LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE

Mikroplastik in sächsischen Gewässern

Schriftenreihe, Heft 3/2022

Mikroplastik in sächsischen Gewässern 2020 - 2021

M. Sc. Julia Harzdorf; M. Sc. Richard Zeumer; M. Sc. Sven Schirrmeister; M. Sc. Yasmin Adomat;
 M. Sc. Lucas Kurzweg; Dipl.-Ing. (FH) Sven Faist; Dipl.-Ing. (FH) Fabian Musche; Prof. Dr. Thomas Grischek; Prof. Dr. Kathrin Harre
 Hochschule für Technik und Wirtschaft Dresden, Friedrich-List-Platz 1, 01069 Dresden

Im Auftrag des Sächsischen Landesamtes für Umwelt, Landwirtschaf und Geologie, Zur Wetterwarte 11, 01109 Dresden

Inhaltsverzeichnis

1	Zusammenfassung	13
2	Einleitung und Zielstellung	15
3	Stand der Forschung	16
3.1	Mikroplastik: Begriffserklärung, Vorkommen und Wirkung in der Umwelt	16
3.1.1	Begriffserklärung	16
3.1.2	Anwendungsbereiche und stoffliche Eigenschaften von Kunststoff	16
3.1.3	Mikroplastik – kleine Kunststoffpartikel	18
3.1.4	Vorkommen von Mikroplastik in der Umwelt	18
3.1.5	Eintrag und Wirkung von Mikroplastik in der Umwelt	20
3.2	Methoden zur Mikroplastikbestimmung	23
3.2.1	Probenahme	23
3.2.1.1	Probenahme im Kompartiment Wasser	23
3.2.1.2	Probenahme von Sediment	24
3.2.1.3	Probena 2 Pt. hme von Biota	25
3.2.2	Probenaufarbeitung	25
3.2.2.1	Sedimentproben	25
3.2.2.2	Aufschluss der Proben – Entfernung des organischen Materials	27
3.2.3	Probenanalytik	30
3.2.3.1	Rasterelektronenmikroskopie mit energiedispersiver Röntgenspektroskopie	30
3.2.3.2	Optische Mikroskopie	30
3.2.3.3	Pyrolyse-GC-MS	30
3.2.3.4	Thermal-Extraction-Desorption-GC-MS	31
3.2.3.5	FT-IR-Spektroskopie	31
3.2.3.6	Raman-Spektroskopie	32
3.2.3.7	Dynamische Differenzkalorimetrie	32
3.2.3.8	Vergleich bestehender Analysemethoden	33
3.3	Bestehende Forschungsprojekte in Deutschland	37
4	Untersuchungen in Sächsischen Gewässern - angewandte Methoden	41
4.1	Sedimentprobenahme	41
4.2	Probenaufbereitung	44
4.2.1	Planung der Stichproben	44
4.2.2	Trocknung und Siebung	44
4.2.3	Elektroseparation	44
4.2.3.1	Elektroseparation mittels Korona-Walzenabscheider	44
4.2.3.2	Separation der Proben	47
4.2.4	Dichteseparation	49
4.3	Ermittlung des Polymeranteils in Sedimentproben	51
4.3.1	Dynamische Differenzkalorimetrie	51
4.3.1.1	Geräte und Methoden	51
4.3.1.2	Massenermittlung aus dem Thermogramm	52
4.3.2	Fourier-Transform-Infrarotmikroskopie	53
4.4	Testung der Methode mit artifiziellen Mikroplastikpartikeln	53

4.4.1	Sedimente zur Testung der Methode	53
4.4.2	Herstellung der PCL-Polymerpartikel	54
4.4.3	Mikroskopische Auswertung der Partikelgrößen	54
4.4.4	Proben für die Separation von artifiziellen Sedimenten	55
5	Ergebnisse und Diskussion	56
5.1	Identifizierung und Quantifizierung des Polymeranteils	56
5.1.1	Identifizierung	56
5.1.2	Quantifizierung	56
5.1.3	Diskussion zur gewählten Regression und zur Datenauswertung	58
5.1.3.1	Regressionsmodell	58
5.2	Anpassung der Geräteparameter des Elektroseparators mit UHMW-PE	60
5.3	Testung der Methode mit artifiziellen Proben	61
5.3.1	Charakterisierung der Modellsedimente	61
5.3.2	Mikroskopische Auswertung der Partikelgrößen des artifiziellen Mikroplastiks	62
5.3.3	Separation von Sedimenten mit artifiziellen Mikroplastik	63
5.3.4	Bestimmung der Wiederfindungsrate	63
5.4	Sedimentprobenahme, Trocknung und Siebung	65
5.5	Elektrostatische Separation von Umweltproben	70
5.5.1	Elektrostatische Separation am hamos KWS-XL – Proben 2020	70
5.5.2	Mehrfachseparation am hamos KWS-XL – Proben 2020	74
5.5.3	Verbesserte Separation am hamos KWS-XS – Proben 2020 und 2021	76
5.6	Dichteseparation	77
5.6.1	Ermittlung der Separationsparameter und resultierende Abscheidegrade	77
5.6.2	Wiederfindungsraten des internen Standards PCL	79
5.6.3	Ergebnisse der Mikroplastikbestimmung	80
5.6.4	Untersuchung einzelner Partikel mittels FT-IR-Mikroskop aus Kampagne 2021	83
5.7	Mikroplastikbelastung in Sedimentproben	83
5.7.1	Übersicht	83
5.7.2	Betriebswirtschaftliche Hochrechnung zur angewandten Methodik	86
6	Fazit und Ausblick	
Literaturver	zeichnis	90
Anhang		96
Anhang 1	Messdaten	96
Anhang 1.1	Methodentestung mit artifiziellen Proben	96
Anhang 1.2	Kalibrierungsdaten	
Anhang 1.3	Klassifizierung der Sedimente 2020	
Anhang 1.4	Separation der Sedimente 2020	
Anhang 1.5	Mehrfachseparation	
Anhang 1.6	Verbesserte Separation	
Anhang 1.7	Messdaten Dichteseparation	
Anhang 2	Probenahmeprotokoll	
Anhang 2.1	Probenahmestandorte 2020	
Anhang 2.2	Probenahmestandorte 2021	
Anhang 2.3	Dokumentation der Probenahmen 2020	
0 -		-

Anhang 2.3.1	Route 1	115
Anhang 2.3.2	Route 2	118
Anhang 2.3.3	Route 3	
Anhang 2.3.4	Route 4	
Anhang 2.3.5	Route 5	
Anhang 2.3.6	Route 6	131
Anhang 2.4	Dokumentation der Probenahmen 2021	
Anhang 2.4.1	Route 7	
Anhang 2.4.2	Route 8	
Anhang 2.4.3	Route 9	143

Abbildungsverzeichnis

Abbildung 1:	Anteil relevanter Branchen an der Verarbeitungsmenge Kunststoffe 2019	17
Abbildung 2:	Weltweite Kunststoffproduktion	17
Abbildung 3:	Anteil untersuchter Tiere mit Plastikpartikeln im Verdauungstrakt	21
Abbildung 4:	Anteil der Kunststoffsorten an der Verarbeitungsmenge Kunststoffe 2019	22
Abbildung 5:	Schema des Monitorings von Mikroplastik in Umweltproben	23
Abbildung 6:	Schematische Darstellung eines Manta-Trawl zur Beprobung der Wasser- oberfläche	24
Abbildung 7:	Schematische Darstellung des Mikroplastik Sediment Separators (MPSS)	26
Abbildung 8:	Schematische Darstellung eines elektrostatischen Separators	27
Abbildung 9:	Prinzip der Dynamischen Wärmestrom Differenzkalorimetrie	32
Abbildung 10:	Charakteristische Kennwerte einer DSC-Kurve	33
Abbildung 11:	Edelstahlhandschaufel mit entnommenem Sediment	41
Abbildung 12:	Van-Veen-Bodengreifer	42
Abbildung 13:	Probenahmestellen der Messkampagnen 2020 und 2021	43
Abbildung 14:	Aufbau Korona-Walzenscheider hamos KWS-XL (A) und hamos KWS-XS (B)	45
Abbildung 15:	Abstreifblech des Korona-Walzenscheiders hamos KWS-XS	47
Abbildung 16:	Aufbau des Separatormodells zur Dichteseparation	50
Abbildung 17:	Probenahmestelle des Elbsediments zu Testung der Methode	54
Abbildung 18:	Residuen aus der Validierung der LD-PE Kalibrierung	57
Abbildung 19:	Residuen der Validierungsdaten aus der einfachen und multiplen Regression	60
Abbildung 20:	Wiederfindungsraten von UHMW-PE in Modellsand	61
Abbildung 21:	Ergebnis der Partikelgrößenerfassung von PCL der Klasse 63 bis 250 µm	62
Abbildung 22:	3D-Diagramm der Wiederfindungsrate von PCL in Cemex-Sand und das Elbsediment	64
Abbildung 23:	Grobfraktionen der Proben MiPL 10 (A), MiPL 9, (B) und Feinfraktion der Probe MiPL 7 (C) mit Meso-, Makro- und Mikroplastikbefunden	67
Abbildung 24:	Feinkornfraktion der Probe MiPI 5	68
Abbildung 25:	Getrocknete Proben MiPI 26 (A) und MiPI 21 (< 5 mm, B)	69
Abbildung 26:	Abscheidegrad der Umweltproben und die Masse deren Polymerfraktionen	70
Abbildung 27:	Polymerreiche Fraktionen von Umweltproben mit sehr hohen (MiPl 3, MiPl 6) und niedrigen (MiPl 9, MiPl 15, MiPl 16) Abscheidegraden	71
Abbildung 28:	Vergleich von Schmelzbereichen der Umweltprobe mit Kalibrierdaten von PET(a) K076, (b) Umweltprobe, (c) K077	72
Abbildung 29:	Mikroskopische Aufnahme eines Mikroplastikpartikels aus dem Sediment	73
Abbildung 30:	Spektren Auswertung Partikel aus der Probe MiPI 15	73
Abbildung 31:	Gesamtabscheidegrad nach Mehrfachseparation von MiPI 8 (A), MiPI 9 (B) und MiPI 14 (C)	75
Abbildung 32:	Abscheidegrad nach verbesserter Separation polymerreicher Fraktionen (A) und Gesamtproben (B)	76
Abbildung 33:	Abscheidegrad nach Dichteseparation mit variierenden Parametern	77
Abbildung 34:	Abscheidegrade nach Dichteseparation von 2020 (A) und 2021 (B)	
	elektroseparierten polymerreichen Fraktionen	78
Abbildung 35:	Thermogramme der Proben MiPI 13 (A,B) und MiPI 17 (C)	81

