	südwestlich Meiningen
10	17.03.2014	22:08:32.1	50.536/10.178	15.6	2.1 (14)	südwestlich Meiningen
11	17.03.2014	22:09:15.3	50.530/10.178	15.1	1.0 (7)	südwestlich Meiningen
12	05.04.2014	01:24:15.0	51.406/10.868	1.0	1.1 (10)	nördlich Sondershausen, ind.
13	27.04.2014	17:00:08.3	51.451/10.581	1.0	1.1 (4)	Bleicherode, induziert
14	19.05.2014	02:29:09.3	51.427/10.568	1.0	1.8 (13)	Bleicherode, induziert
15	27.05.2014	16:03:49.4	51.387/10.875	1.0	1.4 (13)	Sondershausen, induziert
16	07.08.2014	13:06:15.7	51.297/10.512	0.3	1.3 (6)	südwestlich Menteroda, induziert
17	07.02.2015	06:43:40.7	50.795/10.022	1.0	1.1 (8)	westlich Völkershausen, induziert
18	20.04.2015	19:11:02.1	51.279/10.684	1.0	1.2 (8)	südöstlich Menteroda, induziert
19	07.07.2015	02:00:30.2	51.260/10.554	1.0	1.7 (16)	südlich Menteroda, induziert
20	28.08.2015	01:22:09.6	50.546/10.187	5.7	0.8 (8)	südwestlich Meiningen
21	27.10.2015	15:11:56.0	51.380/10.828	1.0	2.1 (7)	Sonderhausen, induziert
22	22.12.2015	12:22:04.2	51.344/10.683	1.0	0.8 (2)	nordöstlich Menteroda, induziert

Seismische Aktivität in Thüringen

In Abb. 10 sind alle Beben in Thüringen für den Berichtszeitraum 2013 – 2015 dargestellt und bei einer Lokalmagnitude ML \ge 0.8 mit der entsprechenden Ziffer der Tabellen 1 und 4 gekennzeichnet. Die westlich von Meiningen im Gebiet von Fladungen auf Bayrischem Gebiet eingezeichneten Beben sind innerhalb von einer Stunde aufgetreten und haben eine Tiefe von ca. 15 km. Diese Bebenaktivität in der Rhön ist bekannt und könnte mit der Fränkischen Störungslinie zusammenhängen. Das größte Ereignis am 17. März 2014 hatte eine Magnitude von ML = 2.1.

Direkt in Thüringen gab es zwischen 2013 – 2015 nur drei größere tektonische Ereignisse. Die Erdbeben am 17. Januar und am 16. Dezember 2013 in der Nähe von Altenburg hatten Magnituden von 2.4 bzw. 1.7. Ein weiteres Erdbeben fand am 29. August 2015 nördlich von Gera statt. Es hatte eine Magnitude von 2.4. Alle Erdbeben gehören zur sogenannten Zone von Leipzig – Regensburg und haben Tiefen zwischen 11–17 km. Viele der tektonischen Ereignisse mit der Magnitude ML > 1.5 in Ostthüringen, Westsachsen und dem tschechischen Vogtland wurden automatisch geortet, wobei nachträgliche manuelle Korrekturen angebracht werden mussten. Die automatische Ortung ist dank des dichten Stationsnetzes in dieser Region möglich.

Abb. 10: Seismische Ereignisse in Thüringen 2013 – 2015 mit Lokalmagnituden ML ≥ 0.8

Bergbauinduzierte Seismizität in Thüringen

In Tab. 4 sind auch die Ereignisse aufgelistet, die auf die bergbaulichen Aktivitäten der ehemaligen Kalisalzgewinnung zurückzuführen sind. Der im Nord- und Südwesten Thüringens betriebene Kali- und Steinsalzbergbau ruft noch heute, selbst bei bereits eingestelltem Bergbau, relativ kleine seismische Erschütterungen hervor. In den weiter betriebenen Gruben werden nach wie vor Sanierungs- und Sicherungsarbeiten durchgeführt. Im sogenannten Werra-Revier (Südwesten) werden gegenwärtig noch bergmännisch Kalisalze gewonnen. Die Gewinnung von Steinsalz erfolgt im Nordwesten von Thüringen (Südharz-Revier) unter Tage in der Grube Sondershausen.

Im Südharz um Bischofferode, Bleicherode, Sollstedt, Menteroda und Sondershausen sowie im Werra-Revier in der Grube Merkers/Springen wurde bis zu Beginn der 1990er Jahre Kalibergbau betrieben. Von den sich noch bis heute verändernden Spannungsverhältnissen durch den Abbau bis zu einer Tiefe von ca. 1 km künden die kleinen seismische Ereignisse, trotz der Stilllegung des Bergbaus vor ca. 25 Jahren. Neben der betriebseigenen Überwachung der stillgelegten bzw. aktiven Gruben leistet auch das Thüringer Seismologische Netz seinen Beitrag zur Registrierung von größeren seismischen Ereignissen in diesen Regionen. In der Abb. 4 sind die einzelnen Regionen gut zu unterscheiden.

Großen Einfluss auf die Überwachung haben aktive Steinbrüche. Diese erschweren die Registrierung und deren Auswertung. In Nordwest-Thüringen ist dies besonders der Zementsteinbruch südlich von Deuna und in Südwest-Thüringen der Basaltsteinbruch auf dem Dietrichsberg südlich von Völkershausen. Dieser letztgenannte Steinbruch befindet sich fast über dem ehemaligen Abbaugebiet. Bei solch komplizierten Konstellationen hilft nur, die Anzahl der Stationen in unmittelbarer Nähe zu erhöhen, um dadurch eine bessere Ortung für die Tiefe zu erreichen. Hilfreich sind die Seismogramme, die klar als Sprengung erkennbar sind.

Das größte bergbauinduzierte Ereignis fand am 27. Oktober 2015 in der Nähe von Sondershausen mit einer Magnitude von 2.1 statt. Die nächstfolgenden größeren Ereignisse bei Bleicherode und bei Unterbreizbach wurden mit Magnituden von 1.8 und 1.6 registriert.

2.1.1 Erdbeben vom 16. April 2015 bei Gröbers

Am Morgen des 16. April 2015 ereignete sich bei Gröbers, zwischen Halle und Leipzig, ein Erdbeben der Magnitude ML = 3.2. Die Erschütterungen wurden in einem großen Umkreis deutlich als Erdbeben wahrgenommen. So verwunderte das starke Medienecho nicht. Bereits wenige Stunden nach dem Ereignis gab es Radiomeldungen, es folgten Fernsehbeiträge in den Nachrichtensendungen am Abend, und die Tageszeitungen berichteten an mehreren Tagen über die Wahrnehmungen.

Der Seismologie-Verbund hatte das Erdbeben zeitnah geortet (Abb. 11). Die automatische Erdbebenmeldung des SEISCOMP-Systems wurde nach wenigen Minuten an die Geologischen Dienste verschickt, und die manuelle Verifizierung erfolgte innerhalb einer halben Stunde. So konnten die zuständigen Stellen in den Ministerien schnell informiert werden.

Ortungsergebnis:

 Herdzeit:
 06:38:09.4 UTC (~ 08:38 Uhr MESZ)

 Magnitude:
 3.2

 Tiefe:
 24.2 km

 Geogr. Breite:
 51.437

 Geogr. Länge:
 12.147

Abb. 11: Registrierung (Vertikalkomponente) des Erdbebens von Gröbers am 16. April 2015 an den Stationen NEUB-Neuenburg, WIMM-Wimmelburg, CLL-Collm, MOX-Moxa und CLZ-Clausthal-Zellerfeld

Etwa eine Stunde später gab es an fast der gleichen Stelle ein zweites, schwächeres Erdbeben, das nicht gespürt wurde.

Ortungsergebnis:

 Herdzeit:
 07:35:51.9 UTC (~ 09:36 Uhr MESZ)

 Magnitude:
 1.7

 Tiefe:
 24.0 km

 Geogr. Breite:
 51.435

 Geogr. Länge:
 12.145

Um im Falle schwächerer Nachbeben die Aufzeichnungen der permanenten Stationen unterstützen zu können und damit die Ortungsgenauigkeit zu verbessern, installierte die Universität Leipzig bereits am Folgetag ein lokales Überwachungsnetz im Umfeld der Epizentren der beiden Beben, bestehend aus vier mobilen Stationen. Die Stationen registrierten einige Wochen. Es konnten in dieser Zeit allerdings keine Nachbeben gefunden werden. Erst 1½ Jahre später, am 09. September 2016 um 16:21:57.5 UTC (~18:22 MESZ) ereignete sich nur 2000 m nordwestlich der beiden hier behandelten Ereignisse ein Erdbeben der Magnitude ML = 1.6, das in einer Tiefe von 15 km geortet wurde.

Tab. 5: Stark vereinfachte Kurzform der makroseismischen Intensitätsskala EMS-98 Europäische Makroseismische Skala – 1998 (GRÜNTHAL 1998, 2004)

EMS Intensität	Definition	Beschreibung der maximalen Wirkung (stark verkürzt)
1	nicht fühlbar	Nicht fühlbar.
II	kaum bemerkbar	Nur sehr vereinzelt von ruhenden Personen wahrgenommen.
III	schwach	Von wenigen Personen in Gebäuden wahrgenommen. Ruhende Personen fühlen ein leichtes Schwingen oder Erschüttern.
IV	deutlich	Im Freien vereinzelt, in Gebäuden von vielen Personen wahrgenommen. Einige Schlafende erwachen. Geschirr und Fenster klirren, Türen klappern.
V	stark	Im Freien von wenigen, in Gebäuden von den meisten Personen wahrgenommen. Viele Schlafende erwachen. Wenige werden verängstigt. Gebäude werden insgesamt erschüttert. Hängende Gegenstände pendeln stark, kleine Gegenstände werden verschoben. Türen und Fenster schlagen auf oder zu.
VI	leichte Gebäudeschäden	Viele Personen erschrecken und flüchten ins Freie. Einige Gegenstände fallen um. An vielen Häusern, vornehm- lich in schlechterem Zustand, entstehen leichte Schäden wie feine Mauerrisse und das Abfallen von z.B. klei- nen Verputzteilen.
VII	Gebäudeschäden	Die meisten Personen erschrecken und flüchten ins Freie. Möbel werden verschoben. Gegenstände fallen in großen Mengen aus Regalen. An vielen Häusern solider Bauart treten mäßige Schäden auf (kleine Mauerrisse, Abfall von Putz, Herabfallen von Schornsteinteilen). Vornehmlich Gebäude in schlechterem Zustand zeigen größere Mauerrisse und Einsturz von Zwischenwänden.
VIII	schwere Gebäudeschä- den	Viele Personen verlieren das Gleichgewicht. An vielen Gebäuden einfacher Bausubstanz treten schwere Schäden auf, d. h. Giebelteile und Dachsimse stürzen ein. Einige Gebäude sehr einfacher Bauart stürzen ein.
IX	zerstörend	Allgemeine Panik unter den Betroffenen. Sogar gut gebaute gewöhnliche Bauten zeigen sehr schwere Schäden und teilweisen Einsturz tragender Bauteile. Viele schwächere Bauten stürzen ein.
Х	sehr zerstörend	Viele gut gebaute Häuser werden zerstört oder erleiden schwere Beschädigungen.
XI	verwüstend	Die meisten Bauwerke, selbst einige mit gutem erdbebengerechtem Konstruktionsentwurf und -ausführung, werden zerstört.
XII	vollständig verwüstend	Nahezu alle Konstruktionen werden zerstört.

Die Intensität

beschreibt, wie Erdbeben durch die Menschen wahrgenommen oder sich auf Gebäude und Natur ausgewirkt haben. Diese Einschätzung (Makroseismik) ist subjektiv. Eine Teilobjektivierung erfolgt durch die Einordnung in eine Intensitätsskala. Die Intensität hängt von der Entfernung zum Epizentrum und den örtlichen Untergrundbedingungen ab. In Tabelle 5 ist eine Kurzform der makroseismischen Intensitätsskala EMS-98 aufgeführt.

Das Epizentrum

ist senkrechte Projektion der Lage des Hypozentrums auf die Erdoberfläche.

Makroseismische Auswertung des Bebens vom 16. April um 08:38 Uhr MESZ

Zur makroseismischen Auswertung wurden Wahrnehmungsmeldungen verschiedener Kategorien zusammengetragen. Obwohl eine größere Zahl von Personen um das Ausfüllen der Fragebögen gebeten wurde, standen letztlich nur vier ausgefüllte Frageböden zur Verfügung. Darüber hinaus bestand bei 22 Anrufern die Möglichkeit, im persönlichen Gespräch die Informationen genauer zu hinterfragen. Zusätzlich gingen in die makroseismische Auswertung 81 Chat-Einträge aus verschiedenen Online-Portalen ein, die in Bezug auf die Intensität nutzbare Wahrnehmungsmeldungen enthielten. Daneben wurden auch gezielt Negativmeldungen aus den südlich und westlich zum Epizentrum gelegenen Gebieten gesammelt.

Das Ergebnis der makroseismischen Auswertung zeigt Abb. 12. Obwohl das Beben mit der Magnitude ML = 3.2 in einem weiten Umkreis von ca. 50 km verspürt wurde, sind selbst aus dem Epizentralgebiet keine ernstzunehmenden Schadensmeldungen bekannt geworden. Wenn auch aus den zentral liegenden Orten einzelne Wahrnehmungsmeldungen wie starke Erschütterung des Gebäudes, leichtes Verschieben von Gegenständen und Pendeln von hängenden Gegenständen vorliegen, die auf eine Intensität von V deuten, so muss demgegenüber bemerkt werden, dass in diesem Gebiet eine ganze Reihe von Personen in Gebäuden überhaupt nichts verspürt haben. Da auch keine Haarrisse im Verputz oder Abfallen von kleinen Verputzteilen gemeldet wurden, wird hier die Epizentralintensität mit IV bis V abgeschätzt. Die recht schwache Epizentralintensität im Vergleich zum weiten Schüttergebiet lässt sich mit der relativ großen Tiefe von 24 km erklären.

