Jahresbericht der unabhängigen

Jahresbericht der unabhängigen Messstelle (2015)

Emissions- und Immissionsüberwachung sowie sanierungsbegleitende behördliche Kontrollmessungen für die Standorte der Wismut GmbH

Mai 2016

Einleitung

1.1 Rechtliche Grundlagen

Die Überwachung der auf sächsischem Territorium gelegenen Standorte der WISMUT GmbH beruht auf den folgenden rechtlichen Grundlagen:

- § 118 Abs. 3 StrlSchV i. V. m. § 48 Abs. 1, 2 und 4 StrlSchV
- Richtlinie zur Emissions-Immissionsüberwachung bei bergbaulichen Tätigkeiten (REI-Bergbau), übergeben vom BMU mit Schreiben v. 13.08.1997, Az. BMU RS II 7 - 15013/5 und SMU 44a-4632.01/4.
- Anordnung der Durchführung von Programmen zur Überwachung der Umweltradioaktivität in den Sanierungsbetrieben (jetzt Niederlassungen) der Wismut GmbH auf dem Territorium des Freistaates Sachsen v. 27.09.1996, Az. LfUG 44-4686.30/4 sowie laufende Aktualisierungen.
- Behördliches Kontrollprogramm zum Basisprogramm der Wismut GmbH für das Jahr 1998 v. 04.02.1998 mit Änderung v. 15.04.1998, Az. U2-4686.30/2 sowie laufende Aktualisierungen.

Speziell für den Standort Schlema-Alberoda:

- Strahlenschutzgenehmigung Nr. 53-4691.41/W/0416/14/0 v. 01.12.2014 zur Abgabe radioaktiver Auswürfe für das Jahr 2015 am Standort Schlema-Alberoda.
- Strahlenschutzgenehmigung Nr. 44-4691.41/W/049/01 v. 14.11.2001 zum Umgang mit radioaktiven Stoffen beim "Betrieb der Wasserbehandlungsanlage Schlema-Alberoda mit einem Durchsatz von maximal 1000 m³/h und Einleitung des behandelten Wassers in die Zwickauer Mulde" in Verbindung mit Änderungsgenehmigungen:
 - Nr. 25-4691.41/W/0112/97/18 v. 17.02.2006,
 - Nr. 25-4691.41/W/0112/97/20 v. 21.12.2006 (Aufhebung der Befristung),
 - Nr. 25-4691.41/W/0112/97/21 v. 07.05.2007,
 - Nr. 25-4691.41/W/0112/97/22 v. 20.08.2007,
 - Nr. 53-4691.41/W/0112/97/24 v. 27.06.2012.
 - Nr. 53-4691.41/W/0112/97/25 v. 18.10.2013,
 - Nr. 53-4691.41/W/0112/97/26 v. 03.07.2014.
- Strahlenschutzgenehmigung Nr. 25-4691.41/W/0320//03/0 v. 14.05.2004 zum Umgang mit radioaktiven Stoffen beim Vorhaben "Errichten und Betreiben des Verwahrstandortes Halde 371/I, Becken 1b der Niederlassung Aue" der Wismut GmbH in Verbindung mit der Änderungsgenehmigung:
 - Nr. 25-4691.41/W/0320/03/2 v. 10.04.2006 (Einlagerung von Big Bags in Becken 1b, Verwahrabschnitt 4)
- Strahlenschutzgenehmigung Nr. 25-4691.42/W/0329/04/0 v. 23.08.2004 zum Umgang mit radioaktiven Stoffen beim Vorhaben "Verarbeitung der Rückstände aus der passiv/biologischen Wasserbehandlungsanlage (Wetland) Pöhla in der Wasserbehandlungsanlage Schlema-Alberoda" der Niederlassung Aue der Wismut GmbH in Verbindung mit Änderungsgenehmigungen:
 - Nr. 25-4691.42/W/0329/04/2 v. 21.12.2006.
 - Nr. 25-4691.42/W/0329/04/3 v. 20.12.2007,
 - Nr. 54-4691.42/W/0329/04/4 v. 23.12.2009,
 - Nr. 54-4691.42/W/0329/04/5 v. 08.06.2011,
 - Nr. 53-4691.42/W/0329/04/6 v. 19.12.2013,
 - Nr. 53-4691.42/W/0329/04/7 v. 26.06.2014,

- Nr. 53-4691.42/W/0329/04/8 v. 09.12.2014.
- Strahlenschutzgenehmigung Nr. 25-4691.41/W/0357/06/0 v. 05.09.2006 zum Verkehr mit radioaktiven Stoffen beim Vorhaben "Verarbeitung der Rückstände der Wasserbehandlungsanlage (WBA) Pöhla in der WBA Schlema-Alberoda Niederlassung Aue".
- Strahlenschutzgenehmigung Nr. 25-4691.41/W/0377/08/0 v. 05.05.2008 zum Verkehr mit radioaktiven Stoffen beim Vorhaben "Errichten und Betreiben einer Anlage zur Behandlung der Sickerwässer der Halde 371/I mittels Ionenaustauschern in den Räumen der Wasserbehandlungsanlage Schlema-Alberoda".
- Strahlenschutzgenehmigung Nr. 54-4691.41/W/0383/08/0 v. 19.01.2009 zum Verkehr mit radioaktiven Stoffen beim Vorhaben "Verarbeiten der Rückstände aus der Anlage zur Behandlung der Sickerwässer der Halde 371/I in der Wasserbehandlungsanlage Schlema-Alberoda".

Tabelle 1: Emissionsstellen und genehmigte Abgabe flüssiger radioaktiver Auswürfe am Standort Schlema-Alberoda

	maximale Abgabewerte											
Einleitstelle	Uran _{nat} (kg/a)	Uran _{nat} (mg/l) ¹⁾	Ra-226 (MBq/a)	Ra-226 (Bq/l) ¹⁾								
m-102 ²⁾	140	5,5	7	0,30								
m-108X ²⁾	420	2,0	21	0,45								
m-042A ²⁾	89	6,8	6	0,46								
m-031A ²⁾	370	2,5	7,5	0,20								
m-585 ²⁾	160	0,5	36	0,40								
m-150 ²⁾	700	3,2	35	0,40								
m-555 ³)	5300	0,5	4200	0,4								

¹⁾ Die genehmigten Maximalwerte gelten als eingehalten, wenn 4 der letzten 5 Messungen den Tabellenwert nicht überschreiten und kein Einzelergebnis den genehmigten Maximalwert um mehr als 50 % überschreitet.

Tabelle 2: Genehmigte Maximalwerte¹⁾ für feste radioaktive Auswürfe mit Einlagerung in die Halde 371/l und in die Halde 309

Materialart bzw. Herkunft	Maximalmenge (t)
Bergematerial aus bergmännischer Sanierungstätigkeit	1500
Bohrklein und Bohrkerne Bohrtätigkeit	200

¹⁾ It. Strahlenschutzgenehmigung Nr. 53-4691.41/W/0416/14/0 v. 01.12.2014

²⁾ It. Strahlenschutzgenehmigung Nr. 53-4691.41/W/0416/14/0 v. 01.12.2014

³⁾ It. Strahlenschutzgenehmigung Nr. 25-4691.41/W/0112/97/18 v. 17.02.2006

Tabelle 3: Genehmigte Abgabewerte für gas- und aerosolförmige Auswürfe am Standort Schlema-Alberoda

Auswurfpunkt	maximale Abgabewerte							
	Radon (TBq)	LLA (MBq)						
Schacht 382 1)	120	2,0						
WBA Schlema 2)	4,0 3)/0,047 4)	-						

¹⁾ It. Strahlenschutzgenehmigung Nr. 53-4691.41/W/0410/13/0 v. 13.11.2013

Speziell für den Standort Pöhla:

- Genehmigung Nr. 25-4691.42/W/0294/03/0 zum Verkehr mit radioaktiven Stoffen beim Betreiben (Probebetrieb) einer Anlage zur passiv/biologischen Behandlung von Grubenwasser der Grube Pöhla (Constructed Wetland) der Niederlassung Aue, in Verbindung mit den Änderungsgenehmigungen:
 - Nr.25-4691.42/W/0294/03/1 v. 05.04.2004,
 - Nr.25-4691.42/W/0294/03/2 v. 04.07.2006,
 - Nr.25-4691.42/W/0294/03/3 v. 20.12.2007,
 - Nr.54-4691.42/W/0294/03/4 v. 12.08.2009,
 - Nr.54-4691.42/W/0294/03/5 v. 23.12.2009
 - Nr.53-4691.42/W/0294/03/6 v. 27.12.2010,
 - Nr.54-4691.42/W/0294/03/7 v. 29.06.2012,
 - Nr.53-4691.42/W/0294/03/8 v. 19.12.2013,
 - Nr.53-4691.42/W/0294/03/9 v. 27.06.2014,
 - Nr.53-4691.42/W/0294/03/10 v. 10.12.2014.
- Genehmigung Nr. 25-4691.42/W/0399/11/0 vom 14.02.2012 zum Verkehr mit radioaktiven Stoffen beim Vorhaben "Umbau und Betreiben der Wasserbehandlungsanlage (WBA) Pöhla".
- Strahlenschutzgenehmigung Nr. 53-4691.42/W/0411/14/0 v. 27.03.2014 zum Verkehr mit radioaktiven Stoffen beim Vorhaben "Rückbau der Anlage zur passiv-biologischen Behandlung von Grubenwasser der Grube Pöhla (PBA Pöhla) am Standort Pöhla der Wismut GmbH".

Tabelle 4: Einleitstellen und genehmigte Abgabewerte für Abwässer des Standortes Pöhla

	maximale Abgabewerte						
Einleitstelle	Uran _{nat} (mg/l)	Ra-226 (Bq/l)					
m-222 ¹⁾	0,20	0,30					
m-112 ²⁾	0,20	0,30					

¹⁾ It. Genehmigung Nr.25-4691.42/W/0294/03/1 v. 05.04.2004

²⁾ It. Strahlenschutzgenehmigung Nr. 44-4691.44/W/049/01 v. 14.11.2001

³⁾ aus dem Bereich der WBA lt. Änderungsgenehmigung 53-4691.41/W/0112/97/26 v. 03.07.2014

⁴⁾ aus dem Verwahrort der Immobilisate aus der WBA

²⁾ It. Genehmigung Nr.25-4691.42/W/0399/11/0 v. 14.02.2012

Speziell für den Standort Crossen:

- Strahlenschutzgenehmigung zum Umgang mit radioaktiven Stoffen bei der Wasserreinigung in der Wasserbehandlungsanlage (WBA) mittels Kalkfällverfahren (Teil A), der Immobilisierung der U-As-Ra-Rückstände (Teil B), das Verbringen der Immobilisate (Teil C) im Bereich der industriellen Absetzanlage (IAA) Helmsdorf und zur Einleitung des gereinigten Wassers in den Vorfluter Zwickauer Mulde am Standort Crossen der Niederlassung Ronneburg der Wismut GmbH Nr. 44-4691.42/W/0312/03/0 v. 15.09.2003 in Verbindung mit den Änderungsgenehmigungen:
 - Nr. 25-4691.43/W/0312/03/1 v. 27.04.2005,
 - Nr. 25-4691.43/W/0312/03/2 v. 22.08.2006,
 - Nr. 25-4691.43/W/0312/03/3 v. 30.11.2006,
 - Nr. 54-4691.43/W/0312/03/4 v. 06.10.2009.
- Strahlenschutzrechtliche Genehmigung Nr. W/C007D/97 v. 29.08.1997 zum Verkehr mit radioaktiven Stoffen bei der Umlagerung der Bergehalde Crossen mittels Pipe Conveyor in Verbindung mit den Änderungsgenehmigungen:
- Nr. 54-4691.43/W/0121/97/2 v. 18.08.2008,
 - Nr. 44-4691.43/W/311/03/0 (Aufhebung der Begrenzung der von der Bergehalde umzulagernden Mengen an Bauschutt, Bodenaushub und anderen Materialien v. 14.01.2004).
- Strahlenschutzgenehmigung Nr. W/0414/14/0 zum Verkehr mit radioaktiven Stoffen beim Vorhaben "Errichten und Betreiben einer Pilotanlage zur Erprobung von Wasserbehandlungstechnologien am Speicher- und Homogenisierungsbecken der Wasserbehandlungsanlage Helmsdorf" v. 20.11.2014

Tabelle 5: Einleitstellen und genehmigte Abgabewerte*) für Abwässer des Standortes Crossen

	maximale Abgabewerte						
Einleitstelle	Uran _{nat} (mg/l)	Ra-226 (Bq/l)					
M-039 (WBA Helmsdorf)	0,5	0,2					

^{*)} It. Strahlenschutzgenehmigung Nr. 44-4691.43/W/0312/03/0 v. 15.09.2003

Tabelle 6: Genehmigte Abgabewerte*) für Abwetter bzw. Abluft des Standortes Crossen

Auswurfpunkt	maximaler Abgabewert
WBA Helmsdorf	Radon 350 Bq/m³

^{*)} It. Strahlenschutzgenehmigung Nr. 44-4691.43/W/0312/03/0 v. 15.09.2003

Speziell für den Standort Königstein:

- Strahlenschutzgenehmigung 44-4691.44/AW v. 22.08.1996 zur Abgabe von aerosol- und gasförmigen sowie flüssigen und festen radioaktiven Stoffen in Verbindung mit den Änderungsgenehmigungen:
 - Nr. 44-4691.44/AW (Nr. 44-4691.44/9628) v. 04.02.1997.
 - Nr. 54-4691.44/AW2 v. 30.08.2000.

Eine Strahlenschutzgenehmigung zur Abgabe von aerosol- und gasförmigen Stoffen ist nicht mehr erforderlich, nachdem die Grube Königstein Ende 2012 vollständig abgeworfen wurde.

- Strahlenschutzgenehmigung Nr. 44-4691.44/W/043/01 v. 26.02.2002 zum Verkehr mit radioaktiven Stoffen beim "Betreiben der Aufbereitungsanlage für Flutungswasser (AAF) sowie Einleitung und Verbringung der festen und flüssigen radioaktiven Auswürfe" in Verbindung mit den Änderungsgenehmigungen:
 - Nr. 44-4691.44/W/043/03/03 v. 16.10.2003,
 - Nr. 44-4691.44/W/043/03/03 v. 04.02.2004,
 - Nr. 54-4691.44/W/0064/95/12 v. 21.12.2012,
 - Nr. 54-4691.44/W/0064/95/14 v. 18.04.2013.
- Strahlenschutzgenehmigung Nr. 44-4691.44/W/008/00 v. 28.12.2000 zum Verkehr mit radioaktiven Stoffen beim Vorhaben Flutung der Grube Königstein – Teilbereich I – 140 m NN in Verbindung mit den Änderungsgenehmigungen:
 - Nr. 25-4691.44/W/0064/95/8 v. 08.02.2006,
 - Nr. 25-4691.44/W/0064/95/7 v. 08.08.2006,
 - Nr. 54-4691.44/W/0064/95/10 v. 27.04.2011,
 - Nr. 54-4691.44/W/0064/95/15 v. 28.01.2014.

Tabelle 7: Einleitstellen und genehmigte Einleitwerte¹⁾ für Abwässer des Standortes Königstein:

	Einleitwerte für Klarwasser								
Einleitstelle	Uran _{nat} (mg/l) ²⁾	Uran _{nat} (mg/l) ³⁾	Ra-226 (Bq/I) ²⁾	Ra-226 (Bq/l) ³⁾					
k-0001/0002	0,3	0,5	0,4	0,8					

¹⁾ It. Änderungsgenehmigung 44-4691.44/W/ 043/03/03 v. 04.02.2004

Speziell für den Standort Dresden-Gittersee:

Strahlenschutzgenehmigung Nr. 44-4691.45/AW zur Abgabe von aerosol- und gasförmigen radioaktiven Stoffen im Sanierungsbetrieb Königstein, Betriebsteil Dresden Gittersee v. 30.01.1996.