Abbildung 36:	Thermogramm von Probe MiPI 18	82
Abbildung 37:	Partikel und FT-IR-Einstrahlspektrum aus MiPI 7	83
Abbildung 38:	Residuen aus der Validierung der PP Kalibrierung	. 103
Abbildung 39:	Residuen aus der Validierung der PS Kalibrierung	. 104
Abbildung 40:	Residuen aus der Validierung der PVC Kalibrierung	. 105
Abbildung 41:	Residuen aus der Validierung der PET Kalibrierung	. 106
Abbildung 42:	Probenahmestellen an der Lausitzer Neiße-3 mit Blick flussaufwärts (A), flussabwärts (B), auf die Sohle (C), sowie auf eine genommene Probe (D)	.115
Abbildung 43:	Probenahmestellen an der Lausitzer Neiße-10 mit Blick flussaufwärts (A), flussabwärts (B), auf die Sohle (C), sowie auf eine genommene Probe (D)	.116
Abbildung 44:	Probenahmestellen an der Spree-4 mit Blick flussaufwärts (A), flussabwärts (B), auf Eisenhydroxidablagerungen am Ufer (C), sowie auf eine genommene Probe (D)	.117
Abbildung 45:	Probenahmestellen an der Schwarzen Elster-4 mit Blick flussaufwärts (A), flussabwärts (B), auf rechtsseitig treibenden Plastikmüll (C), sowie auf eine entnommene Probe (D)	.118
Abbildung 46:	Probenahmestellen an der Großen Röder-5 mit Blick flussaufwärts (A), flussabwärts (B), auf rechtsseitig treibenden Plastikmüll (C), sowie auf eine entnommene Probe (D)	.119
Abbildung 47:	Probenahmestellen an der Weißen Elster-1 mit Blick flussaufwärts (A), flussabwärts (B), auf eine Sedimentationsstelle am Gleithang (C), sowie auf eine entnommene Probe (D)	. 120
Abbildung 48:	Probenahmestellen an der Weißen Elster-5 mit Blick flussaufwärts (A), flussabwärts (B) und auf die Sohle (C)	.121
Abbildung 49:	Probenahmestellen an der Göltzsch-3 mit Blick flussaufwärts (A), flussabwärts (B) und auf Sedimentationsstelle hinter Verkrautung (C)	. 122
Abbildung 50:	Probenahmestellen am Münzbach-2 mit Blick flussaufwärts (A), flussabwärts (B) und auf Sedimentationsstelle am linken Ufer (C)	. 123
Abbildung 51:	Probenahmestellen an der Flöha-2 mit Blick flussaufwärts (A), flussabwärts (B), auf verkrautete Sohle am Ufer mit Sedimentablagerungen (C) sowie auf eine entnommene Probe (D)	. 124
Abbildung 52:	Probenahmestellen am Schwarzwasser-2 mit Blick flussaufwärts (A), flussab- wärts (B), auf die Sohle am rechten Ufer mit Sediment- und Müllablagerung (C und D)	. 125
Abbildung 53:	Probenahmestellen am Lungwitzbach-2 mit Blick flussaufwärts (A), flussab- wärts (B) und auf die Sohle (C)	.126
Abbildung 54:	Probenahmestellen an der Mulde-5 mit Blick flussaufwärts (A), flussabwärts (B) und auf die Sohle (C und D)	. 127
Abbildung 55:	Probenahmestellen an der Zschopau-4 mit Blick flussabwärts (A), in eine Bucht mit geringer Strömung (B) und auf die Sohle (C und D)	. 128
Abbildung 56:	Probenahmestellen an der Mulde-6 mit Blick flussaufwärts (A), flussabwärts (B), zum gegenüberliegenden Ufer (C) und auf die Sohle (D)	.129
Abbildung 57:	Probenahmestellen an der Chemnitz-2 mit Blick flussaufwärts (A), flussabwärts (B) und auf die Sohle (C)	. 130
Abbildung 58:	Probenahmestellen an der Mulde-7 mit Blick flussaufwärts (A), flussabwärts (B), auf die Sohle (C) sowie auf eine entnommene Probe (D)	.131
Abbildung 59:	Probenahmestellen an der Weißen Elster-11 mit Blick flussaufwärts (A), flussab- wärts (B), auf die Sohle (C) sowie auf Treibgut (D)	.132

Abbildung 60:	Geplante Probenahmestellen an der Pleiße-4b mit Blick flussaufwärts (A), fluss- abwärts (B), auf die Wassertiefenmessung (C) sowie auf die Uferkante (D)	33
Abbildung 61:	Probenahmestellen an der Kleinen Pleiße Markkleeberg mit Blick flussauf- wärts (A), flussabwärts (B), auf Abfall im Bach (C) sowie auf eine entnommene Probe (D)13	34
Abbildung 62:	Probenahmestellen an der Parthe-4 mit Blick flussaufwärts (A), flussabwärts (B), auf ein Kunststoffnetz aus einer Probe (C) sowie auf eine entnommene Probe (D) 13	35
Abbildung 63:	Probenahmestellen an der Wesenitz-2 mit Blick flussaufwärts (A), flussab- wärts (B), auf die Sohle (C) sowie auf eine entnommene Probe (D)13	36
Abbildung 64:	Probenahmestellen am Münzbach-2 mit Blick flussaufwärts (A), flussabwärts (B), auf die Sohle (C) sowie auf eine entnommene Probe (D)13	37
Abbildung 65:	Probenahmestellen am Höckenbach mit Blick flussaufwärts (A), flussabwärts (B), auf die Sohle (C) sowie auf eine entnommene Probe (D)13	38
Abbildung 66:	Probenahmestellen an der Flöha-2 mit Blick flussaufwärts (A), flussabwärts (B), auf einen blauen Partikel (C) sowie auf eine entnommene Probe (D)	39
Abbildung 67:	Probenahmestellen an der Chemnitz-2 mit Blick flussaufwärts (A), flussabwärts (B), sowie auf eine entnommene Probe (C)14	40
Abbildung 68:	Probenahmestellen an der Parthe-4 mit Blick flussaufwärts (A), flussabwärts (B) sowie auf die Sohle (C)	41
Abbildung 69:	Probenahmestellen an der kleinen Pleiße Markkleeberg mit Blick flussaufwärts (A), flussabwärts (B), auf die Sohle (C) sowie auf eine entnommene Probe (D)14	42
Abbildung 70:	Probenahmestellen an der Göltzsch-2 mit Blick flussaufwärts (A), flussabwärts (B), auf die Sohle (C) sowie auf eine entnommene Probe (D)14	43
Abbildung 71:	Probenahmestellen an der Sehma mit Blick flussaufwärts (A), flussabwärts (B), auf die Sohle (C) sowie auf eine entnommene Probe (D)	44
Abbildung 72:	Probenahmestellen an der Zschopau-1 mit Blick flussaufwärts (A), flussab- wärts (B), auf die Sohle (C) sowie auf eine entnommene Probe (D)14	45
Abbildung 73:	Geplante Probenahmestellen am Schwarzwasser-2 mit Blick flussaufwärts (A), flussabwärts (B)14	46