Interessant ist die Form des Schüttergebietes (Abb. 12). Insbesondere die Flusstäler mit ihrer lockeren Sedimentfüllung und dem hohen Grundwasserstand stellen oft Zonen erhöhter Intensität dar. So erstreckt sich das Schüttergebiet im Norden bis zum Elbtal, wo aus Dessau-Roßlau und Lutherstadt Wittenberg mehrere Wahrnehmungsmeldungen vorliegen. Der östlichste Punkt ist eine Meldung aus dem Gebiet von Riesa, ebenfalls an der Elbe gelegen. Nach Süden wurde das Beben entlang der Weißen Elster bis Gera und entlang der Saale bis Bad Kösen verspürt. Ein Sonderfall sind Wahrnehmungsmeldungen von den Mitarbeitern des 95 km entfernten seismologischen Observatoriums Moxa. Dort herrschen durch den Messstollen besondere Bedingungen, und die Beobachtung erfolgte durch versierte Seismologen. Nach Westen ist das Schüttergebiet dagegen nur ca. 30 km bis in das Gebiet des Süßen Sees ausgedehnt. Weiter westlich folgt die Grundgebirgshochlage des Harzes mit nur geringmächtiger Lockergesteinsbedeckung.

Abb. 12: Wahrnehmungsorte und makroseismische Bewertung des Bebens bei Gröbers vom 16. April 2015

Historische Erdbeben in dem Gebiet

Das Erdbeben von Gröbers wurde in der Presse als »Stärkste Erschütterung seit 100 Jahren« bezeichnet. Tatsächlich ist das Gebiet um Halle/Leipzig kaum von Erdbeben betroffen. Der Erdbebenkatalog (Abb. 13, LEYDECKER 2011) zeigt vor allem im Gebiet um Gera – Altenburg – Zeitz, im Kreuzungsbereich der Zone von Leipzig – Regensburg mit einem Störungssystem bestehend aus der Kyffhäuser – Crimmitschau – Störung, der Finne – Störung und der Gera – Jáchymov – Störung, stärkere historische Beben bis zur Intensität von VII bis VIII. Im Umkreis von 30 km um das jetzige Epizentrum gab es ein Beben bei Delitzsch im Jahre 1819 mit der Intensität IV–V, ein Beben bei Weißenfels 1720 mit der Intensität IV–V und mehrere Beben im Gebiet Leipzig in den Jahren 1833, 1905, 1914 und 1982 mit Intensitäten von IV bis VI.

Ort	Jahr	Intensität
Delitzsch	1819	IV-V
Leipzig	1833	IV-V
	1905	V–VI
	1914	VI
	1982	V
Weißenfels	1720	IV-V
Zeitz	868	V–VI
	1094	V
	1991	IV-V
N-Sachsen	827	VII-VIII
	1088	VII-VIII
Gera	1326	VI-VII
Posterstein	1872	VII-VIII

Abb. 13: Einordnung des Bebens von Gröbers in die historische Erdbebentätigkeit und den regionalen tektonischen Bauplan. Darstellung der historischen Erdbeben auf der Basis von LEYDECKER 2011

22 | 2 Seismische Aktivität in Mitteldeutschland (Sachsen, Sachsen-Anhalt und Thüringen) und im regionalen Umfeld

2.1.2 Erdbebenserie Mai bis August 2014 im Herdgebiet Nový Kostel

Weniger als drei Jahre nach dem großen Schwarm 2011 im Gebiet Nový Kostel begann am 24. Mai 2014 die erste Bebenserie, der eine Woche später eine wesentlich stärkere folgte. Tab. 6 enthält 41 Beben mit Magnituden $ML = \ge 2.0$. Die laufenden Nummern stehen in der Epizentrenkarte Abb. 14.

Ereignis Nr. Abb. 14	Datum	Herdzeit (UTC) h:min:s	Koordinaten geogr. Breite °N/ geogr. Länge °O	Herdtiefe km	Lokalmagnitude (ML) (Anzahl der Stationen)	Herdgebiet/ČR
1	24.05.2014	14:35:35.9	50.225/12.436	7.6	3.5 (8)	Nový Kostel
2	24.05.2014	14:40:25.1	50.225/12.437	7.7	2.0 (8)	Nový Kostel
3	24.05.2014	16:14:30.5	50.226/12.437	8.0	2.0 (8)	Nový Kostel
4	31.05.2014	10:37:21.4	50.229/12.440	7.5	4.2 (9)	Nový Kostel
5	31.05.2014	10:39:48.3	50.228/12.440	7.2	2.2 (9)	Nový Kostel
6	31.05.2014	10:43:56.6	50.228/12.440	7.4	2.9 (9)	Nový Kostel
7	31.05.2014	11:01:34.4	50.226/12.442	7.8	2.0 (9)	Nový Kostel
8	31.05.2014	11:15:56.7	50.226/12.440	7.8	2.1 (9)	Nový Kostel
9	31.05.2014	11:16:05.6	50.226/12.441	7.7	2.4 (9)	Nový Kostel
10	31.05.2014	11:32:48.1	50.225/12.441	7.7	2.7 (9)	Nový Kostel
11	31.05.2014	11:33:00.6	50.224/12.442	7.5	2.3 (9)	Nový Kostel
12	31.05.2014	11:46:57.1	50.229/12.441	7.2	2.2 (9)	Nový Kostel
13	31.05.2014	11:47:30.8	50.231/12.440	7.1	2.4 (9)	nordwestlich Nový Kostel
14	31.05.2014	13:11:51.2	50.233/12.444	7.0	2.1 (9)	nördlich Nový Kostel
15	31.05.2014	13:28:12.4	50.233/12.442	7.3	2.2 (9)	nördlich Nový Kostel
16	31.05.2014	13:28:19.2	50.233/12.442	7.5	3.1 (9)	nördlich Nový Kostel
17	31.05.2014	14:11:58.1	50.231/12.440	7.1	2.0 (9)	nordwestlich Nový Kostel
18	31.05.2014	15:53:55.0	50.234/12.441	6.9	2.1 (9)	nördlich Nový Kostel
19	31.05.2014	16:11:12.6	50.233/12.441	6.9	2.2 (9)	nördlich Nový Kostel
20	31.05.2014	16:44:43.4	50.226/12.438	7.9	2.3 (9)	Nový Kostel
21	31.05.2014	18:09:22.2	50.227/12.443	7.0	2.1 (9)	Nový Kostel
22	31.05.2014	18:09:23.0	50.225/12.444	6.9	2.1 (8)	Nový Kostel
23	31.05.2014	18:09:32.4	50.233/12.439	6.4	2.1 (9)	nördlich Nový Kostel
24	31.05.2014	18:10:21.4	50.234/12.439	6.4	2.2 (9)	nördlich Nový Kostel
25	31.05.2014	19:18:03.5	50.230/12.442	7.0	2.9 (9)	nordwestlich Nový Kostel
26	31.05.2014	19:37:19.6	50.227/12.443	7.0	2.0 (9)	Nový Kostel
27	31.05.2014	19:55:03.2	50.229/12.444	7.5	2.4 (9)	Nový Kostel
28	31.05.2014	20:14:45.6	50.234/12.441	7.2	2.7 (9)	nördlich Nový Kostel
29	31.05.2014	20:15:23.7	50.232/12.441	7.1	3.0 (9)	nördlich Nový Kostel
30	31.05.2014	22:52:00.4	50.236/12.440	7.2	2.0 (9)	nördlich Nový Kostel
31	01.06.2014	00:29:40.2	50.237/12.439	7.0	2.5 (9)	nördlich Nový Kostel
32	01.06.2014	08:56:59.1	50.236/12.443	7.7	2.3 (9)	nördlich Nový Kostel
33	01.06.2014	09:00:44.2	50.236/12.442	7.7	2.0 (9)	nördlich Nový Kostel
34	01.06.2014	09:09:26.3	50.237/12.442	7.8	2.1 (9)	nördlich Nový Kostel
35	01.06.2014	09:10:27.6	50.236/12.443	7.8	2.2 (9)	nördlich Nový Kostel
36	02.06.2014	02:25:39.5	50.237/12.443	6.1	2.8 (9)	nördlich Nový Kostel
37	02.06.2014	02:25:58.9	50.236/12.450	6.8	2.2 (8)	nördlich Nový Kostel
38	04.06.2014	00:46:45.1	50.229/12.442	8.0	2.2 (9)	Nový Kostel
39	03.08.2014	23:58:40.7	50.225/12.441	7.8	3.6 (8)	Nový Kostel
40	04.08.2014	00:12:29.7	50.226/12.441	7.9	2.0 (8)	Nový Kostel
41	04.08.2014	00:20:46.6	50.225/12.443	7.9	2.0 (8)	Nový Kostel

Tab.: 6: Seismische Ereignisse Mai bis August 2014 im Herdgebiet Nový Kostel mit Lokalmagnitude ML ≥ 2.0

Abb. 14: Seismische Ereignisse der drei Serien 2014 im Gebiet Nový Kostel mit Lokalmagnituden ML ≥ 2.0

Abb. 15: Epizentren (farbig) der drei am 24. Mai, 31. Mai und 03. August 2014 beginnenden Serien im Gebiet Nový Kostel, die in den Kartenausschnitt Abb. 14 fallen. Den grauen Hintergrund bilden die Epizentren der 8609 ausgewerteten Beben in den Jahren 2006 bis 2015.

Abb. 16: Zeitliche Verteilung der Magnituden der zu den drei Serien gehörenden Beben im Gebiet Nový Kostel Mai – August 2014

Abb. 17: Aufsummierte Energiefreisetzung in den Herden der zu den drei Serien gehörenden Beben im Gebiet Nový Kostel Mai – August 2014

Abb. 18: Anzahl der Beben pro Tag mit Unterteilung in halbe Magnitudenklassen Mai – August 2014 im Gebiet Nový Kostel

Die Erdbebenserie

ist eine Folge von Erdbeben, die im zeitlichen Zusammenhang mit einem Hauptbeben steht. Zu ihr gehören vergleichsweise wenige Vorbeben, das Hauptbeben und viele Nachbeben. Im Gegensatz zum Erdbebenschwarm ist die Magnitude des Hauptbebens deutlich größer als die der begleitenden Beben. Die Epizentren der drei Serien (beginnend am 24. Mai, 31. Mai und 03. August 2014) sind einzeln in Abb. 15 dargestellt. Die grau gezeichneten Epizentren aller Beben der Jahre 2006 bis 2015 dienen lediglich dem Vergleich.

In Abb. 16 wird die zeitliche Verteilung der Magnituden über dem viermonatigen Zeitraum erhöhter Aktivität dargestellt.. Es fällt auf, dass in allen drei Serien die Magnitudendifferenz zwischen dem Hauptbeben und dem zweitgrößten mindestens eine Magnitudeneinheit beträgt.

Das führt auch dazu, dass die in Abb. 17 dargestellte aufsummierte Energiefreisetzung von den drei Stufen der Hauptbeben der Serien am 24. Mai, 31. Mai und 3. August 2014 geprägt ist.

Die Anzahl der ausgewerteten Beben pro Tag mit Unterteilung in halbe Magnitudenklassen zeigt Abb. 18.

Abb. 19: Epizentren der Schwärme 2008, 2011 und der Serien 2014 im Gebiet von Nový Kostel. Den Hintergrund bilden auch hier die Epizentren der Jahre 2006 bis 2014.

Der Erdbebenschwarm

besteht aus vielen Ereignissen, den Schwarmbeben. Sie ereignen sich innerhalb einer kurzen Zeitspanne und die Herde konzentrieren sich auf ein kleines Volumen. Die Mehrzahl von ihnen ist sich ähnlich bezüglich des Herdvorgangs. Das energiestärkste, Hauptbeben, hebt sich wenig von denen mit vergleichbarer Energie ab. Innerhalb von weniger als sechs Jahren ereigneten sich im Gebiet von Nový Kostel zwei große Schwärme und die Serien 2014. Während es 2014 in jeder der drei Serien je ein dominantes Beben gab, fehlen diese bei den für das Gebiet häufigen und auch charakteristischen Schwärmen. Serien mit einzelnen dominanten Beben hat es auch früher schon gegeben. Ein Vergleich scheint hier der dichten zeitlichen Aufeinanderfolge wegen angebracht. Jeweils zwei Monate sind auf den Epizentrenkarten Abb. 19 dargestellt. Grau sind alle Epizentren von 2006 bis 2015 zum Vergleich eingezeichnet. Die zeitliche Abfolge Abb. 20 ist von Fall zu Fall verschieden, so dass die Frage nach den noch zu erwartenden Beben oder der Zeitdauer des Schwarms bzw. der Serie kaum zu beantworten ist.

Abb. 20: Zeitliche Verteilung der Magnituden der Beben in den Schwärmen 2008 und 2011 sowie der Serien 2014 im Gebiet von Nový Kostel

Abb. 21: Aufsummierte Energie in den Herden der Beben in den Schwärmen 2008 und 2011 sowie der Serien 2014 im Gebiet von Nový Kostel

Abb. 21 weist bei den beiden Schwärmen mehrere Stufen in der Energiefreisetzung auf, während das Bild 2014 von einer einzigen Stufe am 31. Mai 2014 dominiert wird. Die drei Histogramme mit der Anzahl der Beben pro Tag (Abb. 22) sind in beiden Achsen gleich skaliert. Es scheint, als seien die Serien 2014 von der Anzahl der ausge-

Abb. 22: Anzahl der Beben pro Tag mit ML ≥ 1.5 und Unterteilung in halbe Magnitudenklassen in den Schwärmen 2008 und 2011 sowie den Serien 2014 im Gebiet Nový Kostel.

werteten Beben eher unerheblich gewesen verglichen mit 2008 und 2011. Die kleine Anzahl wird durch die untere Magnitudengrenze von 1.5 bedingt, unterhalb derer 2014 noch eine große Anzahl von Beben ausgewertet wurde.