Tabelle 8: Auswurfpunkte und genehmigte Abgabewerte*) für Abwetter des Standortes Dresden-Gittersee

	maximale Abgabewerte					
Auswurfpunkt	Radon	LLA				
	(TBq)	(MBq)				
Elbstolln	1,6	1,6				

^{*)} It. Strahlenschutzgenehmigung 44-4691.45/AW v. 30.01.1996

²⁾ gewichtetes jährliches Mittel

³⁾ maximale Konzentration in Stichproben

1.2 Anforderungen an einzusetzende Messmethoden

Tabelle 10: Minimal nachzuweisende Konzentrationen (nach Anlage 2 der Anordnung des LfUG Az. 44-4686.30/4)

Messgröße/Medium	Bezug	minimal nachzu- weisender Wert	natürlicher Pegel
Abwetter	Emissionen gem. Antragsunterlagen	0,1 kBq/m ³ (Rn-222)	
Radon in der boden- nahen Luft	80 Bq/m³ /SSK/	10 Bq/m ³	1535 Bq/m ³ (max. 80 Bq/m ³)
Radonfolgeprodukte		0,1 MeV/cm ³	
langlebige α-Strahler im Schwebstaub	2,5 mBq/m ³	0,1 mBq/m ³	keine Angaben
Radioaktivitäts- niederschlag	2,1 Bq/m ² · 30 d (Ra-226)	0,1 Bq/m ² · 30 d (Ra-226); 0,2 Bq/m ² · 30 d (sonstige RN ²⁾)	0,050,5 Bq/m ² ·30d (berechnet aus natürl. Ra-226 Konz. im Boden und natürl. Staubablagerung)
Radionuklidkonzentration im Boden	0,2 Bq/g (Freigrenze n. § 28(2) DB VOAS)	0,02 Bq/gTM (je RN) bzw. 2 μg/gTM (U _{nat})	0,07 Bq/g (Mittelwert, max. 0,2 Bq/g)
Radionuklidkonzentration in Pflanzen (inkl. Lebensmittel pflanzl. u. tierischer Herkunft)	5·10 ⁴ Bq; ALI (Ge-misch) gem. Anl. 2 DB VOAS i.V.m. § 28(6) DB VOAS Verzehr: 500 kg/a	0,05 Bq/kgFM (je RN) bzw. 0,01 mg/kgFM (U _{nat})	< 0,1 Bq/kgFM
Radionuklidkonzentration in Wasser 1)	wie bei "Pflanzen" (Verzehr: 800 l/a) bzw. 0,7 Bq/l für Ra-226; 0,3 mg/l für U _{nat}	0,01 Bq/l (Ra-226); 0,02 Bq/l (für sonstige RN) ²⁾ ; U _{nat} : 0,01mg/l bzw. 0,001mg/l für OW, GW, ungefasste SW in TW- Einzugsgeb.	sehr große Spannweite in Abhängigkeit von geolo- gischen Bedingungen

¹⁾ Überschreiten an Einleitstellen für OW die Frachten 100 kBq/d bei Ra-226 bzw. 10 g/d bei Unat, so sind die in der Tabelle angegebenen minimal nachzuweisenden Werte zu gewährleisten.

2 Maßnahmen zur Überwachung der Umweltradioaktivität

Der BfUL als unabhängiger Messstelle wurden vom SMUL bzw. vom LfULG folgende Maßnahmen zur Überwachung übertragen:

Emissions- und Immissionsüberwachung

Behördliches Kontrollprogramm zum Basisprogramm zur Überwachung der Umweltradioaktivität in den Sanierungsbetrieben (jetzt Standorten) der Wismut GmbH im Freistaat Sachsen v. 04.02.1998 mit Änderung v. 15.04.1998, Az. U2-4686.30/2 sowie laufende Aktualisierungen.

²⁾ Unter sonstige RN sind Ra-228, Ra-224 und Pb-210 zu verstehen.

Sanierungsbegleitende Messungen

Erfüllung von Nebenbestimmungen aus Strahlenschutzgenehmigungen zum Umgang mit radioaktiven Stoffen bei Sanierungsmaßnahmen in den einzelnen Standorten der Wismut GmbH.

Die Probenahmen bzw. Messungen erfolgten an den in den behördlichen Kontrollprogrammen festgelegten Orten.

Die folgende Tabelle dokumentiert die Erfüllung der Überwachungsprogramme durch die unabhängige Messstelle.

Tabelle 11: Erfüllung der Überwachungsprogramme

			ektro- etrie		nat ⁻ t imm .		226- :imm.		210- timm.	L	LA	Ra	don		spur- meter
		Soll	Ist	Soll	Ist	Soll	Ist	Soll	Ist	Soll	Ist	Soll	lst	Soll	Ist
Emis	ssion														
E 1. Abwe	etter bzw. Abluft									2	3 ³⁾	2	3 ³⁾		
E 2.	Abwasser	12	12 ¹⁾	58	58	58	58	23	24 ²⁾						
lmm	ission														
1.2	Radon in der bodennahen Luft													54	54
1.4	Schwebstaub									18	20 5)				
2.	Bodenoberfläche	6	6												
5.1	Sickerwasser			6	6	6	6								
5.2	Oberflächenwasser	4 ¹⁾	4 ¹⁾	25	25	25	25								
5.4	Grundwasser			15	15	15	15								
5.4	Trinkwasser			4	4	4	4	4	4						
Sani	erungsbegleitende	Gene	hmigu	ıngen											
	eb der WBA Schlema Immobilisate	4	4												
Flutur 5.3	ng Königstein Grundwasser	17	17	17	17										
Betrie der	Immobilisate	4	4												
WBA Helm dorf		4	4												
Sanierung Betriebsgelände ehem. Erzaufbereitung Crossen 5.3 Grundwasser				4	3 ⁴⁾	4	3 ⁴⁾								
Freigabe Aufstandsflächen Bergehalde Crossen A 1 Haldenmaterial oder Tailings			3												

- 1) auch α-Spektrometrie
- 2) zusätzliche Probe (Wdh. der PN vom 16.03.2016)
- 3) zusätzliche Probenahmen am Elbmundstollen (ELBMUN) 08/2015
- Messstelle 1230z entfällt planmäßig mit Zustimmung des LfULG im 2.Hj. 2015
- 5) 2 Proben aus 2014 nachgeholt

Praktische Durchführung

Die Durchführung des Überwachungsprogrammes erfolgte bei Probenahme durch die BfUL nach folgenden Probenahmeverfahren. Zur Untersuchung des Messgutes wurden die jeweils nebenstehend genannten Messverfahren angewandt.

Tabelle 12: Durchführung des Überwachungsprogrammes

Medium	Probenahmeverfahren	Radionuklide	Messverfahren
Abwasser, Sickerwasser, Oberflächen-	nach DIN 38402 A13, A15 Probenvorbereitung lt. REI-Bergbau,	U _{nat}	KPA ¹⁾ It. REI-Bergbau (BfUL-Arbeits- anweisung) oder LSC It. BfUL- Arbeitsanweisung ²⁾
wasser, Grundwasser, Trinkwasser	BMU-Messanleitung ⁴⁾ (derzeit keine eigene Probenahme von SW, GW, TW)	Ra-226	Emanometrie in Anlehnung an REI-Bergbau (BfUL-Arbeitsanweisung ³⁾) oder Gammaspektrometrie nach BMU-Messanleitung ⁴⁾ und BfUL-Arbeitsanweisung
Abwasser, Trinkwasser	nach DIN 38402 A13, A15, Probenvorbereitung It. REI-Bergbau, BMU-Messanleitung ⁴⁾ (derzeit keine eigene Probenahme von TW)	Pb-210	RC-Analyse It. BfUL-Arbeitsanweisung ⁵⁾ , BMU-Messanleitung ⁴⁾
Abwetter	Abscheidung von Staub auf Glasfaserfilter (derzeit keine eigene Probenahme)	LLA	Brutto-α-Messung lt. REI-Bergbau ⁶⁾ , BMU-Messanleitung ⁴⁾ , BfUL-Arbeitsanweisung
	Diffusions- oder Pumpbetrieb	Rn-222	mit Radonmonitor It. REI-Bergbau ⁷⁾ , BMU-Messanleitung ⁴⁾
bodennahe Luft	Diffusionskammer nach DIN 25706 Teil 1	Rn-222	Festkörperspurdetektor nach DIN 25706 Teil- 1, BMU-Messanleitung ⁴⁾
Schwebstaub	Abscheidung auf Glasfaserfilter (derzeit keine eigene Probenahme)	LLA	Brutto-α-Messung lt. REI-Bergbau ^{6),} BMU-Messanleitung ⁴⁾ , BfUL-Arbeitsanweisung
Niederschlag	Auffangbehälter nach BfS	Ra-226	Gammaspektrometrie nach BMU- Messanleitung ⁴⁾ , BfUL-Arbeitsanweisung
Boden, Sediment, Pflanzen	nach BMU-Messanleitung ⁴⁾ (derzeit keine eigene Probenahme)	natürliche Radionuklide	Gammaspektrometrie nach BMU- Messanleitung ⁴⁾ , BfUL-Arbeitsanweisung

- Laserangeregte Phosphoreszenz (KPA)
- α-Messung mit LSC nach Flüssig-flüssig-Extraktion 2)
- chemische Anreicherung durch Mitfällung an BaSO4 und Szintillationsmessung von Rn-222 im LSC-Vial nach Gleichgewichtseinstellung zu
- 4) Messanleitungen für die Überwachung der Radioaktivität in der Umwelt, Hrsg. BMU
- Abscheidung von Bi-210 auf Ni, β-Messung
- Messung der α-Aktivität am beaufschlagten Glasfaserfilter
- mobiler Radonmonitor mit Ionisationskammer

Messergebnisse

In den Anhängen werden die tabellarischen Zusammenstellungen der Messergebnisse nach REI-Bergbau gegeben.

> Anhang A: Standort Schlema-Alberoda

Anhang C: Standort Crossen

Anhang G: Standort Dresden-Gittersee

Anhang K: Standort Königstein

Anhang P: Standort Pöhla

5 Auswertung des behördlichen Kontrollprogramms 2015 zur Überwachung der Standorte der Wismut GmbH auf dem Territorium des Freistaates Sachsen

5.1 Wasserpfad

5.1.1 Auswertung der Kontrollproben – Uran in Wässern

(zu den REI-Programmpunkten: Emission - 2. Abwasser und Immission - 5.1 Sickerwasser, 5.2 Oberflächenwasser, 5.3 Grundwasser)

Der BfUL wurden 110 Kontrollproben zur Bestimmung von Uran in Wässern von der Wismut GmbH übergeben. Seitens der BfUL wurden alle Wasserproben der Standorte Schlema-Alberoda, Pöhla, Crossen, Dresden-Gittersee und Königstein mittels Kinetischer Phosphoreszenzanalyse (KPA) untersucht.

Der Vergleich der Messwerte der BfUL und der Wismut GmbH erfolgte nach DIN 1319-1: 1995-01 in Verbindung mit DIN 55350-13: 1987-07 (2,77-fache Vergleichstandardabweichung als Kriterium für die Vergleichbarkeit). Als relative Vergleichstandardabweichung (Abschätzung aus bisherigen Ringversuchen und Stichtagsbeprobungen) wurde 10 % im gesamten Konzentrationsbereich angenommen. Dies bedeutet, dass zwei Messwerte nach dem o.g. Vergleichskriterium mit 95%iger Wahrscheinlichkeit als nicht vergleichbar angesehen werden, wenn das Verhältnis der beiden Messwerte > 1,33 oder < 0,75 ist.

Von den 110 Wertepaaren sind demnach 6 als nicht vergleichbar einzustufen. Dies betrifft die Messstellen k-6111E und m-112 jeweils zweimal sowie die m-081A und m-155. Die Gesamtheit der Messwertepaare an den Kontrollproben ist in der Abbildung auf der folgenden Seite dargestellt. Nicht vergleichbare Wertepaare liegen außerhalb des eingezeichneten Linienpaares.

Die folgende Tabelle zeigt die Entwicklung der Anzahl der als nicht vergleichbar eingestuften Wertepaare seit 1999. Im Jahr 2015 waren wieder ca. 95 % der Wertepaare als vergleichbar im Sinne des o.g. Vergleichskriteriums zu bewerten. Dieses Ergebnis korrespondiert wieder in etwa mit der entsprechenden, statistisch zu erwartenden Wahrscheinlichkeit.

Tabelle 13: Anzahl der Uran-Wertepaare mit Nichtübereinstimmung

Jahr	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Anzahl der Nichtüber- einstim- mungen lt. o.g. Kriterium	34	21	22	21	28	20	16	11	14	6	8	3	8	5	2	3	6

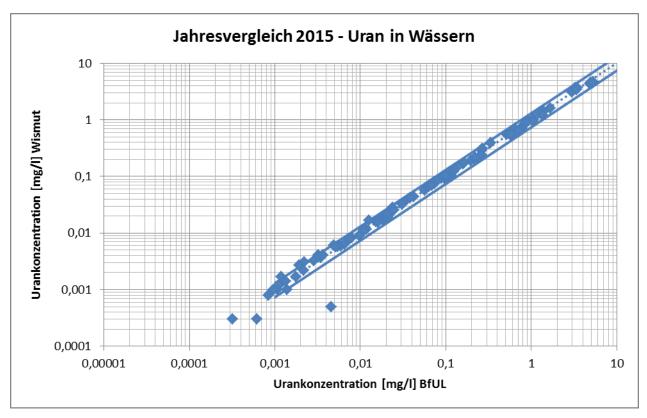


Abbildung 1: Uran in Wässern 2015

5.1.2 Auswertung der Kontrollproben – Radium-226 in Wässern

(zu den REI-Programmpunkten: Emission – 2. Abwasser und Immission – 5.1 Sickerwasser, 5.2 Oberflächenwasser, 5.3 Grundwasser)

Der BfUL wurden 110 Kontrollproben zur Bestimmung von Ra-226 in Wässern von der Wismut GmbH übergeben. Ra-226-Bestimmungen der BfUL wurden mittels emanometrischer Flüssigkeitsszintillationsspektrometrie bzw. Gammaspektrometrie durchgeführt.

Der Vergleich der Messwerte der BfUL und der Wismut GmbH erfolgte nach DIN 1319-1: 1995-01 in Verbindung mit DIN 55350-13: 1987-07, (2,77-fache Vergleichstandardabweichung als Kriterium für die Vergleichbarkeit). Als relative Vergleichstandardabweichung (Abschätzung aus bisherigen Ringversuchen und Stichtagsbeprobungen) wurde 15 % über den gesamten Konzentrationsbereich angenommen. Dies bedeutet, dass zwei Messwerte nach dem o.g. Vergleichskriterium mit 95%iger Wahrscheinlichkeit als nicht vergleichbar angesehen werden, wenn das Verhältnis der beiden Messwerte > 1,52 oder < 0,65 ist. Mit diesem gegenüber den Jahren bis 2007 strengeren Vergleichsmaßstab (bis dahin 20 % relative Vergleichstandardabweichung angewandt) wurden die in dieser Zeit erzielten Verbesserungen berücksichtigt.

Von den 110 Wertepaaren sind demnach 12 als nicht vergleichbar einzustufen, das entspricht 11 % und liegt wieder im Bereich des Vorjahres. Diese Wertepaare betreffen am Standort Schlema-Alberoda die Messstellen m-008A, zweimal die m-031A, die m-112, m-131, m-170B und m-555 sowie am Standort Crossen die M-039. Am Standort Königstein mussten zwei Werte der Messstelle k-0001 als nicht vergleichbar eingestuft werden und am Standort Gittersee die Werte der Messstellen g-0077 und g-640F1. Diese nicht vergleichbaren Werte liegen wieder überwiegend in einem sehr niedrigen Konzentrationsbereich von ca. 0,01 bis 0,04 Bq/l. Diese Entwicklung wird weiterhin beobachtet.