Tabellenverzeichnis

Tabelle 2:Quellen von sekundärem Mikroplastik in der Umwelt in Deutschland und Europa19Tabelle 3:Anzahl verschiedener Additive in bestimmten Polymertypen22Tabelle 4:Übersicht Enzyme zur Spaltung von organischem Material28Tabelle 5:Behandlung zur Probenvorbereitung29Tabelle 6:Behandlung zur Probenvorbereitung34Tabelle 7:Übersicht zu BMBF-Verbundprojekten "Plastik in der Umwelt"37Tabelle 8:Durchgeführte Untersuchungen in Deutschland (Bundesländer)39Tabelle 9:Durchgeführte Untersuchungen in europäischen Fließgewässern40Tabelle 10:Zuordnung Sedimentproben zu Probenahmestellen42Tabelle 11:Übersicht der Modellsand-PE-Proben zur elektrostatischen Separation46Tabelle 12:Separation am hamos KWS-XL47Tabelle 13:Mehrfachseparation am hamos KWS-XS48	Tabelle 1:	Quellen von Mikroplastik in der Umwelt in Deutschland	.19
Tabelle 3:Anzahl verschiedener Additive in bestimmten Polymertypen.22Tabelle 4:Übersicht Enzyme zur Spaltung von organischem Material.28Tabelle 5:Behandlung zur Probenvorbereitung.29Tabelle 6:Behandlung zur Probenvorbereitung.34Tabelle 7:Übersicht zu BMBF-Verbundprojekten "Plastik in der Umwelt"37Tabelle 8:Durchgeführte Untersuchungen in Deutschland (Bundesländer).39Tabelle 9:Durchgeführte Untersuchungen in europäischen Fließgewässern40Tabelle 10:Zuordnung Sedimentproben zu Probenahmestellen42Tabelle 11:Übersicht der Modellsand-PE-Proben zur elektrostatischen Separation.46Tabelle 12:Separation am hamos KWS-XL47Tabelle 13:Mehrfachseparation am hamos KWS-XS48	Tabelle 2:	Quellen von sekundärem Mikroplastik in der Umwelt in Deutschland und Europa	.19
Tabelle 4:Übersicht Enzyme zur Spaltung von organischem Material.28Tabelle 5:Behandlung zur Probenvorbereitung.29Tabelle 6:Behandlung zur Probenvorbereitung.34Tabelle 7:Übersicht zu BMBF-Verbundprojekten "Plastik in der Umwelt".37Tabelle 8:Durchgeführte Untersuchungen in Deutschland (Bundesländer).39Tabelle 9:Durchgeführte Untersuchungen in europäischen Fließgewässern40Tabelle 10:Zuordnung Sedimentproben zu Probenahmestellen42Tabelle 11:Übersicht der Modellsand-PE-Proben zur elektrostatischen Separation46Tabelle 12:Separation am hamos KWS-XL47Tabelle 13:Mehrfachseparation am hamos KWS-XS48	Tabelle 3:	Anzahl verschiedener Additive in bestimmten Polymertypen	.22
Tabelle 5:Behandlung zur Probenvorbereitung.29Tabelle 6:Behandlung zur Probenvorbereitung.34Tabelle 7:Übersicht zu BMBF-Verbundprojekten "Plastik in der Umwelt"37Tabelle 8:Durchgeführte Untersuchungen in Deutschland (Bundesländer).39Tabelle 9:Durchgeführte Untersuchungen in europäischen Fließgewässern40Tabelle 10:Zuordnung Sedimentproben zu Probenahmestellen42Tabelle 11:Übersicht der Modellsand-PE-Proben zur elektrostatischen Separation.46Tabelle 12:Separation am hamos KWS-XL47Tabelle 13:Mehrfachseparation am hamos KWS-XS48	Tabelle 4:	Übersicht Enzyme zur Spaltung von organischem Material	.28
Tabelle 6:Behandlung zur Probenvorbereitung	Tabelle 5:	Behandlung zur Probenvorbereitung	.29
Tabelle 7:Übersicht zu BMBF-Verbundprojekten "Plastik in der Umwelt"	Tabelle 6:	Behandlung zur Probenvorbereitung	.34
Tabelle 8:Durchgeführte Untersuchungen in Deutschland (Bundesländer)	Tabelle 7:	Übersicht zu BMBF-Verbundprojekten "Plastik in der Umwelt"	.37
Tabelle 9:Durchgeführte Untersuchungen in europäischen Fließgewässern40Tabelle 10:Zuordnung Sedimentproben zu Probenahmestellen42Tabelle 11:Übersicht der Modellsand-PE-Proben zur elektrostatischen Separation46Tabelle 12:Separation am hamos KWS-XL47Tabelle 13:Mehrfachseparation am hamos KWS-XL47Tabelle 14:Verbesserte Separation am hamos KWS-XS48	Tabelle 8:	Durchgeführte Untersuchungen in Deutschland (Bundesländer)	.39
Tabelle 10:Zuordnung Sedimentproben zu Probenahmestellen42Tabelle 11:Übersicht der Modellsand-PE-Proben zur elektrostatischen Separation46Tabelle 12:Separation am hamos KWS-XL47Tabelle 13:Mehrfachseparation am hamos KWS-XL47Tabelle 14:Verbesserte Separation am hamos KWS-XS48	Tabelle 9:	Durchgeführte Untersuchungen in europäischen Fließgewässern	.40
Tabelle 11:Übersicht der Modellsand-PE-Proben zur elektrostatischen Separation	Tabelle 10:	Zuordnung Sedimentproben zu Probenahmestellen	.42
Tabelle 12:Separation am hamos KWS-XL47Tabelle 13:Mehrfachseparation am hamos KWS-XL47Tabelle 14:Verbesserte Separation am hamos KWS-XS48	Tabelle 11:	Übersicht der Modellsand-PE-Proben zur elektrostatischen Separation	.46
Tabelle 13:Mehrfachseparation am hamos KWS-XL47Tabelle 14:Verbesserte Separation am hamos KWS-XS48	Tabelle 12:	Separation am hamos KWS-XL	.47
Tabelle 14: Verbesserte Separation am hamos KWS-XS	Tabelle 13:	Mehrfachseparation am hamos KWS-XL	.47
	Tabelle 14:	Verbesserte Separation am hamos KWS-XS	.48
Tabelle 15: Testparameter der Dichteseparation	Tabelle 15:	Testparameter der Dichteseparation	.51
Tabelle 16: Angaben zur Probenahmestelle an der Elbe	Tabelle 16:	Angaben zur Probenahmestelle an der Elbe	.53
Tabelle 17: Probenübersicht zur Separation von Cemex-Sand mit PCL	Tabelle 17:	Probenübersicht zur Separation von Cemex-Sand mit PCL	.55
Tabelle 18: Probenübersicht zur Separation von Elbsediment mit PCL	Tabelle 18:	Probenübersicht zur Separation von Elbsediment mit PCL	.55
Tabelle 19: Temperaturen zur Auswertung der Thermogramme	Tabelle 19:	Temperaturen zur Auswertung der Thermogramme	.56
Tabelle 20: Koeffizienten zur Berechnung der Masse an Polymer m _i (im Tiegel)	Tabelle 20:	Koeffizienten zur Berechnung der Masse an Polymer mi (im Tiegel)	.56
Tabelle 21: Daten der Validierung von LD-PE	Tabelle 21:	Daten der Validierung von LD-PE	.57
Tabelle 22: Nachweis- und Bestimmungsgrenzen 58	Tabelle 22:	Nachweis- und Bestimmungsgrenzen	.58
Tabelle 23: Statistische Kennwert der linearen Regression von LD-PE pach DIN 32645:200811 58	Tabelle 23:	Statistische Kennwert der linearen Regression von LD-PE	58
Tabelle 24: Figenschaften der natürlichen Sedimente 61	Tabelle 24 [.]	Figenschaften der natürlichen Sedimente	61
Tabelle 25: Partikelgrößenanalyse PCI 63	Tabelle 25:	Partikelgrößenanalyse PCI	63
Tabelle 26: Trockenmasse und Wassergehalt der Sedimentproben 2020 66	Tabelle 26:	Trockenmasse und Wassergehalt der Sedimentproben 2020	66
Tabelle 27: Probenahmetechnik und Trockenmassen der Sedimentproben 2021 69	Tabelle 27	Probenahmetechnik und Trockenmassen der Sedimentproben 2021	69
Tabelle 28: Zusammengefasste Ergebnisse der Limweltprobe LA15_3 71	Tabelle 28:	Zusammengefasste Ergebnisse der Limweltprobe LA15_3	71
Tabelle 29: Mikroplastikbefund nach elektrostatischer Separation am hamos KWS-XI 74	Tabelle 29	Mikroplastikbefund nach elektrostatischer Separation am hamos KWS-XI	74
Tabelle 30: Mikroplastikbefunde Dichteseparation 80	Tabelle 30:	Mikroplastikbefunde Dichteseparation	80
Tabelle 31: Mikroplastikbelastung an den Messstellen 84	Tabelle 31	Mikroplastikbelastung an den Messstellen	84
Tabelle 32: Zusammenfassung der Kosten und des Zeitbedarfs für eine Umweltprobe 87	Tabelle 32	Zusammenfassung der Kosten und des Zeitbedarfs für eine Umweltprobe	.87
Tabelle 33: Zusammenfassung der Kosten unter Berücksichtigung der Dichteseparation	Tabelle 33:	Zusammenfassung der Kosten unter Berücksichtigung der Dichteseparation	.87