2.2 Seismische Aktivität außerhalb von Mitteldeutschland

Erdbeben im regionalen Entfernungsbereich mit makroseismischen Auswirkungen auf das Gebiet Mitteldeutschlands

Im Hinblick auf eine Gefährdung sind auch Erdbeben außerhalb Mitteldeutschlands von Bedeutung, wenn aufgrund ihrer Stärke bzw. relativ geringen Entfernung makroseismische Auswirkungen auf das Gebiet von Mitteldeutschland zu erwarten sind. Eine Abschätzung der möglichen Wirkungen in Form der auftretenden Intensitäten gibt Abb. 23. In Abhängigkeit von der Entfernung und der Magnitude des Erdbebens ist die zu erwartende maximale Intensität an einem Beobachtungsort im Grenzbereich innerhalb Mitteldeutschlands eingetragen. Von besonderer Bedeutung sind hierbei die Intensitäten III und VI, bei denen die von dem jeweiligen Erdbeben verursachten Erschütterungen von Menschen wahrnehmbar sind bzw. bereits zu Schäden an Bauwerken führen können (siehe auch makroseismische Intensitätsskala, Tab. 5).

Abb. 23: Entfernungsmäßige Zuordnung von Magnitudenwerten der in Tab. 7 aufgeführten seismischen Ereignisse (♦) mit den eingetragenen Kurven zur Überschreitung der Intensität III (Wahrnehmbarkeit) und VI (eventuelle auftretende Schäden); 1–14 seismische Ereignisse

Ereignis Nr. Abb. 23	Datum	Herdzeit (UTC) h:min:s	Koordinaten geogr. Breite °N/ geogr. Länge °O	Herdtiefe km	Lokal- magnitude (ML)	Ent– fernung km	Herdgebiet
1	16.03.2014	06:32:24	51.57/16.19	2	4.0	80	Bergbaurevier Lubin, Polen
2	24.05.2014	14:35:35.9	50.225/12.436	7.6	3.5	10	Nový Kostel, Tschechische Republik
3	31.05.2014	10:37:21.4	50.229/12.440	7.5	4.2	10	Nový Kostel, Tschechische Republik
4	31.05.2014	10:43:56.6	50.228/12.440	7.4	2.9	10	Nový Kostel, Tschechische Republik
5	31.05.2014	11:32:48.1	50.225/12.441	7.7	2.7	10	Nový Kostel, Tschechische Republik
6	31.05.2014	13:28:19.2	50.233/12.442	7.5	3.1	10	Nový Kostel, Tschechische Republik
7	31.05.2014	19:18:03.5	50.230/12.442	7.0	2.9	10	Nový Kostel, Tschechische Republik
8	31.05.2014	20:14:46.6	50.234/12.441	7.2	2.7	10	Nový Kostel, Tschechische Republik
9	31.05.2014	20:15:23.7	50.232/12.441	7.1	3.0	10	Nový Kostel, Tschechische Republik
10	01.06.2014	00:29:40.2	50.237/12.439	7.0	2.5	10	Nový Kostel, Tschechische Republik
11	02.06.2014	02:25:39.5	50.237/12.443	6.1	2.8	10	Nový Kostel, Tschechische Republik
12	05.07.2014	12:04:56	51.58/16.1	2	3.9	80	Bergbaurevier Lubin, Polen
13	03.08.2014	23:58:40.7	50.225/12.441	7.8	3.6	10	Nový Kostel, Tschechische Republik
14	08.07.2015	06:53:18	51.61/16.12	1	4.1	80	Bergbaurevier Lubin, Polen

Tab. 7: Ausgewählte seismische Ereignisse 2013 – 2015 außerhalb Mitteldeutschlands (Sachsen, Sachsen-Anhalt und Thüringen) mit möglichen makroseismischen Wahrnehmungen in Mitteldeutschland

In Tab. 7 sind alle Erdbeben seit 2013 im regionalen Entfernungsbereich angegeben, bei denen makroseismische Auswirkungen auf das Gebiet Mitteldeutschlands zu erwarten waren. Die Tabelle beinhaltet die Herdzeit, die geografischen Koordinaten des Epizentrums, die Herdtiefe, die Magnitude, das Herdgebiet sowie die Entfernung zum Grenzgebiet von Mitteldeutschland. Insgesamt wurden 14 Erdbeben registriert, die das Kriterium der makroseismischen Wahrnehmbarkeit erfüllen. Alle Ereignisse wurden entsprechend ihrer Lokalmagnitude und Entfernung zum Grenzgebiet von Mitteldeutschland in Abb. 23 eingetragen. Bezüglich ihrer Position ist dementsprechend eine makroseismische Wahrnehmung oder Schadenswirkung erst zu erwarten, wenn die Intensitätskurven III oder VI erreicht bzw. überschritten werden. Diesbezüglich wurden im Berichtszeitraum makroseismische Wahrnehmungen zu dem Erdbeben zu den stärksten Erdbeben aus der Herdregion Nový Kostel/NW-Böhmen mit Magnituden ML > 3 gemeldet. Bezüglich der Wahrnehmbarkeit von seismischen Ereignissen in Gebieten mit Lockergesteinsbedeckung muss bemerkt werden, dass es hierbei zu Bodenverstärkungen der angeregten Erschütterungen kommen kann, so dass auch schwächere Grenzwertmagnituden als in Abb. 23 eingetragen, wahrgenommen werden können. Dies betrifft insbesondere die in Tab. 7 gekennzeichneten Bergschläge aus dem Kupferschieferbergbaugebiet Lubin/Polen mit Magnituden \geq 4, welche im Grenzgebiet der Lausitz zu Polen mit überwiegend Lockersedimentbedeckung zu Wahrnehmungen führen können.

Im Entfernungsbereich von 100 km bis ca. 700 km wurden im Berichtszeitraum keine Erdbeben in Europa registriert, welche einen Magnitudenwert von ML = 5 überschritten und somit in den Bereich der makroseismischen Wahrnehmung gerieten.

Erdbeben in Europa im Zeitraum 2013 – 2015

In Tab. 8 sind die stärksten Erdbeben in Europa mit einer Raumwellenmagnitude von mb \ge 5.7 aufgeführt und in der Abb. 24 mit der entsprechenden Nummer dargestellt. Zusätzlich sind in Abb. 24 alle seismischen Ereignisse mit einer Raumwellenmagnitude von 4.0 \le mb < 5.7 eingezeichnet. Es ist zu erkennen, dass die größte seismische Aktivität in Südosteuropa auftritt. Das stärkste Beben ereignete sich am 12. Oktober 2013 auf Kreta mit einer Magnitude von 6.4.

	_			-			
Ereignis Nr. Abb. 24	Datum	Herdzeit (UTC) h:min:s	Koordinaten geogr. Breite °N/ geogr. Länge °O	Herdtiefe in km	Raumwellen magnitude (mb)	Herdgebiet	
1	08.01.2013	14:16:09.0	39.656/25.540	12.8	5.7	Ägäisches Meer	
2	15.06.2013	16:11:02.5	34.400/25.020	10.0	6.0	Kreta	
3	16.06.2013	21:39:05.8	34.347/25.159	19.0	5.9	Kreta	
4	12.10.2013	13:11:53.3	35.514/23.252	40.0	6.4	Kreta	
5	26.01.2014	13:55:42.2	38.208/20.453	8.0	6.0	Griechenland	
6	24.05.2014	09:25:02.4	40.289/25.389	6.4	6.3	Ägäisches Meer	
7	15.04.2015	08:25:11.6	34.808/32.331	10.0	5.7	Zypern	
8	16.04.2015	18:07:43.6	35.189/26.823	20.0	6.0	Kreta	
q	17 11 2015	07.10.07.3	38 670/20 600	11 0	61	Griechenland	

Tab. 8: Seismische Ereignisse 2013 – 2015 in Europa mit Raumwellenmagnitude (mb) ≥ 5.7

Abb. 24: Seismische Ereignisse 2013 – 2015 in Europa mit Raumwellenmagnitude mb \geq 4.0; Quelle: Erdbebenkatalog des NEIC (National Earthquake Information Center) des geologischen Dienstes der USA (USGS)

3 Seismologische Netze in Mitteldeutschland

3.1 Sachsennetz (SXNET) mit Stationen von Sachsen-Anhalt

3.1.1 Online-Stationsnetz (permanentes Netz)

Die bisherigen Stationen des sächsischen permanenten Online-Netzes wurden in den letzten 3 Jahren unverändert weiter betrieben und durch zwei weitere Stationen (Muldenstein Hochbehälter MUHB, Kirchberg-Leutersdorf LEUT) ergänzt. Das Netz besteht jetzt aus 10 sächsischen Stationen und 3 Stationen des Landesamtes für Bergwesen und Geologie Sachsen-Anhalt (Abb. 25, Tab. 9).

Das sächsische Online-Netz überwacht gemeinsam und in enger Kooperation mit den Nachbarnetzen bereits seit 2000 die seismische Aktivität in und um Sachsen. Den Schwerpunkt bilden dabei die seismisch aktiven Gebiete vom Vogtland bis nördlich von Leipzig entlang der Zone von Leipzig – Regensburg, an der neben Sachsen auch die Bundesländer Thüringen und Sachsen-Anhalt Anteile aufweisen. Die geringsten Stationsabstände finden sich im Vogtland, weil dort die Registrierbedingungen besonders günstig und die Zahl der beobachteten Beben besonders hoch sind.

Stationsabkürzung	Standort	geogr. Breite °N	geogr. Länge °O	Höhe m (NN)	In Betrieb seit
Sachsen					
FBE	Freiberg, Lehr- und Besucherbergwerk »Alte Elisabeth«, 4. Gezeugstrecke	50.9212	13.3541	234.9	27.09.2004
GUNZ	Gunzen, Trinkwasserhoch-behälter	50.3635	12.3316	669	08.08.2001
LEUT	Leutersbach	50.609	12.524	392	im Aufbau
MULD	Muldenberg, Talsperre	50.413	12.407	678	20.12.2007
ROHR	Rohrbach, Trinkwasserhoch-behälter	50.2342	12.3168	629	07.08.2001
SCHF	Schönfels, Burgmuseum	50.6772	12.4031	435	14.06.2007
TANN	Tannenbergsthal, Besucherbergwerk	50.4149	12.4616	836	19.12.2000
TRIB	Obertriebel, privater Schuppen	50.3517	12.1370	510	19.12.2001
WERD	Werda, Talsperre	50.4476	12.3064	589	13.06.2001
WERN	Wernitzgrün, Trinkwasserhochbehälter	50.2874	12.3761	672	02.08.2000
Sachsen-Anhalt					
NEUB	Neuenburg, Burgmuseum	51.2083	11.7752	200	21.08.2003
MUHB	Muldenstein	51.658	12.342	115	10.11.2015
WIMM	Wimmelburg, Bergwerk	51.521	11.505	80	16.09.2008

Tab. 9: Stationen des Online-Netzes (SXNET) mit Stationen von Sachsen-Anhalt

Abb. 25: Stationen der seismologischen Netze in Mitteldeutschland – Sachennetz (SXNET) mit Stationen von Sachsen-Anhalt, Thüringer Netz (TSN) und Stationen angrenzender Gebiete, Standortabkürzungen der Online-Netze Tab. 9 und 11 und des Offline-Sachsennetzes Tab. 10 Für den erreichten Stand der zeitnahen Überwachung der Seismizität in Sachsen, Thüringen und Sachsen-Anhalt ist die enge Kooperation mit den Nachbarnetzen eine unerlässliche Voraussetzung. Dank der einheitlichen Datenformate, der einheitlichen Übertragungsprotokolle und -wege sowie der guten Kooperation wachsen die Stationen der benachbarten Netze aus der Perspektive der Auswertung zu einem einheitlichen Netz zusammen, das neben den 13 Stationen des sächsischen Online-Netzes weitere 40 Stationen von 5 Nachbarnetzen kontinuierlich und zeitnah umfasst:

- Thüringer Seismologisches Netz (TSN) 20 Stationen
- Deutsches Regionalnetz seismologischer Breitbandstationen (GRSN) 11 Stationen
- Tschechisches Regionales Seismisches Netzwerk (CRSN) 4 Stationen
- Bayern-Netz 4 Stationen
- Geofon-Netz (Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum) 1 Station.

Die Konzepte der früheren Jahre werden weiterhin verfolgt und konzentrieren sich auf zwei Schwerpunkte:

- 1. Potenziell von der Bevölkerung spürbare Beben oder andere Erschütterungen (etwa ab Magnitude 2) werden umgehend ausgewertet.
- 2. In seismisch aktiven Gebieten werden auch wesentlich kleinere Beben erfasst.

Seismologische Station Leutersbach (LEUT)

Die jüngste permanente Erdbebenstation Leutersbach (LEUT) des Sachsennetzes wurde in Kirchberg-Leutersbach im Berichtszeitraum bis 2015 vorbereitet und Anfang 2016 in Betrieb genommen. Dieser Standort liegt ca. 20 km südlich von Zwickau am östlichen Rand der Erdbebenzone, die Westsachsen von Nord nach Süd durchläuft und in Sachsen von Delitzsch bis an die tschechische Grenze reicht. Diese Erdbebenzone ist Bestandteil der größeren Zone von Leipzig – Regensburg; sie umfasst den überwiegenden Teil der natürlichen seismischen Aktivität in Mitteldeutschland und Umgebung. Markante benachbarte Herdgebiete sind das südlich gelegene Vogtland und die nördlich gelegene Umgebung von Zwickau und Werdau. Östlich von Leutersbach befindet sich mit dem Sanierungsgebiet der ehemaligen Grube Aue/Alberoda ein weiteres Herdgebiet, in dem in der Vergangenheit vereinzelt induzierte Ereignisse registriert wurden.