Die Gesamtheit der Messwertepaare an Kontrollproben ist in der folgenden Abbildung dargestellt. Nicht vergleichbare Wertepaare liegen außerhalb des eingezeichneten Linienpaares.

Die folgende Tabelle zeigt die Entwicklung der Anzahl der als nicht vergleichbar eingestuften Wertepaare seit 1999. Im Jahr 2015 waren 87 % der Wertepaare als vergleichbar im Sinne des o.g. Vergleichskriteriums zu bewerten.

Tabelle 14: Anzahl der Ra-226-Wertepaare mit Nichtübereinstimmung

Jahr	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Anzahl der Nichtüber- einstim- mungen It. o.g. Kriterium	41	30	27	26	16	18	5	7	3/5*	7*	7*	5*	4*	15*	14*	11*	12*

[&]quot;) mit 15 % Vergleichstandardabweichung als Vergleichskriterium (bis 2007: 20 %)

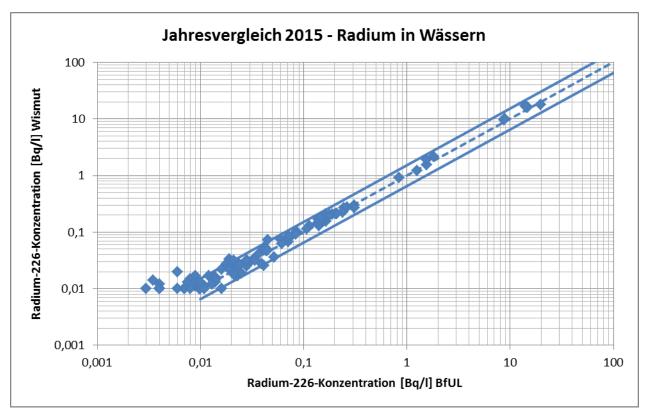


Abbildung 2: Ra-226 in Wässern 2015

5.1.3 Auswertung der Parallelproben - Niederschlag

(zum REI-Programmpunkt: Immission – 2. Bodenoberfläche)

Im Jahr 2015 wurden wie im Vorjahr wieder sechs Parallelbeprobungen und -messungen zur Bestimmung von Ra-226 im Niederschlag durchgeführt. Die folgende Abbildung zeigt die Ergebnisse im Vergleich mit denen der Wismut GmbH für die letzten Jahre. Das eingezeichnete Linienpaar begrenzt den Bereich, außerhalb dessen die beiden Werte eines Wertepaares mit 95 % Wahrscheinlichkeit als nicht vergleichbar angesehen werden (hier verwendete Vergleichstandardabweichung: 20 %).

Im Jahr 2015 war die Übereinstimmung der Ergebnisse etwas schlechter als 2014, aber vergleichbar den Vorjahren. Auffällige Abweichungen waren nicht zu verzeichnen. Die Probenahme fand auch wieder in dem üblichen Zeitraum im III. Quartal statt.

Jahresvergleich (2003 - 2015) Ra-226 im Niederschlag

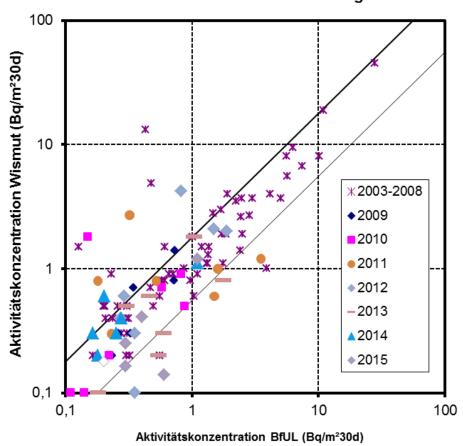


Abbildung 3: Ra-226 im Niederschlag 2015

5.2 Luftpfad

5.2.1 Auswertung der Kontrollproben – Schwebstaub

(zum REI-Programmpunkt: Immission – 1.4 Schwebstaub)

Der BfUL wurden 21 bei der Wismut GmbH beaufschlagte Aerosolfilter für Kontrollmessungen der Aktivitätskonzentration der langlebigen α-Strahler (LLA) übergeben. Darunter befanden sich die Filter des Messpunktes 710.10, die bereits im 2. Halbjahr 2014 zu beaufschlagen waren, 2 dieser 3 Filter wurden jedoch erst vollständig zu Beginn 2015 beaufschlagt. Daher werden alle 3 Filter des Messpunktes 710.10 im Jahresbericht 2015 ausgewertet.

Die Filter des Messpunktes 215.14 wurden uns, statt wie üblich über Probenehmer, per Postversand überstellt. Dies stellt einen für diese Art von Proben problematischen Transportweg dar, da hierbei Partikel von dem trockenen Filter in das Transportgefäß verteilt werden können.

Da diese Filter zuerst bei der Wismut GmbH gemessen werden, kann die BfUL-Messung nicht im optimalen zeitlichen Abstand nach der Beaufschlagung (lt. BMU-Messanleitung zur REI-Bergbau 120 bis 150 h) erfolgen. Die Nachbildung von Po 210 ($T_{1/2}$ = 138 d) aus dem an Aerosolen angelagerten und daher oft im Überschuss mit abgeschiedenen Pb-210 führt somit zwangsläufig zu systematisch höheren α-Zählraten. Durch die dreimalige Messung jedes Filters in bestimmten zeitlichen Abständen (jeweils ca. 1 Monat) kann der Po-210-Aufbau jedoch verfolgt werden. Die Rückextrapolation auf den Zeitpunkt der Filterbeaufschlagung ergibt dann den LLA-Wert, der mit dem Wismut-Wert zu vergleichen ist.

Wie im Vorjahr wurde für den zusammenfassenden Vergleich (s.u.) die Nichtberücksichtigung der Eigenaktivität der Glasfaserfilter in den von der Wismut GmbH berichteten LLA-Werten mit der in der BfUL bestimmten durchschnittlichen Eigenaktivität korrigiert (in den Wertetabellen im Anhang sind die von der Wismut GmbH berichteten, nicht korrigierten Werte enthalten).

Die folgende Abbildung zeigt die Wertepaare der Kontrollproben und, da aus messmethodischer Sicht analog zu betrachten, die Wertepaare der 2 an Abwettermesspunkten beaufschlagten Filter (s.a. Pkt. 5.2.2). Die Proben des Messpunktes Elbstollnmundloch (ELBMUN) wurden im 2. Halbjahr 2015 wiederholt, da bei der planmäßigen Beprobung im Februar 2015 das Messgerät der Wismut-GmbH zur Ermittlung der Radonkonzentration defekt war. Es sind keine bedeutsamen oder systematischen Abweichungen erkennbar.

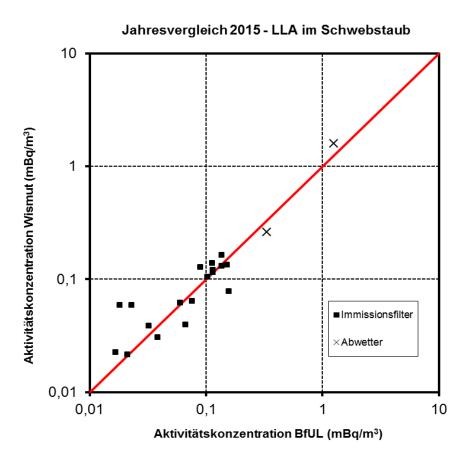


Abbildung 4: LLA im Schwebstaub 2015

5.2.2 Auswertung der Parallelmessungen und Kontrollproben an den Abwetterschächten (zum REI-Programmpunkt: Emission - 1. Abwetter)

Von der BfUL wurden 2 Parallelmessungen zur Rn-222-Konzentration in Abwettern durchgeführt. Der angegebene Wert des Messpunktes Elbstollnmundloch stammt aus der Wiederholungsprobe vom 2. Halbjahr 2015, da bei der ersten Probennahme im Februar 2015 das Messgerät der Wismut GmbH zur Ermittlung der Radonkonzentration defekt war. Die folgende Tabelle zeigt die Gegenüberstellung der Ergebnisse der Wismut GmbH und der BfUL mit einer Übereinstimmung zwischen den Messungen mit verschiedenen Radon-Monitoren und mit unterschiedlich langen Messzeiten:

Tabelle 15: Rn-222-Konzentration in Abwettern

Probenah	me	Rn-222-Aktivitätskon	zentration in kBq/m³
Messpunkt	Datum	Wismut-Wert	BfUL-Wert
Schacht 382	04.08.2015	82	73
Elbstollnmundloch	27.08.2015	0,8	0,7

An denselben Abwettermesspunkten wurden auch Aerosolfilter beaufschlagt, an denen durch die BfUL Kontrollmessungen der Aktivitätskonzentration der langlebigen α-Strahler (LLA) durchgeführt wurden. Die Wismut-Werte in Klammern wurden um die mutmaßlich nicht durchgeführte Berücksichtigung des Blindwertes der Glasfaserfilter näherungsweise korrigiert.

Tabelle 16: LLA-Konzentrationen in Abwettern

Probenahr	ne	LLA-Konzentra	tion in mBq/m³
Messpunkt	Datum	Wismut-Wert It. Protokoll (korrigiert*)	BfUL-Wert
Schacht 382	04.08.2015	1,93 (1,59)	1,25
Elbstollnmundloch	27.08.2015	0,59 (0,26)	0,33

^{*)} Werte in Klammern mit Blindwertkorrektur

Die relative Standardmessunsicherheit der einzelnen Messungen ist größer als 20 %, so dass Differenzen bis zu einem Bereich von 50 % zu akzeptieren sind. Alle an den Abwetterfiltern ermittelten LLA-Konzentrationen der BfUL liegen im Bereich von 1 mBg/m³, d.h. der für LLA-Emissionen geforderten Nachweisgrenze It. REI-Bergbau. Hinsichtlich der Dokumentation der Daten ist zu bemerken, dass in der Datenbank der Wismut GmbH lediglich die geforderte NWG von 1 mBq/m³ enthalten ist, wenn der Messwert darunter lag, nicht jedoch der Messwert selbst. Die hier verwendeten Vergleichswerte stammen von den mit den Filtern ausgehändigten Messprotokollen der Wismut GmbH.

5.2.3 Auswertung der Parallelmessungen – Radon in der bodennahen Luft

(zum REI-Programmpunkt: Immission - 1.2 Radon)

Von der BfUL konnten 48 Messungen zur Rn-222-Konzentration in der bodennahen Luft mit Kernspurexposimetern durchgeführt werden (5- bis 7-monatige Exposition, pro Messpunkt jeweils Winterhalbjahr 2014-2015 und Sommerhalbjahr 2015). In Auswertung der vorangegangenen Vergleichsmessung wurden die BfUL-Standorte durchgängig doppelt bestückt.

Die folgende Abbildung zeigt den Vergleich der Wismut-Werte (Exposimeter und Auswertung FZ Karlsruhe) mit den BfUL-Werten (Exposimeter und Auswertung Fa. Altrac). Die obere und die untere Linie begrenzen den Bereich, in dem die Werte als vergleichbar angesehen werden (s.a. 5.1.1). Als Vergleichstandardabweichungen wurden hier die aus mehreren Ringvergleichen bestimmten Standardabweichungen der Fa. Altrac (vom BfS anerkannte sachverständige Stelle) genutzt.

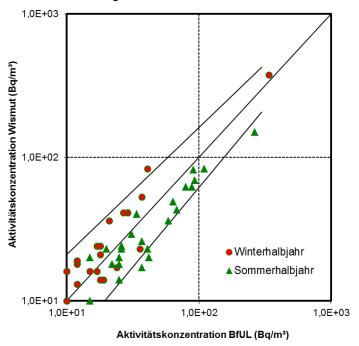


Abbildung 5: Radon in der bodennahen Luft 2015

Die Übereinstimmung der Ergebnisse war in den Vorjahren sehr unterschiedlich. Es wurden bis 2011 immer wieder systematische Unterschiede zwischen den Werten der Wismut GmbH und der BfUL festgestellt, wie in den Berichten dokumentiert worden ist. Um die Messunsicherheit zu verringern sind die Messstellen der BfUL doppelt bestückt worden.

Insgesamt liegen 2015 bis auf einen Wert im Winter- und fünf Werte im Sommerhalbjahr alle Daten im Bereich, der als vergleichbar angesehen wird. An mehreren Messstellen ist dabei eine deutliche Abweichung zwischen den Werten der BfUL und der Wismut festzustellen. Das betrifft die Messtelle 509.33 im Winterhalbjahr und die Messtellen 207.80, 210.20, 234.20, 511.40 und 717.30 im Sommerhalbjahr.

Für die Veranschaulichung der Ergebnisse wurde die getrennte Darstellung der Messwerte aus dem Winter- und Sommerhalbjahr beibehalten. Dabei ist tendentiell erkennbar, dass im Winterhalbjahr die Messwerte der Wismut GmbH größer und im Sommerhalbjahr kleiner als die der BfUL sind. Das muss weiter beobachtet werden.

5.3 Feststoffe (Immobilisate und Haldenmaterial)

Von der BfUL wurden an insgesamt 8 Immobilisat- und 3 Haldenmaterialproben gammaspektrometrische Untersuchungen durchgeführt.

Da (speziell bei den Immobilisaten) Nichtgleichgewichte innerhalb der radioaktiven Zerfallsreihen auftreten können, werden jeweils bis zu drei Messungen durchgeführt und zwar direkt nach Probeneingang sowie 3 Wochen bzw. gegebenenfalls 3 Monate danach.

Dem Vorschlag aus dem Jahresbericht 2000 der BfUL folgend werden seit 2001 nur noch die für langfristige Expositionsbetrachtungen relevanten langlebigen Radionuklide Ra-226, U-238 und U-235 bestimmt.

Anhang A

Standort Schlema-Alberoda

Basismonitoring

- Abwetter bzw. Abluft
- Abwasser
- Radon in der bodennahen Luft
- Schwebstaub
- Bodenoberfläche
- Sickerwasser
- Oberflächenwasser
- Grundwasser

Betrieb der WBA Schlema

- Immobilisate:
 - o Immobilisat am: 15.02.15 / 13.05.15 / 12.08.15 / 11.11.15

Anmerkung: In der Spalte **Bemerkungen** sind jeweils die von der Wismut GmbH gemeldeten Werte zum Vergleich aufgeführt.

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Schlema-Alberoda, Basismonitoring Schlema

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: E 1.

Medium: Abwetter bzw. Abluft

Messgröße: Radon-222-Aktivitätskonzentration; Aktivitätskonzentration langlebiger Alphastrahler, Urankonzentration

Lage und E Probenahn	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess-	SS-								Bemerkungen			
	I			bzw. Samn	nelzeitraum	Rn 222			LLA			U 238					
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/m³	%	ı	mBq/m³	%	В	q/m³	%	%		%	
SCT382	Schacht 382 Schlema	4547355	5609285	04.08.15	04.08.15				1,3E+00	21							LLA = 1,9E+00 mBq/m ³
	Schacht 382 Schlema	4547355	5609285	04.08.15		7,3E+04	4										

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Schlema-Alberoda, Basismonitoring Schlema

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: E 2.