Tabellenverzeichnis im Anhang

Tabelle A 1:	Übersicht der Proben aus natürlichen Sedimenten und PCL	96
Tabelle A 2:	Rohdaten der K-Reihe für LD-PE, UHMW-PE, PP und PET	97
Tabelle A 3:	Rohdaten der K-Reihe für PS und PVC	99
Tabelle A 4:	Rohdaten der E-Reihe	. 100
Tabelle A 5:	Daten der Validierung von PP	. 103
Tabelle A 6:	Qualitative Auswertung von PP	. 103

Tabelle A 7:	Daten der Validierung von PS	
Tabelle A 8:	Qualitative Auswertung von PS	
Tabelle A 9:	Daten der Validierung von PVC	105
Tabelle A 10:	Qualitative Auswertung von PVC	
Tabelle A 11:	Daten der Validierung von PET	
Tabelle A 12:	Qualitative Auswertung von PET	
Tabelle A 13:	Visuelle Klassifizierung der Flusssedimente 2020	
Tabelle A 14:	Übersicht zur Separation der 20 Umweltproben	
Tabelle A 15:	Messdaten Mehrfachseparation	109
Tabelle A 16:	Messdaten verbesserte Separation	110
Tabelle A 17:	PCL-Messdaten verbesserte Separation	110
Tabelle A 18:	Messdaten Dichteseparation mit variierenden Parametern	111
Tabelle A 19:	PCL-Messdaten Dichteseparation mit variierenden Parametern	111
Tabelle A 20:	Messdaten Dichteseparation	111
Tabelle A 21:	PCL-Messdaten Dichteseparation	112
Tabelle A 22:	Übersicht der Probenahmestandorte 2020	113
Tabelle A 23:	Übersicht der Probenahmestandorte 2021	

Abkürzungsverzeichnis

ABS	AcryInitril-Butadien-Styrol-Copolymer
AF	Anreicherungsfaktor
AG	Abscheidegrad
ATR	Attenuated total reflectance
AWI	Alfred-Wegener-Institut
BG	Bestimmungsgrenze
CA	Celluloseacetat
DSC	Dynamische Differenzkalorimetrie
EDX/EDS	Energiedispersive Röntgenspektroskopie
EG	Erfassungsgrenze
FPA	Focal Plane Array
FT-IR	Fourier-Transform-Infrarotmikroskopie
HD-PE	Polyethylen hoher Dichte
HTW	Hochschule für Technik und Wirtschaft
KWS	Korona Walzen Scheider
LAWA	Länderarbeitsgemeinschaft Wasser
LD-PE	Polyethylen niedriger Dichte
LfULG	Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie
MF	Melamin-Formaldehyd-Harz
MP	Mikroplastik
MST	Messstelle
MW	Mittelwert
NG	Nachweisgrenze
OWK	Oberflächenwasserkörper
PA	Polyamid
PC	Polycarbonat
PCL	Polycaprolacton
PDMS	Polydimethylsiloxan
PE-GUR	Ultrahochmolekulares Polyethylen (GUR [®])
PE-HD	Polyethylen high density
PE-LD	Polyethylen low density
PES	Polyethersulfon
PF	Phenol-Formaldehyd-Harz
PET	Polyethylenterephthalat
POP	persistant organic pollutants
PP	Polypropylen
PS	Polystyrol
PUR	Polyurethan
PVC	Polyvinylchlorid
pyr-GC-MS	pyrolyse-Gaschromatographie-Massenspektroskopie
SEM	Scanning electron microscope
SWIR	short wavelength infrared

TDS Thermodesprotionseinheit

TED-GC-MS ThermoExtraktion/Desorption-Gaschromatographie-Massenspektroskopie

- TGA Thermogravimetrische-Analyse
- TM Trockenmasse
- TOC gesamter organischer Kohlenstoff
- UBA Umweltbundesamt
- UHMW-PE ultrahochmolekulares Polyethylen
- UP ungesättigte Polyesterharze
- WFR Wiederfindungsrate

1 Zusammenfassung

Im Rahmen dieses Forschungsprojekts wurde eine Methode zum Monitoring der Mikroplastikbelastung von Sedimentproben aus Fließgewässern des Bundeslandes Sachsen entwickelt und angepasst. Die Auswahl der Probenahmestellen erfolgte anhand des Gewässergütemessnetzes des Sächsischen Landesamtes für Umwelt, Landwirtschaft und Geologie.

Die Methodenentwicklung umfasste den gesamten Prozess der Umweltanalyse von der Probenahme über Probevorbereitung und -Separation bis zur Analytik der Mikroplastikpartikel. Das Hauptziel war die Etablierung der elektrostatischen Separation und die quantitative und qualitative Analyse durch den thermodynamischen Fingerabdruck der Polymere mittels dynamischer Differenzkalorimetrie.

Für die Sedimentproben der Probenahmekampagne des Jahres 2020 konnten durch die Elektroseparation Abscheidegrade von bis zu 99 Prozent erreicht werden. Anhand von Laborproben mit einem Massenanteil von 100 mg/kg an Mikroplastikpartikeln aus biologisch abbaubarem Polycaprolacton wurde nachgewiesen, dass Mikroplastikfraktionen mit Partikelgrößen kleiner 63, 63 bis 250 und größer 250 Mikrometer reproduzierbar separiert werden konnten. Die Wiederfindungsraten nach Elektroseparation und Differenzkalorimetrie zeigten sich partikelgrößenabhängig. Sie lagen für die Mikroplastikfraktionen mit Partikelgrößen kleiner 63 µm bei 56,24 ± 1,15 %, für Partikeln 63 bis 250 µm bei 105,36 ± 18,35 % und bei Partikeln größer 250 µm bei 30,00 ± 64,67 %. Die höchste Wiederfindungsrate wurde somit im Bereich von 63 bis 250 µm erhalten. Gleichzeitig nahm mit zunehmender Größe der Mikroplastikpartikel die Streuung der Werte stetig zu. Die Eignung der dynamischen Differenzkalorimetrie für das Umweltmonitoring wurde durch eine umfangreiche statistische Evaluation anhand analytischer Gütemerkmale wie Präzision, Selektivität und Robustheit bestimmt. Die Kalibrierung wurde für die häufigsten kommerziell vorkommenden Polymertypen Polyethylen, Polypropylen, Polystyrol, Polyvinylchlorid und Polyethylenterephthalat und als Vergleichsstandard für bioabbaubares Polycaprolacton erstellt. Die Bestimmungsgrenzen wurden aus den Kalibrierdaten ermittelt. Folglich kann ab 0,15 mg Polymer je DSC-Tiegel (0,42 mg bei Polystyrol) eine quantitative Aussage ermöglicht werden. Bei der Untersuchung der Gewässersedimente aus der Kampagne 2020 konnte Polyamid gefunden werden. Damit konnte die grundsätzliche Praxistauglichkeit der Methode nachgewiesen werden. Die ökonomische Bilanz zeigte, dass eine Probe innerhalb von 24 Stunden und – bei Einhaltung der zu dieser Kalkulation verwendeten Randbedingungen - mit einem Kostenaufaufwand von weniger als 430 Euro bearbeitet werden kann.

Die Kampagne 2021 diente der Verbesserung der Separations- und Messmethoden. Dafür wurden erneut zehn Gewässergütemessstellen ausgewählt, an denen Sedimentproben entnommen wurden. Allen getrockneten und gesiebten Proben wurde Polycaprolacton (200 mg/kg) als interner Standard zugesetzt. Die polymerreichen Fraktionen ausgewählter Proben der Vorjahresstudie wurden ebenfalls mit dem internen Standard derselben Konzentration versetzt. Anschließend wurden die Proben mittels Elektro- (an einem für die Ansprüche der Sedimentaufarbeitung optimiertem Gerät) oder Dichteseparation aufgearbeitet. Die bei der Elektroseparation erreichten Abscheidegrade betrugen bis zu 99,7 %. In keiner der Proben konnte Mikroplastik oberhalb der methoden- und stoffspezifischen Nachweisgrenze gefunden werden. Durch die Dichteseparation mit gesättigter Zinkchloridlösung konnten deutlich höhere Abscheidegrade von bis zu 99,99 % erreicht werden. Die Kombination aus Elektroseparation und Dichteseparation führte somit zu einer besseren Anreicherung von Mikroplastikpartikeln, welche die Detektion von Konzentrationen im $\mu g/kg$ -Bereich zulässt. Die Wiederfindungsraten des internen Standards unterlagen großen Schwankungen, weshalb in

zukünftigen Studien insbesondere der Einfluss durch unterschiedliche Partikelgrößenverteilung von Standard und Sediment untersucht werden sollte.