Die Station wurde am Rand der Ortslage Leutersbach auf Privatgelände auf einer Geländekuppe im Freien neben einer kleinen Wetterstation errichtet. Die Skizze Abb. 26 a zeigt die Lage der Station, und in Abb. 26 b sind die wichtigsten Planungseinzelheiten für den Seismometersockel mit umgebendem Schacht dargestellt. Die restliche elektronische Ausrüstung kommt im benachbarten Wetterhäuschen unter, wo auch die GPS-Antenne montiert ist sowie Strom- und Internetanschluss bereitstehen.

In den anstehenden und nur oberflächlich leicht verwitterten Kirchberger Granit wurde für den Seismometerschacht eine 1 m tiefe Grube ausgehoben (Abb. 27), mit einem Seismometersockel und einem umschließenden Schachtrohr versehen sowie einem Deckel verschlossen (Abb. 28).

Die Daten werden per DSL-Anschluss umgehend und kontinuierlich ins Datenzentrum nach Leipzig übertragen.

Ausstattung:

Seismometer: Guralp CMG3-ESPC Eigenperiode: 1 s Datenlogger: Guralp Abtastrate: 250 Hz

Ein besonderer Dank gilt Herrn Klaus Weißenfels, der den Standort einschließlich aller erforderlichen Arbeiten bereitgestellt hat und den laufenden Betrieb gewährleistet.

Seismologische Station Muldenstein (MUHB)

Im November 2015 wurde in Muldenstein bei Bitterfeld eine seismologische Station in Betrieb genommen. Sie befindet sich im Hochbehälter der MIDEWA (Wasserversorgungsgesellschaft in Mitteldeutschland mbH, Abb. 29). Das Seismometer ist im Untergeschoss über das Betonfundament an den Felsuntergrund angekoppelt. Datenleitungen führen in die oberen Stockwerke, wo die Rechentechnik untergebracht ist. Eine GPS-Antenne auf dem Dach liefert das Zeitsignal, und über eine Mobilfunkantenne erfolgt die Kommunikation mit der Stationstechnik von außen.

Ausstattung:

Seismometer: Guralp CMG-6T Eigenperiode: 30 s Datenlogger: Earth Data Abtastrate: 100 Hz

Das Ziel dieser Station ist es, den Überwachungsring um das Mitteldeutsche Bebengebiet im Norden zu schließen. Zwar konzentrieren sich die Beben vor allem im Kreuzungsbereich der N-S-verlaufenden Zone von Leipzig – Regensburg mit der NW-SEstreichenden Kyffhäuser – Crimmitschau – Störung im Gebiet Gera-Altenburg-Zeitz. Aber in den letzten Jahren wurden zunehmend auch vereinzelte Beben registriert, die bis in das Gebiet nördlich Leipzig reichten (Abb. 1). Nicht zuletzt wird mit der Errichtung dieser Station auf das Erdbeben vom 16. April 2015 bei Gröbers reagiert (Kap. 2.1.1). Der Errichtung der Station gingen längere Testmessungen an verschiedenen Stellen voraus. Die Standortsuche für diese Station gestaltete sich deshalb schwierig, da das Gebiet um Bitterfeld geologisch durch mächtige Lockergesteinsablagerungen gekennzeichnet ist. Nur an zwei Stellen erreichen ganz lokal Aufragungen des Muldensteiner Porphyrs die Erdoberfläche. Der Muldensteiner Berg, auf dem sich der MIDEWA-Hochbehälter befindet, ist eine solche Hochlage. Daneben verschlechtert der hohe infrastrukturelle Erschließungsgrad die Aufzeichnungsbedingungen.

3.1.2 Offline-Stationsnetz (mobiles Netz)

Das Offline-Netz, das vorwiegend vom Institut für Geophysik und Geoinformatik der TU Bergakademie Freiberg betreut wird, bestand im Berichtszeitraum aus 13 Stationen (Messgeräten). Sie wurden in dieser Zeit an den in Tab. 10 aufgeführten Standorten betrieben, deren geografische Lage in Abb. 25 dargestellt ist. Die gemessenen Daten werden nicht kontinuierlich wie beim Online-Netz gewonnen. Die Offline-Stationen arbeiten im Triggermodus, d. h. es wird nur dann registriert, wenn am jeweiligen Standort ein vorher festgelegter Schwellenwert der Bodenerschütterung überschritten wird. Damit ist es möglich, dass die Stationen bei automatischer Abspeicherung über

Abb. 27: Grube für Seismometerschacht: Unter dem Boden (graubraun, ca. 30 cm mächtig) ist der nur leicht angewitterte Kirchberger Granit in seiner felsigen Beschaffenheit in den helleren Brauntönen deutlich erkennbar. In der Mitte erreicht die Baugrube eine Tiefe von 1 m; das ca. 30 cm hohe Rohr dient als Schalung, in die der Betonsockel gegossen wird, Oberkante ca. 65 cm unter Gelände. Links oben im Bild der Kabelgraben für die Anschlussleitungen. Quelle: Klaus Weißenfels

Abb. 28: Verschlossener Seismometerschacht: Der Seismometerschacht schließt knapp über dem Gelände mit einem verschlossenen Edelstahldeckel ab; das winklige Rohr dient der Be- und Entlüftung. Das Registriergerät steht im Wetterhäuschen links hinter dem Maschendrahtzaun, die Kabelverbindungen wurden unterirdisch verlegt. Quelle: Klaus Weißenfels

Abb. 29: Hochbehälter der MIDEWA bei Muldenstein

Tab. 10: Stationen des Offline-Netzes

Stationsabkürzung	Standort	geograph. Breite °N	geograph. Länge °O	Höhe m (NN)	Betriebszeit
Region Aue					
AUC	Aue, Viehzucht	50.6216	12.7053	448	seit 22.10.04
AUP	Aue, »Prinzenhöhle«, Garage	50.6381	12.6802	369	seit 22.10.04
AUM	Aue, Markus-Semmler-Straße, Keller Wohnhaus	50.6072	12.6802	401	seit 22.10.04
AUS	Aue, Baumarkt Wildbach	50.6260	12.6440	512	seit 24.07.07
AUX	Aue, Nähe Wasserbehandlungsanlage, Keller Wohnhaus	50.6257	12.6858	343	seit 29.04.08
AUZ	Aue, Mühlweg, Keller Wohnhaus	50.6191	12.6804	350	10.07.12 - 15.10.13
GA1	Aue, Hauptgebäude Wismut GmbH	50.6329	12.6852	344	seit 09.08.12
Talsperren					
DROU	Dröda, Mauerfuß	50.3981	12.0578	418	19.08 - 16.12.13
EIU	Eibenstock, Staumauer, Schieberhaus	50.5301	12.5992	490	23.10.08 - 15.10.13
EIF	Eibenstock, Staumauer, Feld 15	50.5296	12.5990	490	seit 21.12.14
SOS	Sosa, Mauerkrone	50.4900	12.6426	636	04.02.09 - 30.03.10 27.04.10 - 28.09.10 seit 16.11.10
Elbezone					
LIE	Liebethal, Gartenhaus	50.9968	13.9650	166	30.09.13 - 27.05.14
STP1	Stolpen, Keller Rathaus	51.0491	14.0824	297	08.10.13 - 25.11.14 27.05.14 - 02.07.14
STP2	Stolpen, Keller Wohnhaus	14.08224	51.04716	325	25.11.13 - 06.12.13
STP3	Stolpen, Keller Pfarrhaus	51.0485	14.0819	320	06.12.13 - 04.05.14
ZAS	Zaschendorf, Keller Wohnhaus	51.0175	13.9138	217	27.09.13 - 27.05.14
Lausitz					
BAT	Bathow, Keller Wohnhaus	51.78789	13.88480	69	25.01.13 - 23.07.13
BAU	Bautzen, Talsperre Hauptgebäude	51.21991	14.46991	173	seit 13.02.14
BUK	Buckow, Keller Wohnhaus	51.76335	13.91476	82	25.01.13 - 23.07.13 02.07.14 - 29.10.15
BUR	Burghammer, Stauspeicher, Überlaufbohrwerk Lohsa	51.4549	14.4027	117	23.07.13 - 23.10.14
KAR	Karlsdorf, RHB Pegelhaus	51.15163	14.26554	232	13.02.14 - 23.10.14
LAB	Laubusch, Bekalkungsanlage	51.4911	14.1587	119	23.07.13 - 07.10.13
MLO	Mlode, Keller Wohnhaus	51.77924	13.95434	82	25.01.13 - 23.07.13 02.07.14 - 29.10.15
QUI	Quitzdorf, Talsperre Schieberhaus	51.28340	14.75034	155	seit 23.10.14
SCH	Schönfeld, Keller Wohnhaus	51.81634	13.90441	61	02.07.14 - 28.04.15
Windpark Zodel/Ge	meinde Neißeaue				
NA2	Kaltwasser, Feuerwehr	51.26836	14.95032	183	29.10.15 - 10.02.16
NA6	Deschka, Keller altes Gemeindezentrum	51.26002	15.02665	178	29.10.15 - 10.02.16
NA8	Groß Kauscha, Feuerwehr	51.24436	14.96936	184	29.10.15 - 10.02.16

einen längeren Zeitraum ohne zusätzliche Betreuung betrieben werden können. In der überwiegenden Mehrheit werden Geräte der Typen MARS-88 und MARSlite der Firma Lennartz electronic eingesetzt. Der Grundbestandteil ist jeweils eine zentrale Datenverarbeitungseinheit, in der die Messwerte digitalisiert, prozessiert und gespeichert werden. Daran angeschlossen werden ein Seismometer, welches die Bewegung des Untergrundes sehr sensibel messen kann, und eine Antenne, die für eine genaue Zeitbasis sorgt. Durch den geringen Installationsaufwand (kein Datenübertragungsanschluss erforderlich) und die unkomplizierte Handhabbarkeit sind die Stationen mobil und temporär einsetzbar. Damit kann das Offline-Stationsnetz schnell entsprechend sich aktuell ergebender seismologischer Monitoringaufgaben eingesetzt werden. Im Rahmen der durch den Seismologie-Verbund koordinierten Tätigkeit zur seismischen Überwachung des Freistaates Sachsen ergeben sich für das Offline-Stationsnetz die im Folgenden aufgeführten Arbeitsschwerpunkte.

Monitoring von induzierter Seismizität

Die Überwachung von induzierter Seismizität durch lokale seismische Stationsnetze gewinnt immer mehr an Bedeutung. Unter induzierter Seismizität versteht man das direkte Verursachen von Erdbeben durch menschlichen Eingriff. In Sachsen beobachtet man induzierte Seismizität vorwiegend im Zusammenhang mit Bergbau. Zur Überwachung seismisch gefährdeter Bereiche kommt das Offline-Stationsnetz in den Bergbaugebieten des Erzgebirges sowie den Tagebaugebieten der Lausitz zum Einsatz.

Seit 1997 ist in der Umgebung des Wismutbergbaugebietes Aue ein lokales Offline-Stationsnetz zur Überwachung des Flutungsprozesses der Grube Schlema/Alberoda installiert. Durch die Flutung der Hohlräume kommt es zu Spannungsumlagerungen im umgebenden Gestein. Bei Überschreitung der Bruchfestigkeit des Gesteins treten räumlich eng begrenzte Brüche, sogenannte Bergstöße, auf. In Koordination mit dem Messnetz der WISMUT GmbH werden die Registrierungen des Offline-Stationsnetzes für eine Regulierung des Flutungsgeschehens im Hinblick auf eine Begrenzung der induzierten seismischen Aktivität genutzt.

Ein weiteres Aufgabengebiet ergibt sich im Bereich von Tagebauen des Lausitzer Braunkohlebergbaus. Die in Kippenbereichen – sowohl noch betriebener, als auch bereits gefluteter Tagebaue – beobachteten Böschungsrutschungen bzw. Geländeeinbrüche können durch lokal installierte seismische Stationen registriert werden. Die Lokalisierung und genaue Herdparameterbestimmung dieser geotechnischen Ereignisse bzw. damit im Zusammenhang stehender induzierter seismischer Ereignisse liefern wichtige Anhaltspunkte zur Eingrenzung bruch- und rutschungsgefährdeter Bereiche.

Monitoring aktiver Erdbebencluster und seismotektonische Untersuchungen

Erdbebengebiete mit geringer seismischer Aktivität außerhalb des Detektionsbereiches des Online-Netzes können beim Einsetzen einer seismischen Aktivität mit Hilfe eines lokalen Offline-Netzes näher untersucht werden.

Durch eine gezielte Anordnung der Stationen in unmittelbarer Nähe der Erdbebenherde können sehr schwache Erdbeben erfasst und gleichzeitig wichtige Herdparameter optimal bestimmt werden.

Eine weitere Aufgabe des Offline-Stationsnetzes ist in dem Zusammenhang die Detektion von Erdbeben im Bereich tektonisch vorgeprägter Störungszonen, wie beispielsweise der Elbtalzone oder der Gera-Jáchymov-Störungszone. Die damit verbundenen seismotektonischen Untersuchungen basieren auf Langzeitbeobachtungen und erfordern deshalb eine längere Standzeit der Stationen.

Im Bereich der Elbtalzone wurde ein temporäres Messnetz installiert, nachdem es im September 2013 zu einer seismischen Aktivität nordöstlich von Pirna kam. Dabei konnten ca. 30 schwache Erdbeben registriert werden, die mit der Lausitzer Überschiebung in Zusammenhang stehen.

Ingenieurseismologische Arbeiten zur Abschätzung der seismischen Gefährdung Im Auftrag der Landestalsperrenverwaltung des Freistaates Sachsen (LTV) werden die Offline-Stationen EIU bzw. EIF (Talsperre Eibenstock) und SOS (Talsperre Sosa) betrieben.