Medium: Abwasser

	Lage und Bezeichnung der Probenahme- bzw. Messorte				ahme- bzw. oder Mess-			Messerge	bnis,	Messunsic	ner	heit, Maße	inhe	it			Bemerkungen
	I			bzw. Samn	nelzeitraum	U 238		U_na	t	Ra 226		Pb 210)	F	Ra 228		
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/I	%	mg/l	%	Bq/I	%	Bq/I	%	В	3q/I	%	
m-008A	Halde 366, SW-Rand, Ablauf lokal	4549268	5608570	21.01.15		3,0E+01 3,4E+01	4 8	2,5E+00	3	4,5E-02 4,2E-02	8 8	- / -		<	2,6E-02		
	Halde 366, SW-Rand, Ablauf lokal	4549268	5608570	08.10.15				1,1E+00	3	4,1E-02	11	1,8E-0)2 15	5			Ra 226 = 2,6E-02 Bq/l U_nat = 9,5E-01 mg/l
m-031A	Wismut GmbH, Niederlassung Au	4547053	5609784	21.01.15		6,7E+00 7,0E+00	6 6	5,4E-01	3	1,6E-02 1,4E-02	18 10			<	2,2E-02		
	Wismut GmbH, Niederlassung Au	4547053	5609784	26.03.15				5,5E-01	3	2,0E-02	9						Ra 226 = 3,1E-02 Bq/l U_nat = 5,8E-01 mg/l
	Wismut GmbH, Niederlassung Au-	4547053	5609784	27.05.15				8,3E-01	3	2,5E-02	9						Ra 226 = 1,9E-02 Bq/l U_nat = 8,3E-01 mg/l
	Wismut GmbH, Niederlassung Au-	4547053	5609784	07.07.15				1,1E+00	3	2,4E-02	9						Ra 226 = 2,7E-02 Bq/l U_nat = 1,1E+00 mg/l
	Wismut GmbH, Niederlassung Au	4547053	5609784	08.10.15				6,3E-01	3	1,9E-02	10	2,9E-0)2 13	3			Ra 226 = 3,3E-02 Bq/l U_nat = 6,1E-01 mg/l
m-042A	m-042A	4547831	5608856	21.01.15		3,2E+01 3,2E+01	4 6	2,5E+00	3	1,1E-01 1,2E-01	5 8			<	2,5E-02		
	m-042A	4547831	5608856	04.03.15				3,4E+00	3	1,5E-01	9						Ra 226 = 1,8E-01 Bq/l U_nat = 3,7E+00 mg/l
	m-042A	4547831	5608856	05.05.15				3,4E+00	3	1,8E-01	9						Ra 226 = 2,0E-01 Bq/l U_nat = 3,4E+00 mg/l
	m-042A	4547831	5608856	02.07.15				5,3E+00	3	2,1E-01	9						Ra 226 = 2,1E-01 Bq/l U_nat = 4,5E+00 mg/l
	m-042A	4547831	5608856	01.10.15				5,3E+00	3	1,9E-01	9	2,4E-0)2 13	3			Ra 226 = 2,1E-01 Bq/l U_nat = 4,6E+00 mg/l
m-102	m-102 (Ablauf a.d. Eisenbrücke)	4549269	5608571	21.01.15		3,3E+01 3,7E+01	4 6	2,9E+00	3	8,5E-02 1,2E-01	6 8	< 4,4E-0		<	2,8E-02		_
	m-102 (Ablauf a.d. Eisenbrücke)	4549269	5608571	04.03.15				3,3E+00	3	1,4E-01	9						Ra 226 = 1,5E-01 Bq/l U_nat = 3,7E+00 mg/l

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Schlema-Alberoda, Basismonitoring Schlema

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: E 2.

Medium: Abwasser

Lage	I DW		haur Comm														1
-	D\\\		DZW. Sallill	nelzeitraum	U 238			U_nat	ĺ	Ra 226	1	Pb 21	0	ĺ	Ra 228		
	RW	HW	Beginn	Ende	Bq/I	%		mg/l	%	Bq/I	%	Bq/I	%	5	Bq/I	%	
n-102 (Ablauf a.d. Eisenbrücke)	4549269	5608571	05.05.15					3,0E+00	3	1,5E-01	9						Ra 226 = 1,5E-01 Bq/l
																	U_nat = 3,1E+00 mg/l
n-102 (Ablauf a.d. Eisenbrücke)	4549269	5608571	07.07.15					4,9E+00	3	1,5E-01	9						Ra 226 = 1,5E-01 Bq/l
																	U_nat = 4,3E+00 mg/l
n-102 (Ablauf a.d. Eisenbrücke)	4549269	5608571	01.10.15					5,0E+00	3	1,4E-01	9	2,2E-	02 1	0			Ra 226 = 1,6E-01 Bq/l U_nat = 4,6E+00 mg/l
a 100V (Ülberleuf Derbeektel)	4547024	F600700	24.04.45		1.25,01	_		1.05.00	2	2.15.02	17	2.65	01		2.05.02		0_nat = 4,0L+00 mg/i
n-106X (Oberiaul Bolbachiai)	4547934	5609709	21.01.15		1,2E+01 1.3E+01			1,05+00	3			- /-		_	2,9E-02		
n-108X (Überlauf Borbachtal)	4547934	5609709	26.03.15		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			9,1E-01	3	2,2E-02	9	,-					Ra 226 = 2,0E-02 Bg/l
(2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.																	U_nat = 9,7E-01 mg/l
n-108X (Überlauf Borbachtal)	4547934	5609709	20.05.15					8,9E-01	3	2,1E-02	9						Ra 226 = 2,1E-02 Bq/l
																	U_nat = 9,5E-01 mg/l
n-108X (Überlauf Borbachtal)	4547934	5609709	07.07.15					8,7E-01	2	2,2E-02	9						Ra 226 = 2,4E-02 Bq/l
																	U_nat = 8,6E-01 mg/l
n-108X (Überlauf Borbachtal)	4547934	5609709	08.10.15					7,7E-01	1	1,9E-02	9	< 1,0E-	02				Ra 226 = 2,2E-02 Bq/l U_nat = 6,9E-01 mg/l
. 400 (ALL: (K.L	4540074	5044404	04.04.45		4.25.00			2.05.04		4.55.00	10	. 4.05			2.45.02		0_nat = 6,9E-01 mg/l
n-109 (Ablauf Konlungsbach)	4548271	5611161	21.01.15					3,0E-01	2			,-			2,4E-02		
n-109 (Ahlauf Kohlungshach)	4548271	5611161	04 03 15		1,02100			1.2E-01	2		9	5,52					Ra 226 = 1,0E-01 Bg/l
	10 1027 1	0011101	0 1100110														U_nat = 1,3E-01 mg/l
n-109 (Ablauf Kohlungsbach)	4548271	5611161	20.05.15					1,2E-01	1	3,4E-02	9						Ra 226 = 3,2E-02 Bq/l
·																	U_nat = 1,2E-01 mg/l
n-109 (Ablauf Kohlungsbach)	4548271	5611161	07.07.15					1,0E-01	2	3,3E-02	9						Ra 226 = 3,3E-02 Bq/l
																	U_nat = 1,0E-01 mg/l
n-109 (Ablauf Kohlungsbach)	4548271	5611161	01.10.15					1,1E-01	2	2,8E-02	9	1,3E-	02 2	1			Ra 226 = 3,2E-02 Bq/l
					4.75 00			4.05.64		4.05.00		4.65			0.05.00		U_nat = 9,6E-02 mg/l
n-113 (Ablauf Kleinstau Poppenw	4548757	5610532	22.01.15					4,0E-01	2					<	2,9E-02		
n- n- n- n-	-102 (Ablauf a.d. Eisenbrücke) -102 (Ablauf a.d. Eisenbrücke) -108X (Überlauf Borbachtal) -109 (Ablauf Kohlungsbach)	-102 (Ablauf a.d. Eisenbrücke) 4549269 -102 (Ablauf a.d. Eisenbrücke) 4549269 -108X (Überlauf Borbachtal) 4547934 -109 (Ablauf Kohlungsbach) 4548271 -109 (Ablauf Kohlungsbach) 4548271 -109 (Ablauf Kohlungsbach) 4548271 -109 (Ablauf Kohlungsbach) 4548271	-102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 -102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 -108X (Überlauf Borbachtal) 4547934 5609709 -109 (Ablauf Kohlungsbach) 4548271 5611161	-102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 07.07.15 -102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 01.10.15 -108X (Überlauf Borbachtal) 4547934 5609709 21.01.15 -108X (Überlauf Borbachtal) 4547934 5609709 26.03.15 -108X (Überlauf Borbachtal) 4547934 5609709 20.05.15 -108X (Überlauf Borbachtal) 4547934 5609709 07.07.15 -108X (Überlauf Borbachtal) 4547934 5609709 08.10.15 -108X (Überlauf Borbachtal) 4547934 5609709 08.10.15 -109 (Ablauf Kohlungsbach) 4548271 5611161 04.03.15 -109 (Ablauf Kohlungsbach) 4548271 5611161 02.05.15 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15	-102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 07.07.15 -102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 01.10.15 -108X (Überlauf Borbachtal) 4547934 5609709 21.01.15 -108X (Überlauf Borbachtal) 4547934 5609709 26.03.15 -108X (Überlauf Borbachtal) 4547934 5609709 20.05.15 -108X (Überlauf Borbachtal) 4547934 5609709 07.07.15 -108X (Überlauf Borbachtal) 4547934 5609709 08.10.15 -108X (Überlauf Borbachtal) 4548271 5611161 04.03.15 -109 (Ablauf Kohlungsbach) 4548271 5611161 20.05.15 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15	-102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 07.07.15 -102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 01.10.15 -108X (Überlauf Borbachtal) 4547934 5609709 21.01.15 -108X (Überlauf Borbachtal) 4547934 5609709 26.03.15 -108X (Überlauf Borbachtal) 4547934 5609709 20.05.15 -108X (Überlauf Borbachtal) 4547934 5609709 07.07.15 -108X (Überlauf Borbachtal) 4547934 5609709 08.10.15 -109 (Ablauf Kohlungsbach) 4548271 5611161 21.01.15 -109 (Ablauf Kohlungsbach) 4548271 5611161 04.03.15 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 -109 (Ablauf Kohlungsbach) 4548271 5611161 01.10.15 -113 (Ablauf Kleinstau Poppenw 4548757 5610532 22.01.15	-102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 07.07.15 -102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 01.10.15 -108X (Überlauf Borbachtal) 4547934 5609709 21.01.15 -108X (Überlauf Borbachtal) 4547934 5609709 26.03.15 -108X (Überlauf Borbachtal) 4547934 5609709 20.05.15 -108X (Überlauf Borbachtal) 4547934 5609709 07.07.15 -108X (Überlauf Borbachtal) 4547934 5609709 07.07.15 -108X (Überlauf Borbachtal) 4547934 5609709 08.10.15 -109 (Ablauf Kohlungsbach) 4548271 5611161 21.01.15 -109 (Ablauf Kohlungsbach) 4548271 5611161 04.03.15 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 -109 (Ablauf Kohlungsbach) 4548271 5611161 01.10.15	-102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 07.07.15 -102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 01.10.15 -108X (Überlauf Borbachtal) 4547934 5609709 21.01.15 -108X (Überlauf Borbachtal) 4547934 5609709 26.03.15 -108X (Überlauf Borbachtal) 4547934 5609709 20.05.15 -108X (Überlauf Borbachtal) 4547934 5609709 07.07.15 -108X (Überlauf Borbachtal) 4547934 5609709 07.07.15 -108X (Überlauf Borbachtal) 4547934 5609709 08.10.15 -109 (Ablauf Kohlungsbach) 4548271 5611161 21.01.15 -109 (Ablauf Kohlungsbach) 4548271 5611161 04.03.15 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 -109 (Ablauf Kohlungsbach) 4548271 5611161 01.10.15 -113 (Ablauf Kohlungsbach) 454877 5610532 22.01.15 4,7E+00 6	-102 (Ablauf a.d. Eisenbrücke)	-102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 07.07.15 4,9E+00 3 -102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 01.10.15 5,0E+00 3 -108X (Überlauf Borbachtal) 4547934 5609709 21.01.15 1,3E+01 5 1,3E+01 6 -108X (Überlauf Borbachtal) 4547934 5609709 26.03.15 9,1E-01 3 -108X (Überlauf Borbachtal) 4547934 5609709 20.05.15 8,9E-01 3 -108X (Überlauf Borbachtal) 4547934 5609709 07.07.15 8,7E-01 2 -108X (Überlauf Borbachtal) 4547934 5609709 08.10.15 7,7E-01 1 -109 (Ablauf Kohlungsbach) 4548271 5611161 21.01.15 4,9E+00 6 -109 (Ablauf Kohlungsbach) 4548271 5611161 04.03.15 1,2E-01 2 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,2E-01 1 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,2E-01 2 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,0E-01 2 -109 (Ablauf Kohlungsbach) 4548271 5611161 01.10.15 1,1E-01 2 -1109 (Ablauf Kohlungsbach) 4548271 5611161 01.10.15	-102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 07.07.15 4,9E+00 3 1,5E-01 -102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 01.10.15 5,0E+00 3 1,4E-01 -108X (Überlauf Borbachtal) 4547934 5609709 21.01.15 1,3E+01 5 1,0E+00 3 2,1E-02 2,0E-02 108X (Überlauf Borbachtal) 4547934 5609709 26.03.15 9,1E-01 3 2,2E-02 -108X (Überlauf Borbachtal) 4547934 5609709 20.05.15 8,9E-01 3 2,1E-02 -108X (Überlauf Borbachtal) 4547934 5609709 07.07.15 8,7E-01 2 2,2E-02 -108X (Überlauf Borbachtal) 4547934 5609709 07.07.15 8,7E-01 1 1,9E-02 -108X (Überlauf Borbachtal) 4547934 5609709 08.10.15 7,7E-01 1 1,9E-02 -109 (Ablauf Kohlungsbach) 4548271 5611161 04.03.15 4,3E+00 9 4,9E+00 6 1,2E-01 2 8,5E-02 -109 (Ablauf Kohlungsbach) 4548271 5611161 04.03.15 1,2E-01 1 3,4E-02 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,2E-01 1 3,4E-02 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,0E-01 2 3,3E-02 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,0E-01 2 3,3E-02 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,0E-01 2 3,3E-02 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,1E-01 2 2,8E-02 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,1E-01 2 2,8E-02 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,1E-01 2 4,8E-02 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,1E-01 2 4,8E-02 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,1E-01 2 4,8E-02 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,1E-01 2 4,8E-02 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,1E-01 2 4,8E-02 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,1E-01 2 4,8E-02 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,1E-01 2 4,8E-02 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,1E-01 2 4,8E-02 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,1E-01 2 4,8E-02 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,1E-01 2 4,8E-02 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,1E-01 2 4,8E-02 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,1E-01 2 4,8E-02 -109 (Ablauf Kohlungsbach) 4548271	-102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 07.07.15 4.9E+00 3 1.5E-01 9 -102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 01.10.15 5.0E+00 3 1.4E-01 9 -108X (Überlauf Borbachtal) 4547934 5609709 21.01.15 1.3E+01 6 1.3E+01 6 9.1E-01 3 2.2E-02 9 -108X (Überlauf Borbachtal) 4547934 5609709 26.03.15 9.1E-01 3 2.2E-02 9 -108X (Überlauf Borbachtal) 4547934 5609709 20.05.15 8.9E-01 3 2.1E-02 9 -108X (Überlauf Borbachtal) 4547934 5609709 07.07.15 8.7E-01 2 2.2E-02 9 -108X (Überlauf Borbachtal) 4547934 5609709 08.10.15 7.7E-01 1 1.9E-02 9 -109 (Ablauf Kohlungsbach) 4548271 5611161 21.01.15 4.9E+00 6 1.2E-01 2 8.5E-02 9 -109 (Ablauf Kohlungsbach) 4548271 5611161 04.03.15 1.2E-01 2 8.5E-02 9 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1.2E-01 1 3.4E-02 9 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1.2E-01 1 3.4E-02 9 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1.2E-01 1 3.4E-02 9 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1.2E-01 1 2.2E-02 9 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1.2E-01 1 3.4E-02 9 -109 (Ablauf Kohlungsbach) 4548271 5611161 01.10.15 1.1E-01 2 2.8E-02 9 -113 (Ablauf Kohlungsbach) 4548757 5610532 22.01.15 4.7E+00 6 4.0E-01 2 4.8E-02 7	-102 (Ablauf a.d. Eisenbrücke)	-102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 07.07.15 4,9E+00 3 1,5E-01 9 2,2E-02 1 -102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 01.10.15 5,0E+00 3 1,4E-01 9 2,2E-02 1 -108X (Überlauf Borbachtal) 4547934 5609709 21.01.15 1,3E+01 6 1,3E+01 6 2,0E-02 9 < 1,3E-02 1 -108X (Überlauf Borbachtal) 4547934 5609709 20.05.15 9,1E-01 3 2,2E-02 9 < 1,3E-02 1 -108X (Überlauf Borbachtal) 4547934 5609709 20.05.15 8,9E-01 3 2,1E-02 9 < 1,0E-02 1 -108X (Überlauf Borbachtal) 4547934 5609709 07.07.15 8,7E-01 1 1,9E-02 9 < 1,0E-02 1 -108X (Überlauf Borbachtal) 4547934 5609709 08.10.15 7,7E-01 1 1,9E-02 9 < 1,0E-02 1 -109 (Ablauf Kohlungsbach) 4548271 5611161 21.01.15 4,9E+00 6 1,2E-01 2 8,5E-02 9 1 -109 (Ablauf Kohlungsbach) 4548271 5611161 04.03.15 1,2E-01 1 3,4E-02 9 1 -109 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,2E-01 2 3,3E-02 9 1,3E-02 2 -110 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,0E-01 2 3,3E-02 9 1,3E-02 2 -110 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,0E-01 2 2,8E-02 9 1,3E-02 2 -110 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,0E-01 2 2,8E-02 9 1,3E-02 2 -113 (Ablauf Kohlungsbach) 4548271 5611161 01.10.15 1,1E-01 2 2,8E-02 7 < 1,9E-01 1,0E-01 2 1	-102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 07.07.15 4.9E+00 3 1,5E-01 9 2,2E-02 10 -102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 01.10.15 5.0E+00 3 1,4E-01 9 2,2E-02 10 -108X (Überlauf Borbachtal) 4547934 5609709 21.01.15 1,3E+01 6 1,0E+00 3 2,1E-02 9 < 1,3E-02 108X (Überlauf Borbachtal) 4547934 5609709 20.05.15 1,3E+01 6 8,9E-01 3 2,1E-02 9 < 1,3E-02 108X (Überlauf Borbachtal) 4547934 5609709 20.05.15 8,9E-01 2 2,2E-02 9 < 1,0E-02 1008X (Überlauf Borbachtal) 4547934 5609709 07.07.15 8,7E-01 1 1,9E-02 9 < 1,0E-02 1008X (Überlauf Borbachtal) 4547934 5609709 08.10.15 7,7E-01 1 1,9E-02 9 < 1,0E-02 1009 (Ablauf Kohlungsbach) 4548271 5611161 21.01.15 4,9E+00 6 1,2E-01 2 8,5E-02 9 1 1,3E-01 1 3,4E-02 9 1 1,0E-02 10 (Ablauf Kohlungsbach) 4548271 5611161 07.07.15 1,0E-01 2 3,3E-02 9 1,3E-02 21 1,0E-01 2 3,3E-02 9 1,3E-02 21 1,0E-01 2 2,8E-02 7 < 1,9E-01 1 1,0E-01 2 2,8E-02 7 < 1,9E-01 1 1,0E-01 2 2,8E-02 7 < 1,9E-01 1,0E-01 2 3,8E-01 2 4,8E-02 7 < 1,9E-01 1,0E-01 2 4,8E-02 7 < 1,9	-102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 07.07.15	-102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 07.07.15 4.9E+00 3 1.5E+01 9 2.2E+02 10 -102 (Ablauf a.d. Eisenbrücke) 4549269 5608571 01.10.15 5.0E+00 3 1.4E+01 9 2.2E+02 10 -108X (Überlauf Borbachtal) 4547934 5609709 21.01.15 1.3E+01 6 9,1E+01 3 2.2E+02 9 1.3E+02 17 < 2.6E+01 4.9E+02 9 1.3E+02 17 < 2.6E+01 5 1.0E+02 9 1.3E+02 17 < 2.6E+01 1.3E+01 6 9 1.2E+01 1 3.4E+01 9 1.2E+01 1 1.9E+02 9 1.3E+02 17 < 2.6E+01 1.3E+01 6 1.0E+01 3 1.2E+01 1 1.9E+02 9 1.3E+02 17 < 2.6E+01 1.3E+01 6 1.0E+01 1 1.9E+02 9 1.3E+02 17 < 2.6E+01 1.3E+01 6 1.0E+01 1 1.9E+02 9 1 1.3E+01 1 1.9E+02 1 1 1.9E+02 1 1 1.0E+01 1 1.9E+01 1 1.0E+01 1 1.9E+01 1 1.0E+01 1 1.9E+01 1 1.0E+01