In sechs der 29 untersuchten Proben konnten Polyamid, Polypropylen und Polyethylen hoher Dichte nachgewiesen werden. Die Mikroplastikbefunde waren lediglich für Polyethylen mit einem Massenanteil von $0,28 \pm 0,20$ mg/kg in der getrockneten Sedimentprobe MiPI 17 der Probenahmestelle Lungwitzbach-2 quantifizierbar, auch wenn dieser Wert aufgrund der geringen Probenmasse und der damit einhergehenden niedrigen Stichprobenanzahl (n = 3) statistisch nicht abgesichert werden konnte. Die ökonomische Bilanz unter zusätzlicher Verwendung der Dichteseparation ergab, dass eine Probe in unter 100 Stunden für ca. 535 Euro bearbeitet werden konnte.

Ein Vergleich der vorliegenden Ergebnisse mit anderen aktuellen Veröffentlichungen zur Mikroplastikbelastung von Fließgewässersedimenten legt nahe, dass eine Ausrichtung der Probenahmestellen zur Untersuchung von Mikroplastik an Gewässergütemessstellen erfolgen kann, diese unter Berücksichtigung hydromorphologischer Parameter und bekannter Schadstoffsenken, durch eine Fokussierung auf geeignete Stillwasserzonen an Wehren, Buhnenfeldern und in Häfen ergänzt werden sollte.

Die dargestellten Ergebnisse unterstreichen das Potential der elektrostatischen Separation von Flusssedimenten zur Detektion von Mikroplastikbelastungen. Eine Eignung als standardisierte Methode ist potentiell gegeben und sollte weiter verfolgt werden.

2 Einleitung und Zielstellung

Das Thema Mikroplastik erfährt zunehmend öffentliches Interesse. Mikroplastik ist längst keine Umweltbelastung mehr, welche sich nur in den Weltmeeren finden lässt. Die Forschung nimmt zunehmend die kontinentale Belastung in den Fließgewässern und Sedimenten in den Fokus. Viele Forschungsvorhaben beschäftigten sich in der Vergangenheit mit der Belastung der Wasserphase, da Plastik mit seiner häufig geringen Dichte im Wasser nicht absinkt. Nach Aufwuchs von Biofilm auf den Partikeln können allerdings auch leichte Plastikarten, wie Polypropylen (PP) und Polyethylen (PE) absinken und somit am Grund des Fließgewässers sedimentieren. Das Fehlen einer standardisierten Probenverarbeitungs- und Analysemethode führt jedoch zu kaum reproduzierbaren Ergebnissen sowie zu einer Über- oder Unterbewertung der tatsächlich vorhandenen Belastung der Sedimente (ADOMAT & GRISCHEK, 2021).

Ziel der Zusammenarbeit zwischen dem Sächsischen Landesamt für Umwelt, Landwirtschaft und Geologie (LfULG) und der Hochschule für Technik und Wirtschaft Dresden (HTW Dresden) war daher, eine ökonomisch praxistaugliche sowie reproduzierbare Vorgehensweise zu entwickeln, mit der eine standardisierte Probenahme, -verarbeitung und -analytik durchgeführt werden kann, um so das Monitoring der Belastung sächsischer Fließgewässer mit Mikroplastik zu ermöglichen.

Die im vorliegenden Forschungsprojekt genutzte Methode, eine Kombination von elektrostatischer Separation zur Probenaufarbeitung und dynamischer Differenzkalorimetrie als Analysemethode ermöglicht eine Qualifizierung und Quantifizierung des Plastikgehalts im Sediment, gibt jedoch keine Aufschlüsse über die genaue Größenverteilung und Beschaffenheit des Mikroplastiks. Hierfür müssen ergänzende Methoden wie bildgebende Verfahren herangezogen werden. Da jedoch die genauen ökologischen Auswirkungen von Form und Größe der Partikel nicht hinreichend erforscht sind, wird dies in diesem Vorhaben nicht weiter betrachtet.

Durch Anpassungen an den verwendeten Aufbereitungs- und Messgeräten sollte die Detektion von Mikroplastik mit niedrigen Nachweis- und Bestimmungsgrenzen im Sediment ermöglicht werden, was eine hohe Anreicherung von Mikroplastik in den zu untersuchenden Proben erfordert. Mehrfachseparation, Dichteseparation und kombinierte Methoden sollten dazu erprobt werden. Zusätzlich zur dynamischen Differentialkalorimetie (DSC) wurden einige Proben mithilfe der Fourier-Transform-Infrarotmikroskopie (FT-IR) untersucht, um die erzielten Daten abzusichern und zu ergänzen.

3 Stand der Forschung

3.1 Mikroplastik: Begriffserklärung, Vorkommen und Wirkung in der Umwelt

3.1.1 Begriffserklärung

Als Mikroplastik werden Kunststoffe bezeichnet, welche eine Größe kleiner als fünf Millimeter aufweisen. Sie können als solches hergestellt werden oder im Laufe der Nutzung zu solchen zerfallen. Im Allgemeinen umfasst der Begriff Kunststoff Werkstoffe, welche aus Polymeren bestehen, denen in den meisten Fällen zusätzlich Additive bzw. Füllstoffe hinzugegeben werden. Diese optimieren die funktionalen Eigenschaften und eröffnen somit ein breites Anwendungsspektrum dieser. Unter Polymer versteht sich eine sich wiederholte Struktureinheit aus Monomeren (Einzelmolekülen), welche eine Molmasse größer 10.000 Dalton aufweist. Aus der Art der Verknüpfung der Polymerketten ergibt sich die Einteilung der Kunststoffe nach dem mechanisch-thermischen Verhalten:

isolierte Ketten:	Thermoplast	z. B. LEGO [®] -Steine
engmaschig verknüpftes Polymernetzwerk:	Duroplast	z. B. Schutzhelme
weitmaschig verknüpfte Polymerketten:	Elastomer	z. B. Gummibänder

Durch die Vielzahl der mittlerweile existierenden Stoffe lassen sich nicht alle in die oben aufgeführten Gruppen einordnen. So können Produkte, die auf synthetischen Polymeren basieren, sich in der Umwelt ähnlich verhalten wie duroplastische oder thermoplastische Werkstoffe. Darunter fallen beispielsweise Fasern, Lacke und Reifen. Das Umweltbundesamt hat daher eine Definition für Kunststoffe aufgestellt, mit der in diesem Bericht gearbeitet wird.

"Das Umweltbundesamt versteht unter Kunststoffen feste Werkstoffe, die hauptsächlich aus synthetisch hergestellten oder chemisch bzw. biologisch modifizierten natürlichen Makromolekülen bzw. Polymeren bestehen. Sie enthalten weitere Stoffe wie Additive (z. B. Antioxidantien, Verarbeitungshilfsstoffe) oder Füllstoffe (z. B. Kalk, Glasfasern), die zugegeben werden, um die funktionalen Eigenschaften der verschiedenen Polymere zu optimieren. Flüssige Polymere fallen nicht unter diese Definition." (BUSSE et al., 2019).

3.1.2 Anwendungsbereiche und stoffliche Eigenschaften von Kunststoff

Kunststoff hat seit seiner Erfindung in den 1950er Jahren einen unaufhaltsamen Siegeszug erlebt. In nahezu jeder Branche sind Kunststoffe zu finden, da durch ihre vielfältigen technischen Eigenschaften unzählige Einsetzmöglichkeiten entstehen. Sie sind modifizierbar in ihrer Formbarkeit, Härte, Elastizität, Bruchfestigkeit, Temperatur- & Wärmebeständigkeit sowie in ihrer chemischen Beständigkeit. Die Eigenschaften hängen von der Wahl der Makromoleküle, dem Herstellungsverfahren und der Beimischung von Additiven ab. Der Einsatz der meistern Kunststoffe in Deutschland finden sich in den Verpackungen (30,7 %) und im Bausektor (25,2 %) wieder. (Abbildung 1). 2019 wurden 14,37 Millionen Tonnen Kunststoff für die Herstellung von Produkten benötigt, Tendenz steigend. (Abbildung 2)

Anteil relevanter Branchen an der Verarbeitungsmenge Kunststoffe 2019 (Neuware und

Quelle: UMWELTBUNDESAMT (2020a)

Abbildung 1: Anteil relevanter Branchen an der Verarbeitungsmenge Kunststoffe 2019

Quelle: Fuhr (2019): Plastikatlas

Abbildung 2: Weltweite Kunststoffproduktion

Ebenso unterschiedlich wie die Verwendung sein kann, reicht auch die Lebensdauer von Produkten von wenigen Minuten bis zu Jahrzehnten. Früher oder später werden sie alle zu Abfall und müssen entsorgt bzw. aufgearbeitet werden. In Deutschland sind 2017 6,15 Millionen Tonnen Kunststoffabfall angefallen, wovon fast die Hälfte stofflich und etwas über die Hälfte energetisch verwertet wurden. Diese Angaben umfassen sowohl die Abfallmengen von gewerblichen und privaten Endverbrauchen, als auch die anfallenden Produktions- und Verarbeitungsabfälle.