Diese Stationen dienen in der Hauptsache dem Monitoring der dynamischen Belastung der Talsperrenmauern, hervorgerufen durch natürliche (Erdbeben) und künstliche Erschütterungen (Sprengungen). Hierbei geht es vor allem um die Einschätzung zu Standsicherheitsfragen. In der Mauer der Talsperre Dröda wurden kurzzeitig Messungen während einer Sprengung in einem nahegelegenen Steinbruch durchgeführt, um die dynamische Reaktion des Bauwerks zu studieren. Die Registrierbedingungen in Talsperrenbauwerken erlauben die Registrierung der Mikroseismizität im näheren Umfeld.

Der Abschätzung der seismischen Gefährdung dient ebenso das um die Grube Schlema/ Alberoda installierte Offline-Stationsnetz. Es misst die durch induzierte seismische Ereignisse hervorgerufenen maximalen Bodenerschütterungen.

Standortuntersuchungen und Mikrozonierung

Im Rahmen der seismischen Gefährdungsanalyse werden in Gebieten, in denen aufgrund der dichten Besiedlung bzw. der starken Industrialisierung ein erhöhtes seismisches Risiko besteht, Mikrozonierungsarbeiten durchgeführt. Diese untersuchen neben der Erdbebengefährdung auch den Einfluss der lokalen Geologie, um Zonen ähnlichen Untergrundverhaltens bei Erdbebeneinwirkung zu erfassen. Dabei werden unter anderem Untergrundeffekte an den einzelnen Stationsstandorten bestimmt. Im Zusammenhang mit Rauschuntersuchungen (Messung der natürlichen Bodenunruhe ohne zusätzliche Erschütterung infolge Erdbeben oder Sprengung) liefern diese Messungen wichtige Anhaltspunkte für die Qualität eines Stationsstandortes, was bei der Standortwahl neu zu installierender Stationen von Bedeutung ist.

Neben den vorhandenen Standorten für seismologische Stationen ist es im Bedarfsfall erforderlich, weitere Standorte zeitnah zu besetzen. Die Registrierbedingungen für die Messgeräte müssen dafür im Vorfeld bewertet werden, um eine schnelle und optimale Aufstellung vornehmen zu können.

Untersuchungen zum Einfluss von Windkraftanlagen auf seismologische Messungen

Die Installation von Windkraftanlagen kommt zunehmend in Konflikt zu seismologischen Messeinrichtungen, welche das ungestörte Monitoring der natürlichen und induzierten Seismizität zum Ziel haben.

Als günstige Installationsplätze für seismologische Stationen haben sich Standorte weitab von anthropogenen Erschütterungsquellen erwiesen, die auf ländliche Gebiete und zudem auf Standpunkte außerhalb von Flussniederungen bzw. tief gelegenen Sedimentbecken eingegrenzt sind. Dies sind aber zugleich die bevorzugten Standorte für die Errichtungen von Windkraftanlagen. Diese können zu Störungen eines permanent betriebenen seismologischen Monitorings führen, wenn sie in der Nähe seismologischer Messeinrichtungen errichtet werden.

Um den Einfluss von Windkraftanlagen auf die Registrierbedingungen seismologischer Stationen speziell im Bereich des Freistaates Sachsen messtechnisch zu erfassen, wurden Standortuntersuchungen in zwei Testgebieten mit Festgesteins- und Sedimentgesteinsuntergrund initiiert. Hierbei übernahm das Institut für Geophysik und Geoinformatik der TU Bergakademie Freiberg die Messungen an einem Standort auf Lockergestein, wofür die Umgebung im Bereich der Windkraftanlage Zodel, Gemeinde Neißeaue ausgewählt wurde. Das Institut für Geophysik und Geologie der Universität Leipzig führte Untersuchungen im Umfeld des Windparks Fraureuth-Beiersdorf ca. 11 km südlich von Zwickau durch, der sich auf Festgestein befindet. Es soll ermittelt werden, ob und bis in welche Entfernung ein Einfluss von Windkraftanlagen auf seismologische Messeinrichtungen messtechnisch nachweisbar ist, und welche Rolle unterschiedlicher Untergrund dabei spielt.

Die Messungen wurden im vierten Quartal 2015 aufgenommen. Abschließende Ergebnisse werden im nächsten Dreijahresbericht publiziert.

3.2 Thüringer Seismologisches Netz (TSN)

Das Thüringer Seismologische Netz (TSN) wurde im Jahr 2008 in Betrieb genommen. Das Institut für Geowissenschaften der Friedrich-Schiller Universität Jena und der Geologische Landesdienst der Thüringer Landesanstalt für Umwelt und Geologie (TLUG) modernisierten das bestehende lokale Überwachungsnetz und passten es den Erfordernissen einer automatischen Überwachung und Sofortinformation auf der Basis von SeisComP3 (Seismological Communication Processor) an. Dazu wurde das Stationsnetz beginnend 2010 umfangreich erweitert.

Auf der Grundlage einer bestehenden Kooperationsvereinbarung stellt die TLUG das für das seismologische Monitoring erforderliche Equipment zur Verfügung, während das Institut für Geowissenschaften der Friedrich-Schiller-Universität den Betrieb und die wissenschaftliche Auswertung übernimmt.

So kann zwischenzeitlich eine unverzügliche Information über den Ort und mögliche Auswirkungen eines Bebens an Behörden, Stauanlagenbetreiber, Medien und Öffentlichkeit erfolgen und gegebenenfalls Polizei, Feuerwehr und Katastrophenschutz alarmiert werden. Die Lage (Epizentrum) und Stärke (Magnitude) des Erdbebens werden innerhalb kurzer Zeit geortet.

Das lokale seismologische Netz erfüllt den Zweck, auch kleinere seismische Ereignisse in einem begrenzten Gebiet messen und exakt lokalisieren zu können. Die seismologischen Stationen werden rings um dieses Gebiet gruppiert, um das seismische Ereignis aus allen Richtungen zu empfangen. Dadurch kann das Hypozentrum, die Tiefe des Ereignisses, korrekt bestimmt werden. In Thüringen, wie überhaupt in Mitteldeutschland, sind die Aufstellungsmöglichkeiten für die empfindlichen seismologischen Stationen begrenzt. Die vorhandene Infrastruktur erzeugt eine hohe seismische Unruhe.

Stationsabkürzung	Standort	geogr. Breite °N	geogr. Länge °O	Höhe m (NN)	In Betrieb seit
TSN					
ABG1	Forsthaus Leinawald	50.967570	12.576250	203	22.11.2012
ANNA	St. Anna Fundgrube	50.883985	12.64365	249	25.03.2014
CHRS	Christianenhaus	51.609940	10.818610	560.0	09.05.2012
CRUX	Bergwerk Schwarze Crux	50.601950	10.792140	712	09.10.2012
GRZ1	Mausoleum Waldhaus Greiz	50.690800	12.219640	203.0	30.01.2012
HKWD	Heukewalde, Hochbehälter	50.829700	12.268110	308.0	22.05.2008
HWTS	Hohenwarte, Talsperre	50.592270	11.472230	555.0	01.11.2009
LEIB1	Leibis, Talsperre	50.576069	11.197804	480.4	19.03.2014
MEIN	Kalte Staude Meiningen, Trinkwasserhochbehälter	50.56535	10.461017	491	26.11.2014
MLFH	Mildenfurth, Kloster	50.789821	12.080908	231.7	28.06.2010
MODW	Modelwitz	50.942690	12.468440	240.0	01.09.2009

Tab. 11: Stationen des Online-Netzes (TSN)

Stationsabkürzung	Standort	geogr. Breite °N	geogr. Länge °O	Höhe m (NN)	In Betrieb seit
NEUST	Neustadt, Talsperre	51.578283	10.8643	484	01.11.2015
PLN	Plauen, Reusaer Waldhaus	50.485220	12.157330	432.0	29.04.2008
POSS	Possen	51.332670	10.866770	425.0	19.04.2010
TAUT	Tautenburg, Sternwarte	50.981610	11.710740	330.0	16.05.2008
THWA	Thüringer Wald Luisenthal, bei Talsperre Schmalwasser	50.76265	10.677133	692	19.11.2015
VITZ	Vitzeroda, Forsthaus	50.887600	10.091650	392.0	20.05.2010
WESF	Westfeld, Tagebau Schmiedefeld	50.537470	11.212300	744	12.07.2012
ZEITZ	Schloss Moritzburg Zeitz	51.05070	12.12605	158	26.11.2014
ZEU	Zeulenroda, Talsperre	50.670640	11.977130	346	17.10.2012
Windpark Fraureuth	-Beiersdorf				In Betrieb
AL06 (SXNET)	Kirchberg Beiersdorf, leeres Wohnhaus	50.680592	12.346987	339	0720.11.2015
MOB1	Freibad Neumark	50.653513	12.354718	365	0720.11.2015
MOB2	Hochbehälter Fraureuth	50.695428	12.316879	355	0720.11.2015
MOB3	Kindergarten Beiersdorf	50.678094	12.345833	337	0720.11.2015
MOB4	Hochbehälter Beiersdorf	50.670070	12.341258	384	0720.11.2015
Teststationen					
BBWF	Bergwerk Finstertal	50.73536	10.50421	400	14.05.13
BONN	Klostergut Bonnrode	51.307632	11.002678	358.1	01.04.14
SPAHL	Spahl, Wasserhochbehälter	50.652605	9.909901	441	07.04.15

Der Freistaat Thüringen wurde in einzelne, seismologisch unterschiedlich aktive Regionen unterteilt (Abb. 10). Als wichtigstes Gebiet wurde in Beachtung der DIN 4149 das Cluster 1 mit der Region Ostthüringen und Westsachsen und Cluster 4 mit der Region Vogtland/Westböhmen (Schwarmbebengebiet) auf Thüringer Seite ausgebaut. Es folgen die Cluster 3 mit der Region Nordthüringen und dem Harz, Cluster 2 mit der Region Thüringer Wald mit nördlichen und südlichen Vorland und die Cluster 5 Südwestthüringen. Mit der Inbetriebnahme einer seismologischen Station HWTS am Oberbecken der Talsperre Hohenwarte am 01. November 2009 wurde begonnen, die Thüringer Stauanlagen in das Monitoring des TSN einzubinden. Die Grundlage hierfür bildet die Thüringer Technische Anleitung Stauanlagen (Thür TA Stau). Bis zum Jahr 2012 folgten weitere seismologische Stationen im Bereich der Talsperren Zeulenroda (ZEU), Schmalwasser (THWA) und Schönbach (ABG1).

In den Jahren 2013 bis 2015 wurden die Cluster 4 Südwestthüringen und Cluster 5 Nordwestthüringen verstärkt. Die Station Kalte Staude Meiningen (MEIN) war seit dem 09. Juli 2014 im Testbetrieb und wurde am 26. November 2014 in das TSN übernommen. Im Schieberhaus der ältesten Staumauer in Thüringen, der Talsperre Neustadt im Harz, wurde am 01. September 2014 eine seismologische Station errichtet. Nach Umbaumaßnahmen wurde die Station NEUST am 01. November 2015 in das TSN eingegliedert. Außerdem kamen in den letzten 3 Jahren die Station Talsperre Leibis (LEIB1, 19. März 2014), die Station St. Anna Fundgrube (ANNA) im Wolkenburger Bergbaurevier (25. März 2014), die Station Thüringer Wald Luisenthal (THWA, 19. November 2015) und die Station Schloss Moritzburg Zeitz (ZEITZ, 26. November 2014) hinzu.

Das Thüringer Seismologische Netz weist eine weitgehende Automatisierung des Datenflusses vom Seismometer bis zur Archivierung auf. Somit ist eine automatische Überwachung in den einzelnen Regionen möglich.

Weitere Aufgaben des Thüringer Seismologischen Netzes ergeben sich historisch bedingt aus der Beobachtung von Schwarmbeben in der Region Vogtland/NW Böhmen, sowie aus der systematischen Forschung auf dem Gebiet der Seismologie. Hier wird ein Erkenntnisgewinn zu Ursachen und Charakteristik der Seismizität in den genannten Gebieten erwartet.

Alle Arbeiten, ob Gerätebeschaffung, Standortsuche oder Wartung sind darauf ausgerichtet, dass kontinuierlich und störungsfrei, qualitativ hochwertige Daten geliefert werden, um einen möglichst effektiven Datenaustausch online mit nationalen und internationalen Partnern zu sichern. Insgesamt überwachen derzeit 20 seismologische Stationen Thüringen und die angrenzenden Gebiete.

In den nächsten Jahren ist der weitere Ausbau des Stationsnetzes geplant, vor allen in Nordthüringen und Harz sowie in Südwestthüringen.

Der Freistaat Thüringen ist ein talsperrenreiches Bundesland und nach DIN 4149 gemeinsam mit Sachsen und Sachsen-Anhalt betroffen von der osttthüringisch/westsächsischen Erdbebenzone. Der Ausbau des TSN hat bezogen auf die ingenieurseismologische Bewertung der vorhandenen Talsperrenstandorte und möglicher neuer Standorte das langfristige Monitoring von seismologischen Ereignissen und die Ableitung von standortbezogenen Kennwerten zur besseren Einschätzung des Georisikos Erdbeben zum Ziel.

Die notwendige Datenerhebung wird durch die Stauanlagenbetreiber in Thüringen unterstützt.

Seismologische Station St. Anna Fundgrube (ANNA) im Wolkenburger Bergbaurevier

Nachdem in Freiberg erstmals um 1168 Silberfunde gemacht wurden, achteten die Siedler, die flussaufwärts zogen und den Wald rodeten, auf Erzlagerstätten. Am Ende des 13. Jahrhunderts, um 1280, wurden die Erzvorkommen am Ullrichs- oder Ullersberg zu Wolkenburg entdeckt. Der nötige Aufwand und die bescheidenen technischen Möglichkeiten im Mittelalter führten um 1400 jedoch zum Erliegen des Abbaus.