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Schlema-Alberoda, Basismonitoring Schlema

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: E 2.

Medium: Abwasser

	ezeichnung der ne- bzw. Messorte		Probeentna Messdatum	ahme- bzw. oder Mess-			М	essergeb	nis,	Messunsic	herl	eit, Maße	nhei	t			Bemerkungen	
					nelzeitraum	U 238			U_nat	:	Ra 226	1	Pb 210		F	Ra 228		
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/I	%	,	mg/l	%	Bq/I	%	Bq/l	%	В	3q/I	%	
m-113	m-113 (Ablauf Kleinstau Poppenw	4548757	5610532	19.03.15					5,8E-01	2	4,2E-02	9						Ra 226 = 4,9E-02 Bq/l U_nat = 5,2E-01 mg/l
	m-113 (Ablauf Kleinstau Poppenw	4548757	5610532	21.05.15					6,5E-01	1	5,2E-02	9						Ra 226 = 3,6E-02 Bq/l U_nat = 6,9E-01 mg/l
	m-113 (Ablauf Kleinstau Poppenw	4548757	5610532	16.07.15					1,1E+00	3	6,0E-02	9						Ra 226 = 7,4E-02 Bq/l U_nat = 9,8E-01 mg/l
	m-113 (Ablauf Kleinstau Poppenw	4548757	5610532	12.11.15					5,2E-01	3	4,2E-02	9	< 1,2E-0	2				Ra 226 = 5,4E-02 Bq/l U_nat = 5,5E-01 mg/l
m-150	m-150 (Kohlungsbach Schachtgel	4548466	5611170	21.01.15		1,5E+0 ⁻ 1,7E+0 ⁻			1,3E+00	3	8,1E-02 8,6E-02	6 8	< 3,1E-0 < 1,3E-0		<	2,5E-02		
	m-150 (Kohlungsbach Schachtgel	4548466	5611170	17.03.15					1,3E+00	3	1,6E-01	9						Ra 226 = 2,1E-01 Bq/l U_nat = 1,4E+00 mg/l
	m-150 (Kohlungsbach Schachtgel	4548466	5611170	20.05.15					1,4E+00	3	1,8E-01	9						Ra 226 = 2,0E-01 Bq/l U_nat = 1,4E+00 mg/l
	m-150 (Kohlungsbach Schachtgel	4548466	5611170	15.07.15					1,4E+00	3	2,4E-01	9						Ra 226 = 2,2E-01 Bq/l U_nat = 1,2E+00 mg/l
	m-150 (Kohlungsbach Schachtgel	4548466	5611170	14.10.15					7,6E-01	3	1,4E-01	9	1,7E-0	2 11				Ra 226 = 1,7E-01 Bq/l U_nat = 6,9E-01 mg/l
m-555	m-555 (WBA Schlema; Einl.stelle	4548234	5610148	22.01.15		1,8E+00 2,1E+00			1,5E-01	2	2,1E-02 2,2E-02	14 13	< 1,6E-0 1,7E-0		<	2,4E-02		
	m-555 (WBA Schlema; Einl.stelle	4548234	5610148	18.03.15					2,4E-01	2	2,9E-02	9						Ra 226 = 2,7E-02 Bq/l U_nat = 2,1E-01 mg/l
	m-555 (WBA Schlema; Einl.stelle	4548234	5610148	27.05.15					1,1E-01	1	1,9E-02	9						Ra 226 = 2,3E-02 Bq/l U_nat = 1,1E-01 mg/l
	m-555 (WBA Schlema; Einl.stelle	4548234	5610148	15.07.15					2,2E-01	2	2,8E-02	9						Ra 226 = 2,5E-02 Bq/l U_nat = 2,1E-01 mg/l
																		0_nat = 2,1E-01 mg/l

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Schlema-Alberoda, Basismonitoring Schlema

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: E 2.

Medium: Abwasser

Lage und E Probenahn	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess-	ess-									Bemerkungen			
	I			bzw. Samn	nelzeitraum	U 238			U_nat	t	Ra	a 226		Pb 210		Ra 2	28	
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/I	%	ı	mg/l	%	Bq/		%	Bq/l	%	Bq/I	%	
m-555	m-555 (WBA Schlema; Einl.stelle	4548234	5610148	08.10.15					1,0E-01	2		1,8E-02	10	1,7E-02	12			Ra 226 = 2,8E-02 Bq/I U_nat = 9,5E-02 mg/I

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Schlema-Alberoda, Basismonitoring Schlema

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 1.2

Medium:Radon in der bodennahen LuftMessgröße:Aktivitätskonzentration von Rn-222

	Bezeichnung der ne- bzw. Messorte		Messdatum	ahme- bzw. oder Mess- nelzeitraum	Rn 222		Messergebn	nis,	, Messunsicher	heit, Maße	inhe	it I		Bemerkungen	
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/m³	%		%	%		%		%	
509.33	509.33 (Marcus-Semmler-Str.)	4547540	5607520	21.10.14	17.04.15	3,3E+01 4,9E+01									
	509.33 (Marcus-Semmler-Str.)	4547540	5607520	17.04.15	15.10.15	9,9E+01 6,1E+01	14 14								
510.43	510.43 (August-Bebel-Str. 26)	4548510	5608590	21.10.14	15.04.15	4,0E+01 3,1E+01									
	510.43 (August-Bebel-Str. 26)	4548510	5608590	15.04.15	06.10.15	6,6E+01 5,2E+01									
511.33	511.33 (Am Schacht 382)	4547600	5609285	20.10.14	13.04.15	2,7E+02 4,1E+02									
	511.33 (Am Schacht 382)	4547600	5609285	13.04.15	14.10.15	7,1E+01 1,1E+02									
511.37	511.37 (Gelände ehem. Grb.wehr)	4548190	5609065	21.10.14	15.04.15	3,1E+01 2,7E+01									
	511.37 (Gelände ehem. Grb.wehr)	4548190	5609065	15.04.15	14.10.15	8,2E+01 1,1E+02									
511.40	511.40 (Schacht 208, Trafohaus)	4548010	5609226	21.10.14	15.04.15	1,5E+01 2,7E+01									
	511.40 (Schacht 208, Trafohaus)	4548010	5609226	15.04.15	14.10.15	2,5E+02 2,8E+02									
511.44	511.44 (Edelhofweg 7)/Haldenfuß	4548745	5608870	21.10.14	15.04.15	4,3E+01 3,1E+01									
	511.44 (Edelhofweg 7)/Haldenfuß	4548745	5608870	15.04.15	14.10.15	6,9E+01 5,8E+01									
572.00	572.00 (Stadtzentrum Frauengass	4545610	5606655	22.10.14	20.04.15	2,1E+01 1,2E+01									

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Schlema-Alberoda, Basismonitoring Schlema

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 1.2

Medium:Radon in der bodennahen LuftMessgröße:Aktivitätskonzentration von Rn-222

Probenahme	zeichnung der - bzw. Messorte			Messdatum	ahme- bzw. oder Mess- nelzeitraum	s- n Rn 222								Bemerkungen		
Rezeichnung	l ane l	RW	l HW						l %		%	%	6		%	
Bezeichnung 572.00 5	Lage 572.00 (Stadtzentrum Frauengass	RW 4545610	HW 5606655	Beginn 20.04.15	Ende 16.10.15	Bq/m³ 2,6E+01 4,8E+01	% 17		%		%		6		<u>%</u>	

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Schlema-Alberoda, Basismonitoring Schlema

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 1.4

Medium: Schwebstaub

Messgröße: Aktivitätskonzentration langlebiger Alphastrahler

Lage und E Probenahm	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess- nelzeitraum	s-									Bemerkungen
Bezeichnung	Lage	RW	HW	Beginn	Ende	LL <i>F</i> mBq/m³	\ %		%	9	,	%	%		
512.58	Lage 512.58 (Zentralbereich Halde 371/ 512.58 (Zentralbereich Halde 371/	4549010	HW 5611191 5611191	Beginn 28.04.15 28.09.15	08.06.15 02.11.15	mBq/m³ 1,0E-01 1,4E-01	21		%				9%	LLA	A = 1,2E-01 mBq/m ³ A = 1,8E-01 mBq/m ³

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Schlema-Alberoda, Basismonitoring Schlema

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 2.

Medium: Bodenoberfläche

Messgröße: Ablagerung der Ra-226 und Pb-210 Aktivität pro Fläche und Zeit

Lage und E Probenahn	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess- nelzeitraum				Mes	sergebn	is, I	Messunsich	nerh	neit, Maßein	hei	t		Bemerkungen
	I			Dzw. Samin	ieizeitraum		Ra 226											
Bezeichnung	Lage	RW	HW	Beginn	Ende	В	q/m²30d	%		9	%		%		%		%	
511.28	511.28 (nördlich vom Schacht 382	4547370	5609343	08.06.15	08.09.15		4,1E-01	5										
513.54	513.54 (Nordrand Hochhalde 371/	4549575	5611650	08.06.15	08.09.15		1,4E-01	16										

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Schlema-Alberoda, Basismonitoring Schlema

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 5.1

Medium: Sickerwasser

Lage und B Probenahm	ezeichnung der ne- bzw. Messorte		Probeentna Messdatum			Ме	ssergeb	nis,	Messunsic	herl	neit, M	laßein	heit			Bemerkungen		
	1			bzw. Samm	nelzeitraum	U 238		ĺ	U_nat	1	Ra 226		Pb	210		Ra 228	3	
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/I	%	r		%	Bq/I	%	Bq/l	1	%	Bq/I	%	
m-013A	m-013A	4548951	5608830	09.04.15					3,4E+00	3	8,4E-02	9						Ra 226 = 9,3E-02 Bq/l U_nat = 3,4E+00 mg/l
m-024	m-024 (Hauptstr. Am Grünen Wink	4547812	5608426	08.04.15					2,0E-01	1	6,0E-03	12						Ra 226 = < 1,0E-02 Bq/l U_nat = 1,9E-01 mg/l
m-109X	Halde 371/I, W-Rand, Auslauf zen	4548667	5611187	22.04.15					1,7E+00	3	7,0E-02	9						Ra 226 = 8,0E-02 Bq/l U_nat = 1,6E+00 mg/l
m-160A	m-160A (SiWa-Fassung am S-Rar	4546755	5608501	22.04.15					3,4E-01	3	2,3E-02	9						Ra 226 = 2,4E-02 Bq/l U_nat = 3,9E-01 mg/l

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Schlema-Alberoda, Basismonitoring Schlema