3.1.3 Mikroplastik – kleine Kunststoffpartikel

Eine Größeneinteilung von Plastikteilen hat sich nach dem Vorschlag von der europäisch technischen Arbeitsgruppe zu Müll im Meer (MSFD, 2013) allgemein durchgesetzt und wird oft im wissenschaftlichen Kontext angewandt. Eine international verbindliche Definition von Mikroplastik gibt es noch nicht (MILKOS et al., 2016). Unabhängig von der Art der Entstehung werden folgende Einteilungen unternommen:

- I > 25 mm → Makroplastik
- S mm 25 mm → Mesoplastik
- S < 5 mm → Mikroplastik (ohne festgelegte Untergrenze)</p>
- I − 5 mm → großes Mikroplastik
- 1 1000 μ m → kleines Mikroplastik
- 1 < 1 μ m → nicht weiter differenziert (begibt sich in den Bereich des Nanoplastiks)

Des Weiteren kann eine Einteilung in die Art der Entstehung der Mikroplastikpartikel erfolgen. Als *primäres Mikroplastik* wird Kunststoff bezeichnet, welcher bei seiner Herstellung kleiner als fünf Millimeter ist. Diese finden beispielsweise Anwendung in Kosmetika, als Reinigungs- und Strahlmittel, sowie als Pellets zur Weiterverarbeitung. Sekundäres *Mikroplastik* hingegen entsteht aus Makroplastik, also großen Plastikteilen. Durch mechanische, physikochemische oder biologische Prozesse wird dieses in immer kleinere Teile zersetzt. Zum einen kann dies während der Nutzung eines Produktes geschehen (z. B. Reifenabrieb, Fasern). Zum anderen können in der Umwelt unsachgemäß entsorge Produkte (sogenanntes Littering) fragmentieren.

3.1.4 Vorkommen von Mikroplastik in der Umwelt

In Tabelle 1 werden Mikroplastikemissionen in Deutschland aus primären und sekundären Quellen aufgezeigt. Hierbei wird ersichtlich, dass primäre Mikroplastikpartikel zum größten Teil als Kunststoffwachse aus technischen Anwendungen in die Umwelt gelangt. Die Masse beläuft sich hierbei auf ca. 100.000 Tonnen pro Jahr. Eine weitere Quelle, die vor allem in den Medien viel Beachtung findet, ist Mikroplastik in kosmetischen Produkten. Der Eintrag von Mikroplastik in die Umwelt liegt hier bei 500 Tonnen pro Jahr. Um ein vielfaches höher liegt hingegen die Emission von sekundären Mikroplastikpartikeln. Der Verlust von Kunststoffpellets in der Herstellung und Weiterverarbeitung kann zwischen 21.000 und 210.000 Tonnen pro Jahr betragen. Die Emission von Reifenabrieb in die Umwelt wird auf 60.000 bis 111.000 Tonnen pro Jahr in Deutschland geschätzt. Die vermutlich größte Quelle von Mikroplastik in der Umwelt, die Fragmentierung von Kunststoffabfällen, kann in Deutschland nicht klar beziffert werden. Europaweit wird die Zahl auf 3,4 bis 5,7 Millionen Tonnen geschätzt (siehe Tabelle 2).

Tabelle 1: Quellen von Mikroplastik in der Umwelt in Deutschland

Quellen von Mikropartikeln aus Kunststoff in Deutschland	Quantifizierung der Quellen in Tonnen Mikropartikel pro Jahr
Primäre Mikropartikel	·
Kosmetische Produkte	500
Wasch-, Reinigungs- und Pflegemittel im Gewerbe und der Industrie	< 100
Strahlmittel zum Entgraten von Oberflächen	< 100
Mikronisierte Kunststoffwachse in technischen Anwendungen	100.000
Sekundäre Mikropartikel	
Fragmentierung von Kunststoffabfällen	Unbekannt
Synthetische Chemiefasern aus Kleidungsstücken und sonstigen Textilien	80 bis 400
Verlust von Pellets in der Herstellung und Weiterverarbeitung von Kunststoffen	21.000 bis 210.000
Reifenabrieb	60.000 bis 111.000

Quelle: ESSEL et al. (2015)

Tabelle 2: Quellen von sekundärem Mikroplastik in der Umwelt in Deutschland und Europa

Quellen von sekundären Mikropartikeln aus Kunststoff	In Deutschland in Tonnen pro Jahr	In Europa in Tonnen pro Jahr
Fragmentierung von Kunststoffabfällen	Unbekannt	3.400.000 bis 5.700.000
Synthetische Chemiefasern aus Kleidungsstücken und sonstigen Textilien	80 bis 400	500 bis 2.500
Verlust von Pellets in der Herstellung und Weiterverarbeitung von Kunststoffen	21.000 bis 210.000	57.000 bis 570.000
Reifenabrieb	60.000 bis 111.000	375.000 bis 693.750

Quelle: ESSEL et al. (2015)

Eine weitere Einordnung von Mikroplastik nach Art der Entstehung nutzt folgende Begrifflichkeiten. Danach wird primäres Mikroplastik Typ A gezielt als solches hergestellt. Beispiele sind Strahlmittel oder die Anwendung in kosmetischen Mitteln, wie zuvor auch als primäres Mikroplastik definiert. Der Unterschied besteht nun darin, dass Mikroplastik, welches bei der Nutzung von Produkten entsteht, wie Reifenabrieb oder die Freisetzung von synthetischen Fasern beim Waschen, als primäres Mikroplastik Typ B beschrieben und nicht als sekundäres Mikroplastik eingeordnet wird. Als sekundäres Mikroplastik werden lediglich die Partikel bezeichnet, die erst durch Zerfall von Makroplastik in der Umwelt entstehen (BERTLING et al., 2018). Durch die Nutzung uneinheitlicher Begriffsdefinitionen muss beim Vergleich von Studien eine besondere Aufmerksamkeit auf diese gelegt werden.

3.1.5 Eintrag und Wirkung von Mikroplastik in der Umwelt

Die Eintragspfade von Mikroplastik in die Umwelt sind vielfältig. Nachfolgend werden wesentliche Eintragspfade aufgezeigt. Sie können in punktuelle und diffuse Quellen unterschieden werden (BERTLING et al., 2018).

- Punktuelle Einträge
 - Gereinigte Abläufe der Kläranlage
 - Regenwasserkanäle im Trennsystem
 - Mischwasserüberläufe
 - Direkt einleitende Haushalte/Industrien
 - Niederschlagsentwässerung außerorts
 - Direkteinträge von Schiffen und wasserbaulichen Einrichtungen

Diffuse Einträge

- Atmosphärischer Transport (Wind, Regen)
- Abschwemmungen
- Grundwasser
- Transport durch Tiere
- Littering

Durch die komplexen Abläufe zum Eintrag und zur Entstehung von (Mikro-)Plastik in der Umwelt ist es nahezu unmöglich, die Stoffströme zu guantifizieren. Geschätzt wird, dass ein wesentlicher Teil des Plastikmülls in den Meeren aus dem Inland stammt und Flüsse als Eintragspfade fungieren (SÖVEN et al., 2015). LECHNER et al. (2014) beziffern auf Grund ihrer Studie den Eintrag von Mikroplastik über die Donau in das Schwarze Meer auf 4,2 Tonnen pro Tag. Das entspricht 1.533 Tonnen pro Jahr. Rund 75 % des gefundenen Mülls im Meer und an Stränden ist aus Kunststoff. Plastiktüten, Flaschen, Fischkisten und ehemalige Fischernetze sind prominente Beispiele für Meeresmüll. Diese Makroplastikteile zerfallen mit der Zeit zu unzähligen Mikroplastikpartikeln, weshalb Mikroplastik weiter an Umweltrelevanz gewinnt. Nach einer Studie vom Umweltbundesamt aus dem Jahr 2016 wurden 258 im Freiwasser und 132 am Meeresboden lebende Fischarten aus Nord- und Ostsee quantitativ und qualitativ auf Kunststoff im Verdauungstrakt untersucht. Hierbei wurden bei 69 Prozent der Proben Mikroplastik mit einer Größe von kleiner einem Millimeter gefunden (BUSSE et al., 2019). Die Dringlichkeit der Thematik beschäftig auch die Bundesregierung (BUNDESREGIERUNG, 2020). Abbildung 3 zeigt aus einer öffentlichkeitswirksamen Publikation in sozialen Medien, dass von ca. 400 untersuchten Meereslebewesen ein Großteil Plastik im Verdauungstrakt aufwies. Vor allem Schildkröten und Eissturmvögel sind mit über 90 bis 100 Prozent betroffen. Partikel aus Kunststoff werden mit der Nahrung verwechselt und gefressen. Diese können Abschürfungen, Geschwüre oder Verstopfungen auslösen. Durch die Füllung des Magens mit unverwertbaren Kunststoffen kann eine Scheinsättigung ausgelöst werden, welche im schlimmsten Fall zum Verhungern führt. Fälschlich aufgenommene Partikel können aber auch wieder ausgewürgt werden oder normal mit dem Kot ausgeschieden werden (STÖVEN et al., 2015).