Beflügelt durch die reichen Silberfunde im oberen Erzgebirge begann man im 16. Jahrhundert auch in Wolkenburg, alte Gruben zu untersuchen und erzhöffige Gruben neu aufzunehmen. Nach einhundertjähriger Unterbrechung begann im Jahr 1519 die neue Blütezeit des Wolkenburger Bergbaus. Dieser Periode setzten Pest und Dreißigjähriger Krieg im Jahre 1616 ein erneutes Ende. Im 18. Jahrhundert folgte die Wiederaufnahme des Bergbaus in der Fundgrube »St. Anna«. Nach zehn Jahren schwerer Schlegelarbeit durch den steinharten Granulit war 1749 den Durchbruch zum Tagesschacht auf dem Erzgang geschafft. Bis ins Jahr 1801 lieferten die Bergwerke Silbererz an die Hüttenwerke in Freiberg.

1980, 180 Jahre nach der Einstellung der Erzförderung – übernahm die Arbeitsgemeinschaft Altbergbau & Geologie Westsachsen e.V. die Aufgabe, die verbliebenen Zeugnisse des Bergbaus zu erforschen, zu sichern und zu erhalten.

Da die Stollenanlagen (Abb. 30) abgelegen von größeren Verkehrswegen in einem ruhigen und wenig bewohnten Gebiet und am Rand des Granulitgebirges liegen, starteten Testmessungen ab dem 04. Juni 2012 für die Errichtung einer möglichen seismologische Station im Bergwerk. Zum Einsatz kam ein Breitbandseismometer von der Firma guralp systems (Abb. 31) aus England mit einer Bandbreite von 60 s bis 50 Hz. Die analogen Signale werden in einen 24 bit Digitalisier des Typs EDR 209 der Firma Earth Data umgewandelt. Die Daten der Station werden über Tage online per Funkrouter zur Bundesanstalt für Geowissenschaften und Rohstoffe nach Hannover übertragen und dort dauerhaft archiviert. Die Datenübertragung erfolgt in 3 Datenströmen zu 100, 20 und 1 Hz. Die Messstelle wurde während des Testbetriebes mehrmals versetzt und steht jetzt an einen ruhigen Standort ca. 100 m im Stollen. Die Stromversorgung übernimmt eine Solaranlage über Tage. Die Station wurde am 24.03.2014 aus dem Status der Teststation entlassen und in das Thüringer Seismologische Netz (TSN) aufgenommen. Sie läuft dort unter dem Kürzel »ANNA« – St. Anna Fundgrube Wolkenburger Bergbaurevier.

Ausstattung:

Seismometer: Guralp CMG3-ESPC Eigenperiode: 60 s Datenlogger: Earth Data EDR 209 Abtastrate: 100 Hz

Abb. 30: Wolkenburger Bergbaugebiet

Abb. 31: Seismometer Guralp CMG-3ESPC

3.3 Automatische Auswertung von Erdbeben

Für die potenziell spürbaren Beben liefert ein entsprechendes vollautomatisches System unter Nutzung der genannten 52 Stationen bereits nach wenigen Minuten die Lage des Epizentrums und die Stärke (Magnitude) des Ereignisses. Nachdem dieses vollautomatische System bereits seit November 2012 im Probebetrieb läuft, werden dessen Meldungen ab ML \geq 2.5 seit Sommer 2015 direkt auf der gemeinsamen Mitteldeutschen Erdbeben-Internetseite bei der TLUG (http://antares.thueringen.de/cadenza/seismo) veröffentlicht. Jede Meldung wird vom Dienst habenden Seismologen überprüft und geht an die beteiligten Geologischen Landesdienste. Auf diesem Weg werden nach einem Erdbeben Behörden, Medien und Öffentlichkeit unverzüglich über Ort und mögliche Auswirkungen des Bebens informiert, sodass gegebenenfalls Polizei, Feuerwehr und Katastrophenschutz alarmiert werden können.

Der große Vorzug des automatischen Systems ist seine kurze Reaktionszeit von wenigen Minuten, auch außerhalb der regulären Arbeitszeit. Grundsätzlich sind jedoch automatische Erdbebenortungen potentiell fehlerhaft, besonders bei kleineren Ereignissen an der Spürbarkeitsgrenze. Deshalb ist eine eingehende manuelle Qualitätskontrolle der automatischen Meldungen erforderlich. Besonders schwer wiegt, dass ein größerer Ortungsfehler zu deutlich fehlerhaften Magnitudenangaben führen kann. An der weiteren Verbesserung der automatischen Ortung wird gearbeitet, leider ist jedoch nicht absehbar, dass demnächst vollständig fehlerfreie automatische Ortungen aller potentiell spürbaren Erschütterungen erreicht werden. Die manuelle seismologische Kontrolle bleibt also dauerhaft erforderlich. Um diese auch über die reguläre Arbeitszeit hinaus zu erleichtern, stehen zunehmend Software-Werkzeuge zur Verfügung, die die seismologisch relevanten Informationen auf mobilen Endgeräten bereitstellen und den Seismologen einen externen Zugriff auf das zentrale Auswertesystem und damit eine eventuell erforderliche Korrektur der automatischen Meldungen ermöglichen.

Damit das automatische System die beabsichtigte Reaktionszeit von wenigen Minuten einhalten kann, müssen die Daten aller beteiligten Erdbebenstationen entsprechend schnell zur Auswertung verfügbar sein. Mittlerweile konnten die Datenanbindungen der meisten Stationen so verbessert werden, dass die Übertragungszeit geringer als 1 min ist. Lediglich 2 Stationen sind immer noch mit Telefonwählverbindungen und einem Abrufintervall von 10 min ausgestattet.

Die manuelle Auswertung umfasst weiterhin sowohl die potenziell spürbaren als auch alle kleineren Beben; sie erfolgt weiterhin am Observatorium Collm und an der Friedrich-Schiller-Universität Jena. Die zahlreichen kleineren Beben (von negativen Magnituden bis knapp unter ML = 2) sind zwar in der Regel nicht spürbar, werden aber ebenfalls akribisch erfasst, um über längere Beobachtungszeitspannen und präzise Ortungen Hinweise auf Verlauf und tektonischen Spannungszustand aktiver Störungszonen zu gewinnen.

4 Führen Erdbeben im Vogtland zu geodätisch messbaren Deformationen der Erdoberfläche?

Situation

Im Grenzgebiet der Tschechischen Republik und Mitteldeutschland, in dem u.a. das Vogtland liegt, gibt es immer wieder Erdbeben, die als Erdbebenschwärme innerhalb eines begrenzten Zeitraumes auftreten. Diese Erdbebenschwärme bestehen aus vielen Ereignissen, den Schwarmbeben. Das Institut für Planetare Geodäsie (IPG) der TU Dresden betreibt in Neustadt/Vogtland eine GPS-Station (Abb. 32). GPS (Global Positioning System – Globales Positionsbestimmungssystem) wird weltweit standardmäßig zur Beobachtung von tektonischen Plattenbewegungen genutzt, dies umfasst auch plötzliche Verschiebungen bei Erdbebenereignissen. Das führt zur Fragestellung: Verursachen die vergleichsweise schwachen Erdbeben in der Region des Vogtlandes geodätisch messbare Deformationen an der Erdoberfläche?

Am 31. Mai 2014 ereignete sich im Nordwesten Tschechischen Republik ein Erdbeben mit einer Magnitude von 4.2 auf der Richter-Skala. Das Beben war das stärkste innerhalb der im Zeitraum vom 24. Mai bis 03. August 2014 aufgetretenen Erdbebenserie. Das Epizentrum lag dabei in der Nähe von Nový Kostel, unweit der deutschen Grenze (Abb. 33). Untypisch für Erdbeben in dieser Region hatte sich bei diesen Erdbeben keine

Abb. 32: GPS-Station Neustadt, die GPS-Antenne (siehe Vergrößerung) befindet sich mittig auf dem Flachdach, links unten: Innenansicht des Geräteschranks

Abb. 33: Lageübersicht aller verwendeten GPS-Stationen. Die Datumsstationen (grün) werden durch den Internationalen GNSS Service (IGS) zur Verfügung gestellt, die regionalen GPS-Stationen (rot) sind Bestandteil des Satellitenpositionierungsdienst der deutschen Landesvermessung (SAPOS) bzw. Czech Positioning System (CZEPOS). Die GPS-Station Neustadt/Vogtland (blau) wurde durch die TU Dresden betrieben.

Schwarmbebensequenz aufgebaut. Da es jedoch eines der stärkeren Erdbeben in dieser Region war, wurde dieses Ereignis für die Untersuchung hinsichtlich erdbebenbedingter Deformationen der Erdoberfläche im Vogtland genutzt.

GPS

Das »Global Positioning System« (GPS) ist ein US-amerikanisches Satellitensystem, mit welchem eine weltweite Positionsbestimmung möglich ist. Der erste GPS-Satellit wurde 1978 gestartet. Seit Mitte der 90er-Jahre ist das System voll funktionsfähig, d.h. es befinden sich immer mindestens 24 Satelliten im Weltall.

Neben GPS gibt es noch weite Satellitennavigationssysteme, z. B. das russische GLONASS, das europäische Galileo und das chinesische BeiDou. Der Oberbegriff für alle Systeme ist »Global Navigation Satellite Systems« (GNSS). GLONASS ist seit 2011 wieder voll funktionsfähig, Galileo und BeiDou befinden sich derzeit noch im Aufbau. Auch wenn sich die Umsetzung in Details etwas unterscheiden kann, ist das Funktionsprinzip bei all diesen Systemen identisch. Deshalb wird sich im Folgenden nur auf GPS konzentriert, zumal auch die Station in Neustadt nur GPS aufzeichnen kann.

Das Grundprinzip von GPS basiert auf der Messung von Signallaufzeiten. Die GPS-Satelliten senden permanent ihre jeweilige Position und Uhrzeit aus. Von einem GPS-Empfänger werden diese Signale aufgezeichnet. Der Empfänger besitzt eine Uhr und kann so die Signallaufzeit und damit auch die Entfernung zwischen Satellit und Empfänger berechnen. Durch einen Schnitt von Kugelflächen, mit dem jeweiligen Satelliten im Mittelpunkt und der Entfernung als Radius, ergibt sich die Position des Empfängers. Theoretisch wären dafür drei Satelliten ausreichend. Allerdings sind die Uhren in den GPS-Empfängern viel zu ungenau, um die Signallaufzeit korrekt zu ermitteln (zum Vergleich: die GPS-Satelliten besitzen hochpräzise Atomuhren). Daher muss auch der Empfängeruhrfehler mitbestimmt werden. Somit ergeben sich vier Unbekannte, drei für die Position (Länge, Breite, Höhe) und eine für den Empfängeruhrfehler. Deshalb werden für eine Positionsbestimmung mittels GPS die simultanen Beobachtungen zu mindestens vier Satelliten benötigt.

GPS-Empfänger werden überwiegend für die Navigation verwendet und befinden sich beispielsweise in Navigationsgeräten und Smartphones. Mit solchen Geräten lässt sich die Position auf etwa zehn Meter genau bestimmen. Für viele wissenschaftliche und geodätische Aufgaben ist diese Genauigkeit jedoch ungenügend. Mit besserer Hardware und ausgeklügelten Auswerteverfahren ist eine Genauigkeit im Zenti- bis Millimeterbereich erreichbar.

Einer der Ansätze zur Genauigkeitssteigerung ist die relative Messung. Das bedeutet, dass mehrere GPS-Stationen parallel die GPS-Daten aufzeichnen. In der Auswertung wird dann nicht für jeden Punkt die Position separat bestimmt, sondern es werden Differenzen zwischen den Beobachtungen der GPS-Stationen gebildet. Auf diese Weise werden einige Fehlereinflüsse eliminiert bzw. stark minimiert, z. B. Abweichungen der Satellitenorbits und -uhren. Außerdem erhält man im Ergebnis zunächst keine absoluten Koordinaten der Stationen, sondern sogenannte Basislinien. Eine Basislinie entspricht dem Koordinatenunterschied zwischen zwei Stationen. Um absolute Koordinaten und somit konkrete Positionen zu erhalten, müssen die Basislinien an Punkte »angehängt« werden, deren Koordinaten sehr genau bekannt sind. Dies geschieht an Referenzstationen. Referenzstationen zeichnen permanent die Satellitensignale auf. Aufgrund der langen Zeitbasis lässt sich ihre Position sehr genau bestimmen. Zu den Koordinaten der Referenzstationen werden die Basislinien addiert und es ergeben sich die Koordinaten der gesuchten Punkte.

In diesem Zusammenhang ist der »International GNSS Service« (IGS) zu nennen. Das ist ein Datendienst, welcher weltweit Referenzstationen führt und deren Koordinaten bestimmt. Diese IGS-Stationen bilden einen Bezugsrahmen, in den sich andere Stationen mittels Basislinien »einhängen« lassen. Dieses Einhängen der Punkte in ein Netz mit Punkten hoher Genauigkeit in einem festgelegten Bezugssystem wird Datumsfestlegung genannt. Die Beobachtungsdaten der IGS-Referenzstationen sowie deren Koordinaten werden kostenfrei zur Verfügung gestellt. Auch auf nationaler Ebene gibt es solche Dienste. In Deutschland ist das der »Satellitenpositionierungsdienst der deutschen Landesvermessung« (SAPOS), welcher allerdings genau wie sein tschechisches Pendant CZEPOS nicht kostenfrei ist.