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 5.2

Medium: Oberflächenwasser

	Bezeichnung der ne- bzw. Messorte		Probeentna Messdatum			Ме	ssergeb	nis,	Messunsic	herh	neit, Maße	inheit		Bemerkungen		
	I			bzw. Samn	nelzeitraum	U 238			U_nat	1	Ra 226		Pb 210)		
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/I	%	r	ng/l	%	Bq/I	%	Bq/I	%	%	
m-037A	m-037A (Silberbach v. Einlauf i.d.	4546910	5607805	28.05.15					2,2E-03	2	7,0E-03	11				Ra 226 = < 1,0E-02 Bq/l U_nat = 2,2E-03 mg/l
m-081	m-081 (Borbach Quellgebiet)	4546670	5610041	26.03.15					4,5E-03	2	4,0E-03	14				Ra 226 = < 1,0E-02 Bq/l U_nat = 5,0E-04 mg/l
m-111	m-111 (Zwickauer Mulde Höhe Ha	4547541	5611380	22.04.15					5,4E-03	1	1,1E-02	10				Ra 226 = < 1,0E-02 Bq/l U_nat = 5,8E-03 mg/l
	m-111 (Zwickauer Mulde Höhe Ha	4547541	5611380	10.11.15					2,5E-02	3	1,3E-02	10				Ra 226 = 1,5E-02 Bq/l U_nat = 2,6E-02 mg/l
m-131	m-131 (Zwickauer Mulde Schillerb	4549424	5606312	22.04.15					1,1E-03	1	1,0E-02	10				Ra 226 = < 1,0E-02 Bq/l U_nat = 1,2E-03 mg/l
	m-131 (Zwickauer Mulde Schillerb	4549424	5606312	10.11.15					9,7E-04	3	9,0E-03	11				Ra 226 = 1,7E-02 Bq/l U_nat = 1,0E-03 mg/l
m-151	m-151 (Schlemabach Lichtloch 2)	4548312	5609173	01.07.15					1,1E-02	2	7,0E-03	11				Ra 226 = < 1,0E-02 Bq/l U_nat = 1,1E-02 mg/l
m-155	m-155 (Alberodabach v.E. Zw.Mld	4549251	5607726	09.04.15					6,2E-04	2	4,0E-03	14				Ra 226 = < 1,0E-02 Bq/l U_nat = 3,0E-04 mg/l
m-170B	Überwachung Schlemabach vor b	4546549	5607496	01.07.15					1,3E-03	2	6,0E-03	12				Ra 226 = 2,0E-02 Bq/l U_nat = 1,4E-03 mg/l
m-185A	m-185A (Rohrauslauf Ablauf Silbe	4546025	5608966	10.11.15				<	3,2E-04		3,0E-03	18				Ra 226 = < 1,0E-02 Bq/l U_nat = 3,0E-04 mg/l

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Schlema-Alberoda, Basismonitoring Schlema

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 5.3

Medium: Grundwasser

Lage und B Probenahm	Bezeichnung der ne- bzw. Messorte		Probeentna Messdatum			Ме	ssergeb	nis,	Messunsic	herl	neit, Ma	ßeinh	neit			Bemerkungen		
	1			bzw. Samn	nelzeitraum	U 238			U_nat		Ra 226	ĺ	Pb :	210		Ra 228		
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/I	%	n	ng/l	%	Bq/I	%	Bq/I	- 1	%	Bq/l	%	
m-3363	m-3363 (oberflächennaher GWL; /	4546753	5608854	30.09.15					1,2E-02	3	3,9E-02	9						Ra 226 = 2,8E-02 Bq/l U_nat = 1,2E-02 mg/l
m-3393	m-3393 (GWBM Hd. 371/II)	4548945	5610667	15.07.15					1,1E-01	2	2,1E-02	9						Ra 226 = 2,2E-02 Bq/l U_nat = 1,1E-01 mg/l
m-3514	m-3514 (Halde 38 neu, Abstrom)	4548002	5609152	08.04.15					2,1E-02	1	7,0E-03	11						Ra 226 = < 1,0E-02 Bq/l U_nat = 1,8E-02 mg/l
m-3523	Halde 366, SE-Rand, Haldenfuß	4549782	5608321	25.06.15					1,1E-01	2	1,3E-02	10						Ra 226 = 1,2E-02 Bq/l U_nat = 1,2E-01 mg/l
m-3529	m-3529 (GWBM Hd 66/207 SE-Te	4548964	5608747	16.09.15					1,9E-02	3	1,1E-01	9						Ra 226 = 1,3E-01 Bq/l U_nat = 1,7E-02 mg/l

Aufzeichnung der Ergebnisse der Allgemeinen Überwachung (für das Jahr 2015)

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Schlema-Alberoda, Betrieb der WBA Schlema

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: A 2

Medium: Immobilisate

Messgröße: spezifische Aktivität

Lage und E Probenahn	Bezeichnu ne- bzw. N	ing der lessorte		Probeentn Messdatum bzw. Samn					s, N	Vlessunsic	herl			t		Bemerkungen		
Damaiahauma		Logo	RW	HW		Ende	Ra 226 Bq/kg	%	U 23 Bq/kg	8 %		U 235 Bq/kg	%	U_n Bq/kg	at %		%	
Bezeichnung		Lage			Beginn	Ende		-		_				Бү/ку	/0		10	
WBAAUE	WBA Aue		4552050	5610010	15.02.15		6,6E+03				4	2,4E+03						
	WBA Aue		4552050	5610010	13.05.15		6,4E+03				4	2,4E+03	4					
	WBA Aue		4552050	5610010	12.08.15		7,0E+03				4	2,2E+03						
	WBA Aue		4552050	5610010	11.11.15		8,5E+03	4	6,1E-	-04 7	7	2,7E+03	4					

Anhang C

Standort Crossen

Basismonitoring

- Abwasser
- Radon in der bodennahen Luft
- Schwebstaub
- Bodenoberfläche
- Oberflächenwasser
- Grundwasser
- Trinkwasser

Betrieb der WBA Helmsdorf

- Oberflächenwasser
- Immobilisate
 - o Immobilisat am: 08.02.15 / 06.05.15 / 28.09.15 / 30.11.15

Sanierung Betriebsgelände ehem. Erzaufbereitung Crossen

- Grundwasser

Freigabe Aufstandsflächen Bergehalde

- Haldenmaterial oder Tailings

Anmerkung: In der Spalte **Bemerkungen** sind jeweils die von der Wismut GmbH gemeldeten Werte zum Vergleich aufgeführt.

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Crossen, Basismonitoring Crossen

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: E 2.

Medium: Abwasser

	Lage und Bezeichnung der Probenahme- bzw. Messorte				Probeentnahme- bzw. Messdatum oder Mess- bzw. Sammelzeitraum			M	essergeb	nis	, Me	ssunsic	her	heit	, Maßein	heit	•			Bemerkungen
	1			bzw. Samn	nelzeitraum	U 238			U_nat			Ra 226			Pb 210			Ra 228		
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/I	%		mg/l	%	ı	Bq/I	%		Bq/l	%	ı	Bq/l	%	
M-039	Gereinigtes Freiwasser, WBA Abstoß	4531158	5624300	22.01.15		8,5E-01 9,2E-01			7,3E-02		< <	1,5E-02 5,0E-03	47	< v	1,2E-01 1,2E-02		<	2,3E-02		Ra 226 = < 1,0E-02 Bq/l U_nat = 7,7E-02 mg/l
				22.01.15					6,9E-02	2		3,0E-03	17							
				07.04.15					1,6E-01	1		1,0E-02	10							Ra 226 = 1,3E-02 Bq/l U_nat = 1,7E-01 mg/l
				24.07.15					2,7E-01	3		1,3E-02	10							Ra 226 = 1,2E-02 Bq/l U_nat = 2,4E-01 mg/l
				21.10.15					1,7E-01	2		1,6E-02	10		1,8E-02	12				Ra 226 = < 1,0E-02 Bq/l U_nat = 1,7E-01 mg/l

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Crossen, Basismonitoring Crossen

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 1.2

Medium:Radon in der bodennahen LuftMessgröße:Aktivitätskonzentration von Rn-222

	Bezeichnung der ne- bzw. Messorte		Probeentn Messdatum bzw. Samn	Rn 222		Messergel	bnis	, Messunsiche	rheit, N	laßeinhe	it 		Bemerkungen		
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/m³	%		%	%	,	%	,	%	
202.60	Dorotheen-Straße	4534070	5622960	04.11.14	21.04.15	2,2E+01 1,6E+01									
				21.04.15	26.10.15	2,5E+01 1,4E+01	17 20								
206.60	An der Muldebrücke	4534035	5625000	03.11.14	21.04.15	2,9E+01 2,9E+01									
				21.04.15	26.10.15	8,5E+01 9,3E+01									
207.80	Lange Straße	4534500	5625440	21.04.15	26.10.15	3,3E+01 5,1E+01									
210.20	Ortsausgang nach Berghäuser	4530040	5627000	04.11.14	24.04.15	1,1E+01 1,2E+01									
				24.04.15	27.10.15	3,3E+01 4,1E+01									
215.10	Bergehalde Crossen, Haldenfuß Südseite	4534185	5625265	03.11.14	28.04.15	2,7E+01 2,7E+01									
				28.04.15	26.10.15	5,8E+01 7,7E+01									
215.19	Betriebsgelände Haldenzufahrt	4534242	5625130	03.11.14	28.04.15	3,4E+01 2,7E+01									
				28.04.15	26.10.15	4,5E+01 4,5E+01	17 17								
222.10	Gehöft	4530250	5625090	04.11.14	24.04.15	< 1,0E+01 1,2E+01	20								
				24.04.15	27.10.15	1,7E+01 3,3E+01									
230.00	IAA Helmsdorf, Hauptdamm	4531960	5625450	04.11.14	28.04.15	< 1,0E+01 1,8E+01	20								

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Crossen, Basismonitoring Crossen

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 1.2

Medium:Radon in der bodennahen LuftMessgröße:Aktivitätskonzentration von Rn-222

	Bezeichnung der ne- bzw. Messorte		Probeentn Messdatum bzw. Samn		D 000		Messergeb	nis	, Messunsicl	heri	neit, Maßeinhe	oit			Bemerkungen		
Bezeichnung	Lage	RW	HW	Beginn	Ende		Rn 222 3q/m³	%	I	%	1	%	%		0	%	
230.00	IAA Helmsdorf, Hauptdamm	4531960	5625450	28.04.15	27.10.15		1,5E+01	20		,,		70				,,	
234.20	Werksgelände, Bereich der ehem. Verwaltung	4534429	5624812	03.11.14	21.04.15	<	1,5E+01 1,0E+01 1,2E+01	20									
				21.04.15	26.10.15		3,8E+01 4,3E+01	17 17									
248.00	östlich der Teiche	4533160	5624300	04.11.14	21.04.15		2,2E+01 1,2E+01										
				21.04.15	26.10.15		2,0E+01 3,0E+01										
283.00	Wulm	4535270	5627195	03.11.14	21.04.15			20 17									
				21.04.15	26.10.15		3,3E+01 2,8E+01	17 17									
285.00	Mosel	4534100	5627060	04.11.14	21.04.15	< <	1,0E+01 1,0E+01										
				21.04.15	26.10.15												

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Crossen, Basismonitoring Crossen

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 1.4

Medium: Schwebstaub

Messgröße: Aktivitätskonzentration langlebiger Alphastrahler

Lage und E Probenahn	Bezeichnung der ne- bzw. Messorte		Probeentn Messdatum			Messergeb	nis,	, Messunsiche	rheit	t, Maßeinh	eit			Bemerkungen		
	I			bzw. Samn	nelzeitraum	LLA	١									
Bezeichnung	Lage	RW	HW	Beginn	Ende	mBq/m³	%		%	9	5	9	6	%		
215.14	Lange Straße, Sickerwasser-Fassung	4534470	5625550	28.04.15	08.06.15	1,5E-01										a = 1,5E-01 mBq/m³
				28.09.15	02.11.15	1,1E-01	21								LLA	1,4E-01 mBq/m ³
215.19	Betriebsgelände Haldenzufahrt	4534242	5625130	28.04.15	08.06.15	7,6E-02	22								LLA	$a = 8.0E-02 \text{ mBq/m}^3$
				28.09.15	02.11.15	1,4E-01									LLA	$L = 1,5E-01 \text{ mBq/m}^3$
230.00	IAA Helmsdorf, Hauptdamm	4531960	5625450	28.04.15	08.06.15	6,0E-02										$a = 8.0E-02 \text{ mBq/m}^3$
				28.09.15	02.11.15	1,1E-01	21								LLA	$L = 1,4E-01 \text{ mBq/m}^3$

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Crossen, Basismonitoring Crossen

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 2.

Medium: Bodenoberfläche

Messgröße: Ablagerung der Ra-226 und Pb-210 Aktivität pro Fläche und Zeit

Lage und E Probenahr	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess- nelzeitraum	ss- Im										Bemerkungen	
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/m ² 30d	%		%	6	9	%	9	%		%	
203.00	IAA Dänkritz 1, Nordseite	4531135	5626145	10.06.15	08.09.15	2,4E-01	11										
215.19	Betriebsgelände Haldenzufahrt	4534242	5625130	12.06.15	08.09.15	1,2E+00	4										
230.00	IAA Helmsdorf, Hauptdamm	4531960	5625450	10.06.15	08.09.15	2,9E-01	9										

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Crossen, Basismonitoring Crossen

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 5.2

Medium: Oberflächenwasser

	ezeichnung der ie- bzw. Messorte			Messdatum	ahme- bzw. oder Mess-			Me	essergeb	nis,	Messunsio	herb	neit, Maße	inheit		Bemerkungen
1				bzw. Samn	nelzeitraum	U 238			U_nat	1	Ra 226		Pb 210)		
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/I	%		mg/l	%	Bq/I	%	Bq/I	%	%	
M-201	Zwickauer Mulde Wehr Mühlgraben (vor Betrieb)	4534609	5624108	06.05.15					5,2E-03	1	1,1E-02	10				Ra 226 = 1,1E-02 Bq/l U_nat = 5,8E-03 mg/l
M-204	Oberrothenbacher Bach v. Einmündg. in Mulde(OR/1)	4533819	5626113	06.05.15					2,7E-01	3	1,4E-02	10		Ш		Ra 226 = 1,4E-02 Bq/l U_nat = 3,1E-01 mg/l
M-205	Zwickauer Mulde Muldenbrücke Schlunzig (nach Betrieb)	4535848	5628330	10.06.15					9,7E-03	2	1,0E-02	10		Ш		Ra 226 = 1,1E-02 Bq/l U_nat = 9,0E-03 mg/l
M-212	Teich Forellenmühle	4531771	5627248	06.05.15					1,3E-01	1	7,2E-02	9		Ш		Ra 226 = 7,9E-02 Bq/l U_nat = 1,4E-01 mg/l
M-223	Lauterbach n. Zufluss d. Dänkritzer Baches	4529152	5626305	12.08.15					2,1E-02	2	8,0E-03	11		Ш		Ra 226 = < 1,0E-02 Bq/l U_nat = 2,2E-02 mg/l
M-232	Zinnborn gesamt Höhe Pegel 780	4531545	5626725	12.08.15					2,2E-01	2	1,1E-01	9		Ш		Ra 226 = 1,1E-01 Bq/l U_nat = 2,2E-01 mg/l
M-233	Unterlauf Zinnbach, Höhe Lauenhainer Grund	4533193	5627505	12.08.15					6,8E-02	2	1,4E-02	10		Ш		Ra 226 = 1,6E-02 Bq/l U_nat = 7,1E-02 mg/l
														Ш		
														Ш		
														Ш		
														Ш		

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Crossen, Basismonitoring Crossen

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 5.3

Medium: Grundwasser

Lage und E Probenahn	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess-			Мє	essergeb	nis,	Messunsic	heri	neit, Ma	ßeinhe	it			Bemerkungen
	1			bzw. Samn	nelzeitraum	U 238			U_nat	:	Ra 226		Pb 2	210		Ra 228		
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/l	%	ı	mg/l	%	Bq/l	%	Bq/I	%		Bq/I	%	
Bezeichnung 1158A 753A	Lage Zinnborn 1158A Ortslage Oberrothenbach	RW 4531470 4532713	HW 5626536 5625727	Beginn 05.03.15 07.05.15	Ende		%			2	7,2E-02	9	Bq/l					Ra 226 = 8,5E-02 Bq/I U_nat = 4,2E-02 mg/I Ra 226 = < 1,0E-02 Bq/I U_nat = 5,9E-01 mg/I

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Crossen, Basismonitoring Crossen

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 5.4

Medium: Trinkwasser

Lage und E Probenahn	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess-				Messe	rgebn	nis, N	Messunsic	herh	neit, Maßein	heit			Bemerkungen
	1			bzw. Samn	nelzeitraum	ı	U 238		U	l_nat		Ra 226		Pb 210		Ra 228	3	
Bezeichnung	Lage	RW	HW	Beginn	Ende	В	q/I	%	mg/l		%		%	Bq/I	%	Bq/I	%	
TBL	Lage Tiefbrunnen Langenhessen	RW 4526360	HW 5626820	30.03.15 20.10.15	Ende	В	<u>4</u> 2	%	1,8	3E-02	2 2	8,0E-03 8,0E-03 6,0E-03	11 11	1,6E-02	13	Вф//	\(\frac{\pi_{\text{order}}}{\text{order}}\)	

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Crossen, Betrieb der WBA Helmsdorf

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 5.2

Medium: Oberflächenwasser

Lage und E Probenahn	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess-	ess-									Bemerkungen				
	1				nelzeitraum	U 238			U_nat			a 226			Pb 210				
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/I	%	m	ng/l	%	Bq/l	ı	%	I	Bq/l	%		%	
IAA Helmsdorf	IAA Helmsdorf	4532000	5624750	08.02.15		6,7E+01	6				1	,2E-01	24	<	1,8E+00				
				06.05.15		9,3E+01	5				1	,3E-01	22	<	2,1E+00				
				28.09.15		7,9E+01	6				4	1,2E-01	8	<	2,5E+00				
				30.11.15		8,2E+01	5				6	6,4E-01	6	<	3,2E+00				!