Werden die Kunststoffpartikel durch äußere Einflüsse weiter zerkleinert, so vergrößert sich die Anzahl von Partikeln in der Umwelt, sowie das Oberflächen-Volumen-Verhältnis. Dies kann die Freisetzung von Additiven, die Desorption persistenter organischer Schadstoffe (POP) sowie die Verbreitung von potentiell pathogenen Mikroorganismen begünstigen (STÖVEN et al., 2015). Diese Schadstoffe können sowohl für die Lebewesen in der Umwelt als auch für den Menschen negative Folgen haben (FUHR, 2019). In Tabelle 3 wird die Anzahl verschiedener Zusatzstoffe, die in der Herstellung von Kunststoffen eingesetzt werden können, aufgelistet. Diese Daten basieren auf einer Zusammenstellung von Bertling et al. (BERTLING et al., 2018) nach einer Studie von Stenmark et al. (STENMARK et al., 2017) und zeigt auf, wie viele verschiedene gefährliche Stoffe über Plastikpartikel in die Umwelt eingetragen werden können.

Quelle: BUNDESREGIERUNG (2020)

Abbildung 3: Anteil untersuchter Tiere mit Plastikpartikeln im Verdauungstrakt

Abbildung 4 zeigt die Anteile der Kunststoffsorten an der Verarbeitungsmenge von Kunststoffen im Jahr 2019. Den größten Anteil macht Polyethylen mit über einem Viertel (27,6 %) aus, gefolgt von Polypropylen mit 16,9 % (UMWELTBUNDESAMT, 2018b). Es ist anzunehmen, dass die Häufigkeit der verwendeten Kunststoffsorten in der Verarbeitung einen Einfluss auf die Zusammensetzung von Plastikmüll in der Umwelt hat und auch dort zu einem großen Teil Polyethylen und Polypropylen zu finden werden sein (STOCK et al., 2019, ZHANG et al., 2019).

Anteil der Kunststoffsorten an der Verarbeitungsmenge Kunststoffe 2019 (Neuware und Rezyklat)

Quelle: UMWELTBUNDESAMT (2020b)

Abbildung 4: Anteil der Kunststoffsorten an der Verarbeitungsmenge Kunststoffe 2019

Funktionen	PVC	PUR	PE	PP	PES, PET	ΡΑ	PS, ABS	PAc	PC	CA u. a.	MF, PF, UP	Ероху
Biozid	3	3	3	1	2	1	-	-	-	-	-	
Treibmittel	2	2	1	1	-	1	2	-	-	-	2	1
Schwermetallhaltige Stabilisatoren, Farbmittel und Katalysatoren	6	3	5	4	3	2	2	-	-	3	4	2
Flammschutzmittel	4	9	12	13	9	5	15	3	4	-	3	9
Monomere, Vernetzer, Kettenmodifikation, Katalysatoren, Härter	1	3	-	-	3	2	5	-	2	1	4	11
Organische Farbstoffe	-	-	-	-	1	1	-	1	-	-	-	-
UV-Stabilisatoren, Antioxidantien	4	2	2	-	-	-	-	1	-	-	1	-
Weichmacher	20	3	-	1	3	2	2	-	-	4	-	-
Lösemittel	2	1	-	-	-	-	-	-	1	1	-	2
Sonstige	2	2	-	1	1	-	2	-	-	-	3	2
Summe	44	28	23	21	22	14	28	5	7	9	17	27

Tabelle 3: Anzahl verschiedener Additive in bestimmten Polymertypen

Quelle: STENMARK et al. (2017), BERTLING et al. (2018)

3.2 Methoden zur Mikroplastikbestimmung

Um Kunststoffe in der Umwelt, deren Einträge und Transportwege innerhalb und zwischen Umweltmedien bewerten zu können, müssen vergleichbare Daten erhoben werden (BUSSE et al., 2019). Voraussetzung sind harmonisierte bzw. standardisierte und validierte Untersuchungsmethoden, welche es für Plastik in der Umwelt noch nicht gibt (BMBF, 2018). Grundsätzlich werden nicht alle Fragestellungen mit einer Untersuchungsmethode abgedeckt werden können. So ist es notwendig, chemische, physikalische und biologische Verfahren zu entwickeln und aufgabenspezifisch anzuwenden. Ebenso wird es für die Beprobung der Umweltkompartimente Wasser, Luft, Boden sowie für Biota eigene Verfahren geben, welche die Probenahme, Aufarbeitung und Analytik gualitätsgesichert beschreiben. Die daraus gewonnenen Ergebnisse müssen statistisch gesicherte Aussagen ermöglichen. Abbildung 5 zeigt schematisch, welche Methoden bei der Untersuchung von Mikroplastik in der Umwelt häufig angewendet werden. (STURM et al., 2019, LÖDER et al., 2020, LI et al., 2018). Diese werden nachfolgend weiter ausgeführt. Dabei steht die Probenahme von Wasser, Biota oder Sediment vor Ort an erster Stelle. Es ist für die zurzeit gängigen Analysemethoden notwendig, dass anschließend das organische Material abgetrennt wird (WIRKNOR et al., 2019, BRAUN et al., 2020). Bei Sedimenten erfolgt das zumeist nach einer vorhergehenden Dichteseparation zur Abtrennung von anorganischen Material (STOCK et al., 2019). Nach der Aufreinigung können die Partikel analysiert werden.

Quelle: STURM et al. (2019)

Abbildung 5: Schema des Monitorings von Mikroplastik in Umweltproben

3.2.1 Probenahme

3.2.1.1 Probenahme im Kompartiment Wasser

Zur Probenahme von Oberflächenwasser werden häufig Netze genutzt. Dabei wird die Probe direkt während des Sammelns aufkonzentriert. Die Maschenweite beträgt 50 bis 300 Mikrometer, die üblich verwendete Größe liegt bei 300 Mikrometern (BRAUN et al., 2020). DRIS et al. (2015) haben den Einfluss der Maschenweite auf das Sammelergebnis untersucht. Hierfür wurde ein Netz mit 80 Mikrometern und ein Netz mit 450 Mikrometern Maschenweite genutzt. Es konnte mit dem Netz mit geringerer Maschenweite mehr Mikroplastik gesammelt werden, was darauf hindeutet, dass das Vorkommen von Mikroplastik häufig unterschätzt

wird. Der Nachteil sehr feiner Netze hingegen ist, dass diese schnell von feinen Partikeln zugesetzt werden. Üblicherweise wird ein Manta-Trawl zur Probenahme genutzt, ein feinmaschiges Netz, mit einer Öffnung aus Metall, an der Schwimmhilfen befestigt sind und mit einem Schleppseil gezogen wird. Abbildung 6 skizziert schematisch den Aufbau dieses Sammelgeräts (OTT et al., 2015).

Quelle: OTT et al. (2015)

Abbildung 6: Schematische Darstellung eines Manta-Trawl zur Beprobung der Wasseroberfläche

Sehr kleine Partikel mit einer Größe von bis zu fünf Mikrometer können kombiniert mit einer kontinuierlichen Fluss-Zentrifuge abgetrennt werden. Hierbei wird Wasser in schnell rotierende Zylinder gepumpt. Partikel mit einer höheren Dichte als Wasser verbleiben im Wasser, während leichtere Partikel mittels Netzen oder Sieben abgetrennt werden. Der Vorteil dieser Methode ist, dass eine große Menge an Wasser durchgesetzt werden kann, ohne die feinen Netze zu verstopfen. Nachteil hingegen ist der hohe Zeitaufwand. So hat die Bundesanstalt für Gewässerkunde bei der Nutzung der Methode mit einem Netz der Maschenweite von fünf Mikrometern eine Stunde für den Durchsatz von einem Kubikmeter Wasser benötigt (STOCK et al., 2019).