Datengrundlage

Neben den Daten der GPS-Station in Neustadt/Vogtland (NEUS) wurden auch GPS-Beobachtungen anderer Stationen genutzt. Das waren sechs SAPOS-Stationen sowie eine CZEPOS-Station. Weiterhin wurden vier IGS-Stationen genutzt (in der Realisierung IGS08). Für die Festlegung des Datums wurden nur die IGS-Stationen genutzt. Wie in Abb. 33 ersichtlich, befinden sich diese außerhalb des Wirkungsbereiches der Erdbeben im Vogtland, wodurch die Datumsfestlegung unbeeinträchtigt von den Erdbeben bleibt. Die Lage der SAPOS- und CZEPOS-Stationen ist in Abb. 34 detailliert dargestellt. Dabei handelt es sich um vier sächsische SAPOS-Stationen in Zwickau (0143), Rabenberg (0144), Bad Elster (0145) und Plauen (0148), sowie um zwei bayerische SAPOS-Stationen in Mitterteich (0283) und Hof (0295). Die CZEPOS-Station befindet sich in Karlovy Vary (CKVA). Außerdem sind in Abb. 34 die IPG-Station NEUS und die Gemeinde Nový Kostel eingezeichnet, in deren Nähe sich das Epizentrum des besagten Erdbebens befand. Die SAPOS- und CZEPOS-Stationen liegen alle im Einflussgebiet der Schwarmbeben und können demzufolge nicht als Datumsstationen genutzt werden. Sie dienen nur zur besseren Abdeckung im Untersuchungsgebiet und zum Vergleich mit NEUS. Die Zeitangaben beziehen sich auf den jeweiligen Tag des Jahres 2014 (engl. Day of Year, kurz DoY). Der 31. Mai 2014, der Tag des Erdbebens, ist DoY 151. Um eine mög-

liche erdbebenbedingte Deformation der Erdoberfläche zu detektieren, muss die Position sowohl vor dem Erdbeben als auch danach bestimmt werden. Aus diesem Grund wurden die GPS-Beobachtungen mehrerer Tage zuvor und danach in die Auswertung einbezogen. Der ausgewertete Zeitraum liegt zwischen dem 19. Mai 2014 (DoY 139) und dem 12. Juni 2014 (DoY 163), abhängig von der Datenverfügbarkeit der jeweiligen Station.

Auswertung der GPS-Beobachtungen

Die Auswertung der GPS-Beobachtungen erfolgte mit der Bernese GNSS Software unter Nutzung der am IPG entwickelten Auswertestrategie einer statischen Netzlösung. Dabei wurden voneinander unabhängige Tageslösungen berechnet. Diese ergeben sich durch Nutzung der GPS-Beobachtungen aller Stationen am jeweiligen Tag, wobei unter Verwendung von Basislinien die SPAOS/CZEPOS-Stationen sowie NEUS an die IGS08-Datumsstationen angeschlossen wurden. Im Ergebnis erhielt man für jede Station und pro Tag die geschätzten Koordinaten (Nordwert, Ostwert, Höhe). Mögliche erdbebenbedingte Deformationen lassen sich in einer signifikanten Änderung des Nord- und Ostwertes (horizontal) sowie der Höhe (vertikal) erkennen. Da für eine Detektion von Deformationen demzufolge nur die relativen Positionsänderungen von Bedeutung sind, wurde jeweils die erste Tageslösung (DoY 139) von der aktuellen Tageslösung subtrahiert.

Ergebnisse und Interpretation

Anhand von Abb. 35 wird ersichtlich, dass die Änderung der ermittelten Höhenwerte deutlich größer ausfallen als die Änderung der Lagewerte. Während die Veränderungen des Nord- und Ostwertes größtenteils im Bereich von $\pm 2,5$ mm liegen, beträgt dieser bei der Höhe ± 5 mm. Vereinzelt gibt es auch etwas größere Positionsänderungen. Besonders auffällig sind hierbei die großen Höhenschwankungen von NEUS. Die Ursache liegt aber höchstwahrscheinlich an dem erneuerten Dach, auf dem die GPS-Antenne montiert ist, was ein erhöhtes Auftreten von Mehrwege-Effekten zur Folge hat.

Am 31. Mai 2014 (DoY 151) sowie kurz davor und kurz danach sind keine Auffälligkeiten zu sehen, die auf ein Erdbeben hinweisen könnten. Das gilt sowohl für NEUS als auch für die anderen Stationen. Die jeweils gemittelten Werte vor und nach dem Erdbeben unterscheiden sich maximal um 1 bis 2 mm, wobei keine Tendenzen erkennbar sind.

Schlussfolgerung

Die Wiederholgenauigkeit für den Nord- und Ostwert beträgt jeweils 1,1 mm, für die Höhe 2,5 mm. Somit spiegeln die Positionsänderungen die Genauigkeit der GPS-Messungen wider. Sie können nicht als Deformationen infolge von Erdbeben interpretiert werden. Es ist zu schlussfolgern, dass die eventuellen Deformationen durch das Erdbeben vom 31. Mai 2014 an den untersuchten Stationen mit GPS nicht detektierbar sind und demzufolge kleiner als die Messgenauigkeit sein müssen.

Abb. 35: Änderung der ermittelten Koordinaten aller Stationen innerhalb des Beobachtungszeitraumes, unterteilt nach den Änderungen der Nord-, Ost- und Höhenkomponenten. Dabei wurde von jeder Tageslösung die erste Tageslösung (DoY 139) subtrahiert. Der Zeitpunkt des Erdbebens ist durch die senkrechte rote Linie markiert.

Begriffserklärungen

Anthropogen Automatische Auswertung	vom Menschen erzeugt, verursacht Bei der automatischen Auswertung werden die Signale der seismischen Messstationen kontinuierlich ausgewertet und bei Beben die Herdkoordinaten ermittelt. In Mittel- deutschland wird das automatische Ortungssystem <i>¬</i> SeisComp3 verwendet. Auf Grund der ausschließlich technischen Auswertung sind Fehlbestimmungen nicht ausgeschlossen. Daher müssen die Ergebnisse durch manuelle Auswertung eines er- fahrenen Seismologen bestätigt werden.
Bodenunruhe, mikroseismisch	mehr oder weniger quasistationäre relativ kurzperiodische Bodenbewegung, die vorwie- gend durch die Tätigkeit des Menschen wie Industrie und Verkehr hervorgerufen wird (auch als Rauschen bezeichnet), stört die seismischen Aufzeichnungen
Cluster	eine Anzahl von gleichartigen Ereignissen, die räumlich oder zeitlich eng beieinander liegen
EMS	Europäische Makroseismische Skala, 1998 eingeführt 🧖 Intensität
Epizentralintensität 10	maximale Schütterwirkung an der Erdoberfläche
Epizentralentfernung D	Entfernung eines Punktes der Erdoberfläche vom 🗷 Epizentrum
Epizentrum	senkrechte Projektion der Lage des 2 Hypozentrums auf die Erdoberfläche
Erdbebengefährdung	statistische ermittelte Wahrscheinlichkeit für das Auftreten eines Erdbebens einer
	hestimmten Stärke
Erdbebenkatalog	Zusammenstellung von Erdbeben, die nach bestimmten Gesichtspunkten (z. B. Fühlbarkeit, Schadenswirkungen, Magnitude, Region) für Einzelaussagen und statistische Bearbei- tung ausgewählt worden sind. Unter regionalen Gesichtspunkten gibt es u.a. den Katalog für Deutschland einschließlich seiner Randgebiete sowie den für das Vogtland
Erdbebenschwarm	Er besteht aus vielen Ereignissen, den ↗ Schwarmbeben. Sie ereignen sich innerhalb einer kurzen Zeitspanne und die Herde konzentrieren sich auf ein kleines Volumen. Die Mehrzahl von ihnen ist sich ähnlich bezüglich des Herdvorgangs. Das energiestärkste, ↗ Hauptbeben, hebt sich wenig von denen mit vergleichbarer Energie ab.
Erdbebenserie	Das ist eine Folge von Erdbeben, die im zeitlichen Zusammenhang mit einem A Hauptbeben steht. Zu ihr gehören vergleichsweise wenige A Vorbeben, das A Hauptbeben und viele A Nachbeben. Im Gegensatz zum A Erdbebenschwarm ist die Magnitude des Hauptbebens deutlich größer als die der begleitenden Beben.
Erdbebenzone	Gebiet, in dem sich Erdbeben besonders konzentrieren. Weltweite Hauptzonen sind die zirkumpazifische, mediterran-transasiatische und mittelozeanische Zone.
GRSN	German Regional Seismological Network (Deutsches Regionalnetz seismologischer Breit- bandstationen)
Hauptbeben	stärkstes Erdbeben einer 🥕 Erdbebenserie
Herddaten	Angaben zur Zeit (🕫 Herdzeit), zum Ort (Koordinaten des 🧖 Epizentrums), zur Tiefe (🍠
	Herdtiefe) des ∧ Hypozentrums und zur Energie (∧ Magnitude oder/und ∧ Moment)
	eines seismischen Ereignisses
Herdtiefe	Flachbeben (bis 70 km tief), mitteltiefen Beben (zwischen 70 und 300 km) und Tiefbe- ben (tiefer als 300 km)

Herdzeit	bei natürlichen Erdbeben nur nachträglich bestimmbarer Beginn des Herdprozesses, bei Sprengungen und Explosionen der direkt messbare Zeitpunkt der Auslösung
Hypozentrum	räumliche Lage des punktförmig angenommenen Erdbebenherdes, wird mit Hilfe der
Intensität	heschreiht wie Erdhehen durch Menschen wahrgenommen oder sich auf Gehäude und
intensitat	Natur ausgewirkt haben. Diese Einschätzung ist subjektiv Teilobiektivierung erfolgt
	durch die Einordnung in eine Z Intensitätsskala
Intoncitäteekolo	uuren uit Einorunung in eine Z Intersitätsskala.
Intensitatsskala	 ✓ EMS-Skala
Magnitude	von Charles Richter 1935 (<i>P</i> Richter-Skala) eingeführt. Wird aus der gemessenen Erschüt- terungsamplitude berechnet. Ursprünglich für relativ nahe Beben definiert. Für Ent- fernungen bis 1000 km wird eine sogenannte Lokalmagnitude (ML) bestimmt. Die Magnitude steht in einer Beziehung zur seismischen Energie, die bei einem Erdbeben freigesetzt wird.
Makroseismik	Sammlung und Bewertung der vom Menschen gefühlten Wirkungen eines Erdbebens und
	der sichtbaren Auswirkungen auf Gebäude und Natur, da ohne instrumentelle Grund- lage subjektiv beeinflusst.
MEZ	Mitteleuropäische Zeit = ↗ UTC + 1 Stunde
MESZ	Mitteleuropäische Sommerzeit = ↗ UTC + 2 Stunden
Mikroseismik	(1) Im Gegensatz zur Z Makroseismik alle Methoden, die auf der instrumentellen Aufzeich-
	nung von Erdbeben beruhen. (2) Unruhe, die meteorologisch bedingt ist und ihren Ursprung nahe der Grenze von Meer zu Land hat, relativ langperiodisch.
Moment, seismisches	Produkt aus der Scherfestigkeit des Gesteins, in dem das Erdbeben stattfindet, der Größe
	der Bruchfläche des Erdbebens und der mittleren Verschiebung entlang der Bruchflä-
	che. Es ist ein Maß für die Bebenstärke.
Monitoring	ständige Beobachtung
MSK	In Europa weit verbreitete Skala zur Klassifizierung von beobachteten 2 Intensitäten 1964
	von Medwediev (Moskau). Sponheuer (Jena) und Karnik (Prag) veröffentlicht
Nachhehen	schwächere Erdheben, das sich in einer Z Erdhebenserie nach dem Hauntheben ereignen
Baumwellen	sind elastische (seismische) Wellen die sich durch das Erdinnere his in heliehige Tiefen
huummenen	ausbreiten. Sie können als Kompressionswellen (P-Welle oder Longitudinalwelle – breiten sich im Vergleich zu anderen Wellen am schnellsten aus, die Bodenteilchen werden in Ausbreitungsrichtung der Welle bewegt) oder als Scherwellen (S-Welle oder
	Transversalwelle, die Bodenteilchen schwingen senkrecht zur Ausbreitungsrichtung der Welle) auftreten. Im Gegensatz zu Raumwellen breiten sich Oberflächenwellen immer entlang der Erdoberfläche aus und klingen mit der Tiefe ab.
Richter-Skala	für Erdbeben, basierend auf Definition der A Magnitude durch Charles Richter. Ganz nahe schwache in Herdnähe beobachtete Beben können negative Magnituden haben. Für
	die stärksten Beben, die nur sehr selten an wenigen Stellen der Erde auftreten, wurden
Schüttergehiet	Fläche in der ein Reben gesnürt worden ist
Schütterredius	mittlerer Dedius des a Sebüttergebietes
Schutterradius	
Schwarmoeden	
SeisComp3	»Seismological Communication Processor« (»Erdbebenmeldeanlage«), Softwarepaket des
	Helmholtz-Zentrums Geoforschungszentrum Potsdam. Durch den modularen Aufbau
	der Software kann sie viele Teilaufgaben bei der Erfassung und Uberwachung der
	Erdbebentätigkeit übernehmen, z. B. Erfassung, Speicherung und Bereitstellung der
	kontinuierlichen elektronischen Seismogramme an der Erdbebenstation, zeitnahe
	Ubertragung der elektronischen Seismogramme ins Leipziger Datenzentrum, Weiter-
	gabe der elektronischen Seismogramme an weitere Datenzentren, automatische Er-
	kennung von Erdbeben (Detektion) und deren Ortung, manuelle Nachauswertung,
	automatische Alarmierung ausgewählter Erdbeben, z. B. per E-Mail und SMS, Archivie-
	rung der kontinuierlichen elektronischen Seismogramme sowie der automatischen und
	manuellen Auswerteergebnisse.