Aufzeichnung der Ergebnisse der Allgemeinen Überwachung (für das Jahr 2015)

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Crossen, Betrieb der WBA Helmsdorf

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: A 2

Medium: Immobilisate

Messgröße: spezifische Aktivität

Lage und E Probenahn	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess- nelzeitraum	less-									Bemerkungen		
Bezeichnung	Lage	RW	HW	Beginn	Ende	Ra 226 _{Bq/kg}	%		} %			%	U_na Bq/kg	at %		%	
					Lilde								Бчид	70		1 /0	
WBAHELM	WBA Helmsdorf	4531150	5624350	08.02.15		8,2E+01	4				9,7E+02	4					
				06.05.15		1,1E+02					1,7E+03	4					
				28.09.15		1,0E+02			04 4		1,6E+03	4					
				30.11.15		8,8E+01	2	1,1E+	04 2	2	4,9E+02	2					

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Crossen, Sanierung Betriebsgelände ehem. Erzaufbereitung Crossen

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 5.3

Medium: Grundwasser

Lage und E Probenahr	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess-			Me	essergeb	nis,	Messunsio	herl	neit, Maße	inheit			Bemerkungen
	1			bzw. Samn	nelzeitraum	U 238			U_nat		Ra 226		Pb 21		Ra 228		
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/l	%	ı	mg/l	%	Bq/l	%	Bq/I	%	Bq/l	%	
1230z	Werksgelände Crossen 1230z	4534065	5625055	07.05.15					8,8E-01		2,1E-02						Ra 226 = 1,8E-02 Bq/l U_nat = 9,0E-01 mg/l
1240A	Werksgelände Crossen 1240A	4533989	5624885	18.03.15					5,8E-01	3	2,1E-02			Ш			Ra 226 = 3,2E-02 Bq/l U_nat = 6,1E-01 mg/l
				16.07.15					7,1E-01	3	3,7E-02	9		Ш			Ra 226 = 4,1E-02 Bq/l U_nat = 6,5E-01 mg/l
														Ш			
														Ш			
														Ш			
														Ш			
														Ш			
														Ш			

Aufzeichnung der Ergebnisse der Allgemeinen Überwachung (für das Jahr 2015)

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Crossen, Freigabe Aufstandsflächen Bergehalde Crossen

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: A 1

Medium: Haldenmaterial oder Tailings

Messgröße: spezifische Aktivität

Lage und E Probenahn	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess-			Ме	ssergeb	nis,	Messunsio	herl	heit, Maß	einhei	t		Bemerkungen
	l			bzw. Samn	nelzeitraum	Ra 226			U 238		U 235		U_ı	nat			
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/kg	%	В	q/kg	%	Bq/kg	%	Bq/kg	%		%	
	Bergehalde Crossen, Baufeld 6.9	4535037	5620339	17.03.15		6,9E+01	4		2,2E+02	7	1,1E+01	6					
	Bergehalde Crossen, Baufeld 7.9			02.06.15		1,2E+02	4		4,6E+02	8	2,2E+01	5					
	Bergehalde Crossen, Baufeld 8.4			29.10.15		5,3E+01	4		2,5E+02	6	1,1E+01	6					

Anhang G

Standort Dresden-Gittersee

Basismonitoring

- Abwetter bzw. Abluft
- Abwasser
- Radon in der bodennahen Luft
- Oberflächenwasser
- Grundwasser

Anmerkung: In der Spalte **Bemerkungen** sind jeweils die von der Wismut GmbH gemeldeten Werte zum Vergleich aufgeführt.

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Dresden-Gittersee, Basismonitoring Gittersee

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: E 1.

Medium: Abwetter bzw. Abluft

Messgröße: Radon-222-Aktivitätskonzentration; Aktivitätskonzentration langlebiger Alphastrahler, Urankonzentration

Lage und E Probenahn	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess-			Me					nerh	eit, Maßeinh	eit		E	3emerkungen
	I				nelzeitraum	Rn 222			LLA			J 238						
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/m³	%	ı	mBq/m³	%	Bq/	m³	%	0,	%	%		
ELBMUN	Elbstollnmundloch	5407790	5659520	10.02.15	10.02.15			<	1,5E-01								LLA =	2,0E-01 mBq/m ³
				27.08.15	27.08.15				3,3E-01	22							LLA =	5,9E-01 mBq/m ³
				27.08.15		6,7E+02	10											

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Dresden-Gittersee, Basismonitoring Gittersee

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: E 2.

Medium: Abwasser

Lage und E Probenahn	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess-			Ме	ssergeb	nis,	Messu	ınsich	erhe	it, Maßeir	heit			Bemerkungen
	1			bzw. Samn	nelzeitraum	U 238			U_nat	:	Ra	226		Pb 210		Ra 22	28	
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/I	%	r	ng/l	%	Bq/l		%	Bq/I	%	Bq/I	%	
g-640F1	GITTERSEE SÜDWESTLICH SCH.1, FÖDERBOHRLOCH 1	5408089	5652780	15.04.15					1,8E-02		3,	5E-03	_					Ra 226 = 1,4E-02 Bq/l U_nat = 1,9E-02 mg/l

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Dresden-Gittersee, Basismonitoring Gittersee

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 1.2

Medium:Radon in der bodennahen LuftMessgröße:Aktivitätskonzentration von Rn-222

Lage und E Probenahn	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess- nelzeitraum	D= 222		Messer	gebni	s, M	lessunsich	erh	eit, Maßeinh	eit		Bemerkungen
Bezeichnung	Lage	RW	HW	Beginn	Ende	Rn 222 Bq/m³	%		%		1 '	%	1	%	%	
601.00	Bergsicherung, Pförtner	5408070	5652635	08.10.14	08.04.15	1,8E+01 1,1E+01	20									
603.10	Nähe ehem. Verwaltungsgebäude Gittersee	5408133	5652988	08.10.14	08.04.15	1,8E+01 2,1E+01	20									
				08.04.15	21.10.15	2,6E+01 1,6E+01	17				ш					

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Dresden-Gittersee, Basismonitoring Gittersee

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 5.2

Medium: Oberflächenwasser

Lage und E Probenahm	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess-			Мє	essergeb	nis,	Messunsi	cher	heit,	Maßein	heit			Bemerkungen
	1			bzw. Samn	nelzeitraum	U 238			U_nat	:	Ra 226		F	Pb 210				
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/I	%	ı	mg/l	%	Bq/I	%	В	q/I	%	%	,	
g-0076	Kaitzbach oberhalb Bergehalde Dresden-Gittersee	5408537	5652650	21.04.15					1,5E-02		9,0E-03							Ra 226 = 1,5E-02 Bq/l U_nat = 1,6E-02 mg/l
g-0077	Kaitzbach nach Grubenwassereinleitung	5408950	5653020	21.04.15					4,2E-02	1	8,0E-03	13						Ra 226 = 1,5E-02 Bq/l U_nat = 4,4E-02 mg/l
																Н		
																Н		

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Dresden-Gittersee, Basismonitoring Gittersee

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 5.3

Medium: Grundwasser

Lage und E Probenahn	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess-			Me	essergeb	nis,	Messunsid	cher	heit, Ma	aßeinh	neit			Bemerkungen
	I			bzw. Samn	nelzeitraum	U 238			U_nat		Ra 226		Pb	210		Ra 228		
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/I	%		mg/l	%	Bq/I	%	Bq/I		%	Bq/I	%	
g-56501	Halde Gittersee Haldenfuß	5408495	5652728	20.05.15					1,1E-02	2	4,0E-03	21						Ra 226 = < 1,0E-02 Bq/l U_nat = 1,1E-02 mg/l
g-6612E	ZIEGELEI ZAUKERODE	5405266	5653905	19.05.15					8,8E-02	1	1,6E-02	10						Ra 226 = 2,2E-02 Bq/l U_nat = 9,4E-02 mg/l
g-6616E	Dresden-Gittersee-Park(Döhlen)	5405699	5652106	18.05.15					1,3E-02	4	2,9E-02	8						Ra 226 = 3,1E-02 Bq/l U_nat = 1,7E-02 mg/l

Anhang K

Standort Königstein

Basismonitoring

- Abwasser
- Radon in der bodennahen Luft
- Schwebstaub
- Bodenoberfläche
- Sickerwasser
- Oberflächenwasser
- Grundwasser
- Trinkwasser

Flutung der Grube Königstein

- Grundwasser

Anmerkung: In der Spalte **Bemerkungen** sind jeweils die von der Wismut GmbH gemeldeten Werte zum Vergleich aufgeführt.

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Königstein, Basismonitoring Königstein

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: E 2.

Medium: Abwasser

Lage und E Probenahm	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess-			Me	essergeb	nis,	, Me	ssunsic	her	heit,	Maßein	heit	i			Bemerkungen
	1			bzw. Samn	nelzeitraum	U 238			U_nat			Ra 226			Pb 210			Ra 228		
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/I	%			%	E	Bq/l	%	E	3q/I	%	ı	Bq/I	%	
k-0001	Wapro	5432280	5642818	09.02.15	15.02.15				3,3E-02	2		4,0E-03	27							Ra 226 = 1,2E-02 Bq/l U_nat = 3,6E-02 mg/l
				16.03.15											1,0E-02	21				
				18.05.15	24.05.15				7,0E-02	1	<	4,0E-03								Ra 226 = < 1,0E-02 Bq/l U_nat = 7,2E-02 mg/l
				20.05.15											1,2E-02	16				
				17.08.15	23.08.15				9,6E-02	1		7,5E-03	7							Ra 226 = 1,3E-02 Bq/l U_nat = 9,2E-02 mg/l
				09.11.15	15.11.15				7,5E-02	3		7,0E-03	18							Ra 226 = < 1,0E-02 Bq/l U_nat = 7,6E-02 mg/l
k-0002	Elbeleitung, Mündung	5433715	5644130	26.01.15		3,6E-01			3,3E-02	2		1,2E-02		<	1,1E-01		<	2,2E-02		
						4,2E-01	7				<	4,0E-03		<	1,3E-02					

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Königstein, Basismonitoring Königstein

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 1.2

Medium:Radon in der bodennahen LuftMessgröße:Aktivitätskonzentration von Rn-222

Lage und E Probenahn	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess- nelzeitraum		D 000		Messergeb	nis,	, Messunsich	erh	neit, Maßeinhe	it			Bemerkungen
Bezeichnung	Lage	l RW	HW	Beginn	Ende		Rn 222 3q/m³	%	ı	%	1	%	%		1	%	
716.50	Forsthaus am Schacht 387	5432465	5640710	07.10.14	07.04.15	<	1,0E+01	,,		,,		,,,				,,,	
				07.04.15	20.10.15	<	1,0E+01 1,9E+01 2,4E+01										
717.30	Leupoldishain	5431490	5641590	07.10.14	07.04.15	< <	1,0E+01 1,0E+01										
				07.04.15	20.10.15		2,4E+01 2,6E+01										
719.70	Bielataler Straße	5433445	5642380	07.10.14	07.04.15		1,5E+01 2,1E+01										
				07.04.15	20.10.15		2,6E+01 4,1E+01										
720.20	Struppen-Siedlung, Hohe Straße	5430720	5642310	07.10.14	07.04.15	< <	1,0E+01 1,0E+01										
				07.04.15	20.10.15		1,6E+01 1,4E+01	20 20									

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Königstein, Basismonitoring Königstein

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 1.4

Medium: Schwebstaub

Messgröße: Aktivitätskonzentration langlebiger Alphastrahler

	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess- nelzeitraum		LLA		Messergebnis	s, I	Messunsiche	erh	eit, Maßeinhe	eit			Bemerkungen
Bezeichnung	Lage	l RW	l HW	Beginn	Ende	ı	mBq/m³	%	%	6	9	%	%	6	%		
710.10	Niederlassung Königstein, Messcontainer	5432275	5642785	07.01.15	14.01.15	<	6,9E-03									LLA =	: 2,0E-02 mBq/m³
	, messes mains			14.01.15	21.01.15		5,3E-03	23								LLA =	2,0E-02 mBq/m ³
				17.06.15	24.06.15		2,1E-02	22								LLA =	4,0E-02 mBq/m ³
				24.06.15	01.07.15		3,8E-02	22								LLA =	5,0E-02 mBq/m ³
				01.07.15	08.07.15		6,6E-02	21								LLA =	6,0E-02 mBq/m ³
				21.10.15	28.10.15		3,2E-02	22								LLA =	6,0E-02 mBq/m ³
				28.10.15	04.11.15		1,6E-01	21								LLA =	1,0E-01 mBq/m ³
				04.11.15	11.11.15		1,7E-01	21								LLA =	1,1E-01 mBq/m ³
710.20	Am Pumpschacht Sickerwasserfassung Schüsselgrundhalde	5432858	5642581	30.04.15	28.05.15		2,3E-02	22								LLA =	: 8,0E-02 mBq/m ³
	oo aasaa ga ahaa aa			01.10.15	28.10.15		1,1E-01	21								LLA =	: 1,6E-01 mBq/m³
720.41	Am Klarwasserschönungsbecken	5432160	5643040	30.04.15	28.05.15		1,8E-02	22								LLA =	8,0E-02 mBq/m ³
				01.10.15	28.10.15		8,9E-02	21								LLA =	: 1,5E-01 mBq/m³

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Königstein, Basismonitoring Königstein

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 2.

Medium: Bodenoberfläche

Messgröße: Ablagerung der Ra-226 und Pb-210 Aktivität pro Fläche und Zeit

Lage und E Probenahn	Bezeichnung der ne- bzw. Messorte			Probeentnahme- bzw. Messergebnis, Messunsicherheit, Maßeinheit Messdatum oder Messbezw. Sammelzeitraum Ra 226 Ra 226										Bemerkungen		
Bezeichnung	Lage	RW	HW	Beginn	Ende		q/m²30d	%		%			%	%	%	
710.00	Niederlassung Königstein, Haupteingang	5432175	5642785	18.06.15	10.09.15		3,9E-01									

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Königstein, Basismonitoring Königstein

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 5.1

Medium: Sickerwasser

Lage und E Probenahn	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess-			Me	essergeb	nis,	, Me	ssunsic	heri	heit,	Maßein	heit				Bemerkungen
	1			bzw. Samn	nelzeitraum	U 238			U_nat	:		Ra 226		F	Pb 210	1	Ra	228		
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/I	%		mg/l	%	E	Bq/I	%	В	q/I	%	Bq/l	- 1	%	
k-0013	Schachtbrunnen Dammfuß Klarwasserschönungsbecken 1	5432272	5643068	13.04.15					2,6E-01	1	<	1,4E-02								Ra 226 = 1,3E-02 Bq/l U_nat = 2,9E-01 mg/l
k-0023A	Drainage 2a Süd Halde Schüsselgrund	5432854	5642581	27.05.15					3,4E+00	3		2,2E-02	8							Ra 226 = 2,0E-02 Bq/l U_nat = 3,5E+00 mg/l
						ı														
						ı														

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Königstein, Basismonitoring Königstein

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 5.2

Medium: Oberflächenwasser

	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess-				Ме	ssergeb	nis	, Me	ssunsic	her	heit	, Maßein	heit		Bemerkungen
	I			bzw. Samn	nelzeitraum		U 238			U_nat			Ra 226			Pb 210			
Bezeichnung	Lage	RW	HW	Beginn	Ende	Е	3q/I	%	r	mg/l	%	ı	Bq/I	%	I	Bq/I	%	%	
k-0018	Quelle Eselsbach	5432502	5643212	14.10.15						2,0E-02	2	<	4,0E-03						Ra 226 = < 1,0E-02 Bq/l U_nat = 1,9E-02 mg/l
k-0021	Elbe Dresden Marienbrücke	5411225	5659200	12.05.15						1,0E-03	2	<	6,0E-03						
				03.08.15						9,7E-04	3	<	5,0E-03						
k-0024	Eselsbach nach Einmündung des Teufelsbaches	5433107	5642785	14.10.15						2,1E-02	2		9,0E-03	12					Ra 226 = 1,1E-02 Bq/l U_nat = 1,9E-02 mg/l
k-0028	Elbufer Rathen	5435650	5647010	13.04.15						1,1E-03	2	<	4,0E-03						Ra 226 = < 1,0E-02 Bq/l U_nat = 1,0E-03 mg/l
OBA00200	Elbe, AMB Schmilka, rechts	4657015	5641923	29.12.14	29.03.15	<	1,1E-01 2,1E-02	12				<	1,6E-02		<	1,1E-01			
				30.03.15	28.06.15	<	1,1E-01 1,3E-02	13				<	1,5E-02		<	1,1E-01			
				29.06.15	27.09.15	<	1,2E-01 1,2E-02					<	1,6E-02		<	9,8E-02			
				28.09.15	03.01.16	<	1,1E-01 1,6E-02					<	1,5E-02		<	1,2E-01			

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Königstein, Basismonitoring Königstein

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 5.3

Medium: Grundwasser

Lage und E Probenahn	Bezeichnung der ne- bzw. Messorte				ahme- bzw. oder Mess-			Ме	ssergeb	nis,	Messunsi	cher	heit, l	Maßein	heit			Bemerkungen
	1			bzw. Samn	nelzeitraum	U 238			U_nat		Ra 226		P	b 210		Ra 22	8	
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/I	%	r	ng/l	%	Bq/I	%	Во	q/I	%	Bq/I	%	
k-4401A	HIRSCHSTANGE/HAFUBE	5432957	5642610	26.05.15					2,3E-02	1	4,0E-03	3 21						Ra 226 = < 1,0E-02 Bq/l U_nat = 2,3E-02 mg/l
k-5501A	HIRSCHSTANGE/HALDENFUßB	5432964	5642617	26.05.15					4,9E-03	1	1,2E-02	2 11						Ra 226 = 1,7E-02 Bq/l U_nat = 6,0E-03 mg/l
k-66008	NÖRDLICH B172	5432028	5643525	29.06.15					8,4E-04	1	7,1E-02	7						Ra 226 = 6,7E-02 Bq/l U_nat = 8,0E-04 mg/l
k-7703E	Struppen (Ersatz für k-77003)	5432648	5643692	02.06.15					3,1E-02	2	1,4E+01	6						Ra 226 = 1,7E+01 Bq/l U_nat = 3,2E-02 mg/l

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Königstein, Basismonitoring Königstein

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 5.4

Medium: Trinkwasser

Lage und E Probenahn	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess-			Me	ssergeb	onis	, Ме	essunsio	her	heit	, Maßein	heit	:			Bemerkungen
	1			bzw. Samn	nelzeitraum	U 238			U_nat	t		Ra 226			Pb 210		ı	Ra 228		
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/I	%	ı	mg/l	%		Bq/I	%	ı	Bq/I	%		3q/I	%	
ZWDS0002	Wasserwerk Hosterwitz	5419500	5654650	09.03.15					3,7E-04	2	<	4,6E-03		<	1,4E-02		<	6,6E-03		
				07.10.15					1,3E-04	3	<	6,1E-03		<	1,2E-02		<	8,3E-03		
ı																				
1																				

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Königstein, Flutung Königstein

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 5.3

Medium: Grundwasser

•	Bezeichnung der ne- bzw. Messorte				ahme- bzw. oder Mess-				Me	essergeb	nis,	Messunsic	her	heit	, Maßein	heit	:			Bemerkungen
	1				nelzeitraum		U 238	ı		U_nat		Ra 226			Pb 210			a 228		
Bezeichnung	Lage	RW	HW	Beginn	Ende		Bq/I	%		mg/l	%	Bq/l	%		Bq/l	%	Bq/	/I	%	
k-6111E	Leupoldishain, Eselsweg	5433225	5642518	03.03.15		<	1,4E+00			1,9E-03	2	1,4E-01	17	<	1,1E+00		< 3	3,0E-01		Ra 226 = 1,3E-01 Bq/l U_nat = 2,7E-03 mg/l
				24.06.15		<	9,1E-01			1,8E-03	2	1,6E-01	19	<	1,0E+00		< 2	2,4E-01		Ra 226 = 1,5E-01 Bq/l U_nat = 1,7E-03 mg/l
				06.08.15		<	1,1E+00			1,2E-03	2	1,5E-01	21	<	1,1E+00		< 2	2,4E-01		Ra 226 = 1,5E-01 Bq/l U_nat = 1,7E-03 mg/l
				04.11.15		<	1,0E+00			2,9E-03	2	2,1E-01	14		9,9E-01	29	< 2	2,4E-01		Ra 226 = 2,1E-01 Bq/l U_nat = 3,2E-03 mg/l
k-66018	Schüsselgrundhalde	5432613	5642367	18.03.15		<	9,7E-01			3,2E-03	2	1,5E+00	4	<	1,0E+00		< 2	2,6E-01		Ra 226 = 1,9E+00 Bq/l U_nat = 4,1E-03 mg/l
				03.06.15		<	1,1E+00			5,4E-03	2	1,5E+00	4	<	1,1E+00		< 2	2,4E-01		Ra 226 = 1,6E+00 Bq/l U_nat = 5,9E-03 mg/l
				05.08.15		<	1,2E+00			3,5E-03	2	1,8E+00	4	<	1,2E+00		< 2	2,7E-01		Ra 226 = 2,2E+00 Bq/l U_nat = 3,7E-03 mg/l
				07.10.15		<	1,1E+00			5,9E-03	2	1,2E+00	4	<	9,6E-01		< 2	2,5E-01		Ra 226 = 1,2E+00 Bq/l U_nat = 5,9E-03 mg/l
k-66038	Leupoldishain, am Wetterbohrloch 5	5432776	5642651	04.03.15		<	1,0E+00			7,2E-02	2	2,5E-01	14		1,0E+00	27	< 2	2,2E-01		Ra 226 = 2,7E-01 Bq/l U_nat = 7,7E-02 mg/l
				04.06.15			1,1E+00	20		6,4E-02	2	2,6E-01	11	<	1,2E+00		< 2	2,8E-01		Ra 226 = 2,8E-01 Bq/l U_nat = 6,7E-02 mg/l
				03.08.15		<	1,0E+00			6,2E-02	2	3,1E-01	10	<	9,4E-01		< 2	2,3E-01		Ra 226 = 2,7E-01 Bq/l U_nat = 6,4E-02 mg/l
				02.10.15		<	1,2E+00			5,7E-02	3	3,1E-01	8	<	1,1E+00		< 2	2,5E-01		Ra 226 = 3,0E-01 Bq/l U_nat = 5,7E-02 mg/l
k-7136E	FESTUNGSAUFFAHRT	5433289	5643382	23.07.15		<	2,1E+00			2,2E-02	2	2,0E+01	3	<	1,8E+00		< 3	3,9E-01		Ra 226 = 1,8E+01 Bq/l U_nat = 2,3E-02 mg/l
k-77015	B 172	5432507	5643292	15.04.15		<	1,9E+00			7,6E-03	1	1,5E+01	2	٧	1,8E+00		< 3	3,8E-01		Ra 226 = 1,6E+01 Bq/l U_nat = 7,9E-03 mg/l

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Königstein, Flutung Königstein

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 5.3

Medium: Grundwasser

Lage und E Probenahn	Bezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess-				Me	essergeb	nis,	Me	ssunsic	her	heit	, Maßein	heit	t			Bemerkungen
	1			bzw. Samn	nelzeitraum		U 238		1	U_nat		ı	Ra 226			Pb 210			Ra 228		
Bezeichnung	Lage	RW	HW	Beginn	Ende		Bq/I	%		mg/l	%	E	3q/l	%	i	Bq/I	%	E	3q/I	%	
k-77015	B 172	5432507	5643292	02.09.15		<	1,8E+00			7,9E-03	2		1,4E+01	3	<	1,6E+00		<	3,1E-01		Ra 226 = 1,6E+01 Bq/l U_nat = 8,2E-03 mg/l
k-77033	Leupoldishain, ehem.Kantine	5431722	5642623	14.04.15		<	1,6E+00			2,4E-02	1		8,9E+00	2	<	1,6E+00		<	3,5E-01		Ra 226 = 1,0E+01 Bq/l U_nat = 2,8E-02 mg/l
				15.09.15		<	1,6E+00			2,2E-02	1		8,7E+00	3	<	1,5E+00		<	3,3E-01		Ra 226 = 9,5E+00 Bq/l U_nat = 2,3E-02 mg/l

Anhang P

Standort Pöhla

Basismonitoring

- Abwasser
- Radon in der bodennahen Luft
- Oberflächenwasser
- Grundwasser

Anmerkung: In der Spalte **Bemerkungen** sind jeweils die von der Wismut GmbH gemeldeten Werte zum Vergleich aufgeführt.

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Pöhla, Basismonitoring Pöhla

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: E 2.

Medium: Abwasser

	ezeichnung der ne- bzw. Messorte			Messdatum	ahme- bzw. oder Mess-				Me	essergeb	nis,	, Me	essunsic	herl	heit,	, Maßein	heit				Bemerkungen
				bzw. Samn	nelzeitraum		U 238			U_nat	:		Ra 226			Pb 210			Ra 228		
Bezeichnung	Lage	RW	HW	Beginn	Ende		Bq/l	%		mg/l	%	I	Bq/l	%	E	3q/I	%	E	3q/I	%	
m-112	Pöhla, Ablauf WBA Pöhla,Einleitstelle in den Luchsbach	4558157	5595870	22.01.15		<	9,0E-02 3,5E-02	19		2,7E-03	1		4,4E-02 4,8E-02	10 8		8,5E-02 1,2E-02		<	2,3E-02		
				19.03.15						3,7E-03	2		4,4E-02	9							Ra 226 = 4,7E-02 Bq/l U_nat = 4,1E-03 mg/l
				25.06.15						3,3E-03	2		6,2E-02	9							Ra 226 = 6,2E-02 Bq/l U_nat = 3,9E-03 mg/l
				03.09.15						2,2E-03	3		4,2E-02	9							Ra 226 = 5,1E-02 Bq/l U_nat = 3,1E-03 mg/l
				12.11.15						1,4E-03	12		4,5E-02	9							Ra 226 = 7,2E-02 Bq/l U_nat = 1,0E-03 mg/l

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Pöhla, Basismonitoring Pöhla

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 1.2

Medium:Radon in der bodennahen LuftMessgröße:Aktivitätskonzentration von Rn-222

Lage und Bezeichnung der Probenahme- bzw. Messorte				Probeentn Messdatum bzw. Samn	Rn 222	Bemerkungen								
Bezeichnung	Lage	RW	HW	Beginn	Ende	Bq/m³	%	%	9	6	%		%	
408.41	Besucherbergwerk, Nähe Eingangstor zum Grundstück	4558260	5595580	19.11.14	13.05.15	1,2E+01 < 1,0E+01	20							
				13.05.15	18.11.15	1,7E+01 3,5E+01								
408.42	Wasserbehandlungsanlage	4558155	5595850	19.11.14	13.05.15	1,7E+01 1,8E+01								
				13.05.15	18.11.15	8,5E+01 1,0E+02								

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Pöhla, Basismonitoring Pöhla

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 5.2

Medium: Oberflächenwasser

Lage und E Probenahn	Bezeichnung der ne- bzw. Messorte	Probeentna Messdatum			Bemerkungen															
				bzw. Sammelzeitraum			U 238			U_nat		Ra 226			Pb 210					
Bezeichnung	Lage	RW	HW	Beginn	Ende	Е	3q/I	%	n	ng/l	%	E	Bq/I	%	Bq/	/I	%		%	
m-165A	Luchsbach nach Einleitstelle WBA	4558154	5595878	02.09.15						1,6E-02	2		2,3E-02	9						Ra 226 = 1,7E-02 Bq/l U_nat = 1,5E-02 mg/l

Überwachte Anlage oder Tätigkeit: Wismut GmbH, Sanierungsstandort Pöhla, Basismonitoring Pöhla

Messinstitution: 1. Landesmessstelle für Umweltradioaktivität, 2. Landesmessstelle für Umweltradioaktivität

Programmpunkt: 5.3

Medium: Grundwasser

Lage und Bezeichnung der Probenahme- bzw. Messorte				Messdatum		SS-															Bemerkungen
	I	bzw. Sammelzeitraum			U 238			U_nat			Ra 226			Pb 210			228				
Bezeichnung	Lage	RW	HW	Beginn Ende		Bq/I		%	m		%			%	Bq/l		%	Bq/I		%	
m-3409	Luchsbachtal, Abstrom Luchsbachhalde, Luchsbachstörung	4558157	5595916	17.09.15						6,6E-03			4,5E-02	_							Ra 226 = 4,8E-02 Bq/l U_nat = 6,3E-03 mg/l

Herausgeber:

Staatliche Betriebsgesellschaft für Umwelt und Landwirtschaft

Altwahnsdorf 12, 01445 Radebeul

Telefon: +49 351 8312 500 Telefax: +49 351 8312 509

E-Mail: poststelle.bful@smul.sachsen.de

www.smul.sachsen.de/bful

Autor:

Geschäftsbereich 2

Ansprechpartner: Dr. Thomas Heinrich

Telefon: +49351 8312 634 Telefax: +493518312623

E-Mail: Thomas.Heinrich@smul.sachsen.de

Redaktionsschluss:

25.05.2016

Verteilerhinweis

Diese Informationsschrift wird von der Sächsischen Staatsregierung im Rahmen ihrer verfassungsmäßigen Verpflichtung zur Information der Öffentlichkeit herausgegeben. Sie darf weder von Parteien noch von deren Kandidaten oder Helfern im Zeitraum von sechs Monaten vor einer Wahl zum Zwecke der Wahlwerbung verwendet werden. Dies gilt für alle Wahlen.

Missbräuchlich ist insbesondere die Verteilung auf Wahlveranstaltungen, an Informationsständen der Parteien sowie das Einlegen, Aufdrucken oder Aufkleben parteipolitischer Informationen oder Werbemittel. Untersagt ist auch die Weitergabe an Dritte zur Verwendung bei der Wahlwerbung. Auch ohne zeitlichen Bezug zu einer bevorstehenden Wahl darf die vorliegende Druckschrift nicht so verwendet werden, dass dies als Parteinahme des Herausgebers zugunsten einzelner politischer Gruppen verstanden werden könnte.

Diese Beschränkungen gelten unabhängig vom Vertriebsweg, also unabhängig davon, auf welchem Wege und in welcher Anzahl diese Informationsschrift dem Empfänger zugegangen ist. Erlaubt ist jedoch den Parteien, diese Informationsschrift zur Unterrichtung ihrer Mitglieder zu verwenden.