Seismik	Verfahren zur Feststellung von Form, Lage und Eigenschaften geologischer Körper (bevor- zugt Lagerstätten, Baugrund) mit künstlich angeregten elastischen Wellen (durch
Seismisches/seismologisches Netz	Sprengung, Schlag, Vibration); häufig auch als Sprengseismik bezeichnet mehrere ↗ seismische Stationen, die meist an mehreren Orten für ein gemeinsames For- schungs- bzw. Beobachtungsziel betrieben werden
Seismische/seismologische Station	Messstelle zur Aufzeichnung von natürlichen Erderschütterungen
Seismizität	Bezeichnung für die Erdbebentätigkeit in Raum, Zeit und nach freigesetzter Energie, meist auf ein bestimmtes Gebiet bezogen benutzt
Seismograf	Messgerät zur Registrierung von Bodenbewegungen. Er besteht (1) aus dem ⊿ Seismome- ter und (2) dem Aufzeichnungssystem in Form einer Anzeige und/oder Speicherung des Signals.
Seismogramm	analoge oder digitale Aufzeichnung der Bodenbewegung, erhalten von einem ↗ Seismo- grafen, als Funktion der Zeit.
Seismologie	(griech. seismos = Erderschütterung): Erdbebenkunde; Wissenschaft von Erdbeben; Teil- gebiet der Geophysik
Seismometer	bestehend aus (1) einem seismischen Sensor, der auf die Bodenbewegung reagiert und (2) einem Wandler, der diese Reaktion in ein Signal für die Aufzeichnung transformiert
Störung	Trennfuge im Gesteinsverband, an der eine Verstellung angrenzender Schollen stattgefun- den hat
SXNET	seismologisches Sachsennetz mit Stationen von Sachsen-Anhalt
TSN	Thüringer Seismologisches Netz
UTC	(Abkürzung für engl. Universal Time Coordinated = »Koordinierte Weltzeit«): früher GMT (Greenwich Mean Time = »mittlere Greenwich-Zeit«); Sie ist auf den Nullmeridian, der durch Greenwich verläuft, bezogen. Koordinierung bedeutet, dass bei Notwendigkeit Schaltsekunden eingefügt werden. UTC ↗ MEZ -1 Stunde
Vorbeben	schwächere Erdbeben, die sich in einer 🥕 Erdbebenserie vor dem Hauptbeben ereignen

Literatur

AUTORENKOLLEKTIV (1996): Seismologische Übersichtskarte des Freistaates Sachsen 1: 400.000 – Landesvermessungsamt, Dresden.

AUTORENKOLLEKTIV (2007): Erdbebenbeobachtung im Freistaat Sachsen: Dreijahresbericht 2004 – 2006; (Materialien zur Geologie). – Hrsg. Landesamt für Umwelt und Geologie, Dresden, Freiberg.

AUTORENKOLLEKTIV (2011): Erdbebenbeobachtung im Freistaat Sachsen: Dreijahresbericht 2007 – 2009; (Materialien zur Geologie). – Hrsg. Landesamt für Umwelt, Landwirtschaft und Geologie, Dresden, Freiberg.

AUTORENKOLLEKTIV (2013): Erdbebenbeobachtung im Freistaat Sachsen: Dreijahresbericht 2010 – 2012; (Materialien zur Geologie). – Hrsg. Landesamt für Umwelt, Landwirtschaft und Geologie, Dresden, Freiberg.

DIN 4149 (2005): Bauten in deutschen Erdbebengebieten; Lastannahmen, Bemessung und Ausführung üblicher Hochbauten. – Hrsg. Beuth Verlag: 82 S., Berlin.

GRÜNTHAL, G. (Ed.) (1998): European Macroseismic Scale. – Cahiers du Centre Européen de Géodynamique et de Séismologie, Bd. 15: 99 S.; Luxembourg.

GRÜNTHAL, G. (2004): Erdbeben und Erdbebengefährdung in Deutschland sowie im europäischen Kontext. – Geographie und Schule, 151: 14 – 23; Hallbergmoos.

HURTIG, E.& STILLER, H. (1984): Erdbeben und Erdbebengefährdung – Akademie-Verlag, 328 S., Berlin.

KANAMORI, H. et al. (1993): Determination of earthquake energy release and ML using TERRAscope. – BSSA 83, 2: 330 – 346; Pasadena, California.

LEYDECKER, G. (2011): Erdbebenkatalog für Deutschland mit Randgebieten für die Jahre 800 bis 2008.- Geologisches Jahrbuch, Reihe E, Heft 59; Hannover (Bundesanstalt für Geowissenschaften und Rohstoffe).

NEUMANN, W.; JACOBS, F. & TITTEL, B. (1986): Erdbeben. – Hrsg. Aulis Verlag Deubner & Co. KG, Köln.

Thüringer Technische Anleitung Stauanlagen (ThürTA-Stau:2005 – 06)/Thüringer Ministerium für Landwirtschaft, Naturschutz und Umwelt, Abteilung Wasser, Boden, Altlasten, Referat Gewässerlandschaft, Wasserbau: mit Anlage: Bericht zur Einführung der DIN 19700 T10 – 15:2004 – 07; Beiblatt: Dienstanweisung vom 25.05.2005 zur Wahrnehmung der Aufsicht über die Stauanlagen. – ber. u. erg. Fass. 2006 – 08. – Erfurt, 2005. – 129 S.

Fragebogen zur Erdbebenbeobachtung

Der Fragebogen kann zur Meldung von Erdbeben verwendet und an eine der oben aufgeführten Institutionen gesendet werden. Dieser Fragebogen erfasst Angaben über die Auswirkungen eines Erdbebens. Bitte teilen Sie mit, was Sie bemerkt haben und gegebenenfalls, was andere in Ihrer Nähe bemerkt haben, z. B. im selben Gebäude oder in der Nachbarschaft. Berücksichtigen Sie jedoch keine Auswirkungen von anderen Orten und keine Auswirkungen, über die Sie in den Nachrichten gelesen oder gehört haben. Auch wenn Sie das Erdbeben nicht wahrgenommen haben, ist dies eine wichtige Information. Das Ausfüllen des Fragebogens ist freiwillig. Es werden keine personenbezogenen Daten erfasst. Zur Beantwortung benötigen Sie ca. 4 Minuten.

SEISMOLOGIE-VERBUND MITTELDEUTSCHLAND

Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie Pillnitzer Platz 3 D1326 Dresden	Geophysikalisches Observatorium Collm der Universität Leipzig 04779 Wermsdorf	Observatorium Berggießhübel der TU Bergakademie Freiberg Giesensteiner Str. 8 01816 Berggießhübel	Institut für Geowissenschaften Universität Jena Burgweg 11 07749 Jena	Thüringer Landesanstalt für Umwelt und Geologie Göschwitzer Str. 41 07745 Jena			
Datum des Erdbeben	s: [] Uhrzeit: []				
Haben Sie das Erdbel Ja – Bitte fülle Nein – Bitte fülle	ben wahrgenommen? en Sie alle Abschnitte a en Sie nur Abschnitt A a	us aus					
Abschnitt A – Aufent	haltsort						
1. Wo befanden Sie	sich zum Zeitpunkt de	es Erdbebens?					
Adresse (Postleitzahl,	Ort, evtl. Ortsteil, Stra	ße, Hausnummer, ggf. Lar	nd)				
Im Freien In einem stehend	en Fahrzeug	In einem Gebäude; Wenr In einem fahrenden Fahrz	i ja, in welchem Stoc zeug Sonstige	kwerk? s			
2. Was taten Sie?							
 Sitzen / Liegen Schlafen und nich 	t erwacht	Stehen / In Bewegung Schlafen und erwacht					
3. Haben andere Pe	rsonen in der Nähe da	ıs Erdbeben wahrgenomr	nen?				
 Niemand bemerkte es Wenige oder einige Personen bemerkten es (mehr als 50 %) Viele Personen bemerkten es (20 % bis 50 %) Die meisten Personen bemerkten es (50 %) Ich weiß nicht, ob andere Personen es bemerk haben / Es war niemand in der Nähe 							
Abschnitt B – Auswir	kungen auf Menschen						
4. Was beschreibt I	hre Wahrnehmungen a	am besten?					
 Nichts wahrgenon Geräusch gehört, keine Erschütteru Sehr schwache Erst 	nmen aber ng gespürt schütterung	 Schwacht Mäßig sta Starke Erz Sehr start 	e Erschütterung arke Erschütterung schütterung ke Erschütterung				
5. Wie haben Sie re	agiert?						
Keine ReaktionLeicht erschrockenSehr schwache ReaktionSehr erschrockenSchwache ReaktionPanik							
6. Ist jemand in Ihro	er Nähe aus Angst ins	Freie gelaufen?					
 Niemand Wenige oder einig Viele (20 % bis 50 	 Niemand Wenige oder einige (weniger als 20 %) Viele (20 % bis 50 %) 						
7. War es schwierig	zu stehen oder gehen	?					
🗌 Nein	🗌 Ja 📃	Ich weiß nicht					

8. Haben Sie Folgendes bemerkt?

	Nein	Sehr gering / Einzelne	Gering / Wenige	Mäßig / Einige	Stark / Viele	Sehr stark / Die meis- ten	Ich weiß nicht
Fenster / Türen klapperten							
Geschirr oder andere Gegenstände klapperten							
Gegenstände pendelten							
Türen schlugen auf und zu							
Bilder wurden verschoben							
Bilder fielen von der Wand							
Kleine Gegenstände wurden verschoben oder fielen um							
Bücher oder andere Gegenstände fielen aus Regalen o.ä.							
Möbel wurden verschoben							
Möbel fielen um							

9. Haben Sie die folgenden Gebäudeschäden festgestellt?

	Nein	Sehr gering / Einzelne	Gering / Wenige	Mäßig / Einige	Stark / Viele	Sehr stark / Die meis- ten	Ich weiß nicht
Risse im Innenputz							
Herabgefallener Wand- oder Deckenputz							
Herabgefallene Deckenverkleidung / Lampen							
Risse in Außenwänden							
Gesprungene oder zerbrochene Fenster							
Beschädigte Schornsteine							
 Maderstein							
11. Haben Sie Schäden an frei stehenden	Mauer	n (Gartei	n, Feld) c	oder Ähr	lichem	festgestell	t?
Nein Sehr gering / Einzelne] Gerir	ng / Wen	ige [_ Mäßi	g / Einig	e	
Stark / Viele Sehr stark / Die meisten Ich weiß nicht							
12. Haben Sie weitere Hinweise zu den Auswirkungen des Erdbebens, die nützlich sein könnten?							
Stand November 2013. Arbeitskreis Seismologische Physik des Erdkörpers (FKPE). Auf Grundlage des "Eartho "Macroseismology".	Auswer quake Qu	tung der estionaire'	Arbeitsgru ″der Europ	ıppe Seisr ean Seism	nologie o ological C	des Forschur ommission W	igskollegiums ′orking Group

Herausgeber: Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie Pillnitzer Platz 3, 01326 Dresden Telefon: + 49 351 2612-0 Telefax: + 49 351 2612-1099 E-Mail: Ifulg@smul.sachsen.de www.smul.sachsen.de/lfulg Redaktion: Brunhild Witthauer Abteilung Geologie/Referat Geologische Kartierung, Geophysik Telefon: + 49 3731 294-1217 Telefax: + 49 3731 294-1099 E-Mail: brunhild.witthauer@smul.sachsen.de Autoren: Petra Buchholz, Sigward Funke, Siegfried Wendt Universität Leipzig, Institut für Geophysik und Geologie Falk Hänel, Reinhard Mittag, Elke Novak TU Bergakademie Freiberg, Institut für Geophysik und Geoinformatik Thomas Burghardt, Dirk Schönwald Friedrich-Schiller Universität Jena, Institut für Geowissenschaften Peter Busch, Lutz Eberlein, Martin Horwath, Ludwig Schröder . TU Dresden, Institut für Planetare Geodäsie Ivo Rappsilber Landesamt für Geologie und Bergwesen Sachsen-Anhalt, Abteilung Geologischer Dienst Ina Pustal Thüringer Landesanstalt für Umwelt und Geologie, Abteilung Geologischer Landesdienst, Boden, Altlasten Ottomar Krentz, Brunhild Witthauer Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, Abteilung Geologie Kartographie: Astrid Engelhardt, Bärbel Schmidt Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, Abteilung Geologie Titel: Wahrnehmungsorte und makroseismische Bewertung des Bebens bei Gröbers vom 16. April 2015 Gestaltung und Satz: Sandstein Kommunikation GmbH Druck: SDV Direct World GmbH Redaktionsschluss: 30.11.2016 Auflage: 600 Exemplare Papier: gedruckt auf 100 % Recycling-Papier Bezug: Diese Druckschrift kann kostenfrei bezogen werden bei: Zentraler Broschürenversand der Sächsischen Staatsregierung Hammerweg 30, 01127 Dresden Telefon: + 49 351 2103-672 Telefax: + 49 351 2103-681 E-Mail: publikationen@sachsen.de www.publikationen.sachsen.de

Verteilerhinweis

Diese Informationsschrift wird von der Sächsischen Staatsregierung im Rahmen ihrer verfassungsmäßigen Verpflichtung zur Information der Öffentlichkeit herausgegeben. Sie darf weder von Parteien noch von deren Kandidaten oder Helfern im Zeitraum von sechs Monaten vor einer Wahl zum Zwecke der Wahlwerbung verwendet werden. Dies gilt für alle Wahlen.

Missbräuchlich ist insbesondere die Verteilung auf Wahlveranstaltungen, an Informationsständen der Parteien sowie das Einlegen, Aufdrucken oder Aufkleben parteipolitischer Informationen oder Werbemittel. Untersagt ist auch die Weitergabe an Dritte zur Verwendung bei der Wahlwerbung. Auch ohne zeitlichen Bezug zu einer bevorstehenden Wahl darf die vorliegende Druckschrift nicht so verwendet werden, dass dies als Parteinahme des Herausgebers zugunsten einzelner politischer Gruppen verstanden werden könnte.

Diese Beschränkungen gelten unabhängig vom Vertriebsweg, also unabhängig davon, auf welchem Wege und in welcher Anzahl diese Informationsschrift dem Empfänger zugegangen ist. Erlaubt ist jedoch den Parteien, diese Informationsschrift zur Unterrichtung ihrer Mitglieder zu verwenden.