Für die Beprobung der oberflächlichen Mikroschicht können rotierende Glaszylinder genutzt werden, welche mit Hilfe der Oberflächenspannung die oberen 50 bis 60 Mikrometer abschöpfen. Song et al haben in Ihrer Studie in dieser Schicht mehr Mikroplastik entdeckt als in Sammelproben mit Netzen (50 bis 330 Mikrometer) (SONG et al., 2014).

Die fraktionierte Druckfiltration schaltet Filter mit Maschenweiten von beispielsweise 100, 20 und fünf Mikrometern hintereinander. Dadurch ist es möglich, einige Kubikmeter Wasser durchzusetzen und zeitgleich eine Fraktionierung der Partikel in Größenklassen zu erhalten (LÖDER et al., 2015). Eingesetzt werden kann diese Methode beispielsweise für Straßenabflusswasser. Durch eine Kaskade mit sechs Filtern kann so Reifenabrieb für weitere Untersuchungen aufgefangen werden (STOCK et al., 2019). Lenz et al haben am Leibniz-Institut für Ostseeforschung Warnemünde ein mobiles Gerät entwickelt, welches die direkte Abscheidung von Partikeln aus (Meeres-)Wasser im Feld ermöglicht. Die Untergrenze der Partikelgröße ist dabei zehn Mirkometer (LENZ et al., 2018).

3.2.1.2 Probenahme von Sediment

Das Verfahren zur Sedimentprobenahme unterscheidet sich je nach Standort und gewünschter Probe. So sind das Volumen sowie die Fläche der Probenahme ebenso wie die Größe und die Tiefe der beprobten Stelle beeinflussende Faktoren.

Meeresproben können häufig in Form von Treibgut an Stränden gesammelt werden. Hierbei können Proben direkt mit Kellen, Löffeln, Schaufeln oder Spateln in plastikfreie Gefäße überführt werden. Eine visuelle Trennung von Mikroplastik und Sedimenten wird nicht empfohlen, da hierbei leicht Plastikpartikel übersehen werden können. Es ist darauf zu achten, dass Masse und Volumen der Proben erfasst werden (STOCK et al., 2019).

Da Mikroplastik in der Meeresforschung schon seit einigen Jahren ein Thema ist, existieren für die Probenahme von Schiffen spezielle Methoden. Häufig kommen hier Greifer, wie der Kastenkernprobenehmer (engl. Box Corer) zum Einsatz. Diese Art von Probenahme zerstört allerdings die Sedimentschichten. Für unzerstörte Schichtproben kommen Kernlochbohrer zum Einsatz. Hierbei kann die Information tiefenaufgelöst gewonnen werden. Für die Verfolgung von Mikroplastik seit der Produktion von Plastik ab den 1950er Jahren kann die ¹³⁷Cs oder ²¹⁰Pb-Konzentration im Sediment gemessen werden. Dies erlaubt eine Abschätzung über die jährliche Ablagerung von Mikroplastik in den unzerstörten Proben (CORCORAN et al., 2018). Im Projekt Baseman soll eine Vereinheitlichung für marine Mikroplastikproben geschaffen werden. Frias et al. (FRIAS et al., 2018) haben einen Vorschlag für ein standardisiertes Protokoll für Sedimentprobenahmen zum Monitoring intertidaler und subtidaler Sedimente entwickelt. Hierbei wird empfohlen sechs Proben pro Stelle in verschiedenen Tiefen und aus verschiedenen Matrices zu nehmen und die Probe alsbald einzufrieren, sofern sie nicht zügig analysiert werden kann. Eine solche Empfehlung liegt für limnische Systeme noch nicht vor.

3.2.1.3 Probenahme von Biota

Mikroplastik wurde sowohl unter Labor- als auch unter natürlichen Bedingungen in vielen Organismen gefunden (ZHANG et al., 2019). Aus der Umwelt können die Organismen unter anderem durch Einsatz von Körben, Fallen oder Netzen entnommen werden. Es können aber beispielsweise auch Fische auf dem Fischmarkt gekauft oder tote Organismen vom Strand aufgelesen werden. Es ist darauf zu achten, dass möglichst viele Details zur Probenahme und den beprobten Organismen protokolliert werden. Für eine repräsentative Probenahme sollen Organismen verschiedener Größe, verschiedener räumlicher Verteilung sowie in verschiedenen Zeitperioden genommen werden (STOCK et al., 2019).

3.2.2 Probenaufarbeitung

Im Allgemeinen muss bei der Probenaufarbeitung die Kontamination der Proben mit Mikroplastik aus der Laborumgebung verhindert werden. Es wird daher empfohlen, die Proben nur unter einer Abzugshaube und mit entsprechender Schutzausrüstung, wie Baumwollkleidung zu bearbeiten. Es sollten alle Plastikgeräte und -werkzeuge durch Geräte aus Stahl oder Glas ersetzt werden (STOCK et al., 2019, BRAUN et al., 2020). FRIAS et al. (2018) empfehlen eine tägliche Kontrolle der Laborluft mittels Glasmikrofilter, um die Menge luftbürtiger Plastikpartikel zu erfassen.

3.2.2.1 Sedimentproben

Sedimentproben müssen aufgrund ihres großen Volumens vor der Analyse aufgearbeitet werden. Hierbei müssen zumeist große Mengen an anorganischen aber auch organischen Material abgetrennt werden. Ein gängiges Gerät ist der Mikroplastiksedimentseparator, kurz MPSS. Dieser kann bei einer Größe von 1,75 Metern ein Volumen von sechs Litern Sediment fassen (IMHOF et al., 2012). Hierbei wird eine Zinkchlorid-Lösung (ZnCl₂, Dichte von 1,6 bis 1,7 g/mL) hinzugegeben. In dem konischen Standrohr steigt das Mikroplastik, welches eine geringere Dichte aufweist, auf und kann in der abnehmbaren Kammer in 68 Milliliter Lösung abgenommen werden. Abbildung 7 zeigt eine schematische Darstellung des MPSS, bestehend aus dem Sedimentbehälter, dem Standrohr und der abnehmbaren Probenkammer. Diese Methode hat eine Wiederfindungsrate von 95 bis 100 Prozent bei Mikroplastik der Größe von einem bis fünf Millimetern aus limnischen Systemen. Die Wiederfindungsrate bei Proben aus marinen Systemen oder bei Sedimenten mit hohem Gehalt an organischem Material beträgt hingegen nur 13 bis 39 Prozent. Der Vorteil dieser Trennungsmethode besteht darin, dass Mikroplastik aus großen Mengen von Sediment separiert werden kann. Die abgetrennte Fraktion wird im Anschluss filtriert (STOCK et al., 2019).

Quelle: IMHOF et al. (2012)

Abbildung 7: Schematische Darstellung des Mikroplastik Sediment Separators (MPSS)

Eine weitere Methode zur Volumenreduktion von trockenem Probenmaterial ist die Nutzung eines elektrostatischen Separators. Die elektrostatische Separation macht sich die nichtleitende Eigenschaft der Polymere zu Nutze (STOCK et al., 2019). Hierbei wird das zu trennende, getrocknete Sediment im Separator auf eine Rüttelplatte gegeben. Diese transportiert die Probe zu einer Trommel, bei welcher ein elektrisches Feld erzeugt wird. Eine Übersicht zu dem Gerät gibt Abbildung 8. Auf Grund der elektrostatischen Aufladung der Kunststoffe werden diese in einem elektrischen Hochspannungsfeld vom Sediment getrennt. Die unterschiedlichen Ladungsverhältnisse von Sediment und Plastikpartikeln ermöglichen die Trennung. Die mineralischen Bestandteile entladen sich schnell, wohingegen der Kunststoff länger geladen bleibt und durch die Trommel in ein hinteres Trennfach transportiert wird. Die Massenreduktion von trockenen Proben beträgt bis zu 90 Prozent, wobei auch das meiste organische Material abgetrennt wird. Diese Methode ermöglicht eine schnelle Trennung von großer Probemengen ohne Chemikalien, allerdings ist die organische Zersetzung oder Dichtetrennung für Analytikmethoden wie die IR-Spektroskopie anschließend notwendig (BRAUN et al., 2020).

Quelle: STOCK et al. (2019), modifiziert

Abbildung 8: Schematische Darstellung eines elektrostatischen Separators

3.2.2.2 Aufschluss der Proben – Entfernung des organischen Materials

Viele analytische Verfahren zu Bestimmung von Mikroplastik in Umweltproben erfordern eine Entfernung des natürlichen organischen Materials (vergleich Absatz 3.2.2.2). Es ist zu beachten, dass bei den Zersetzungsmethoden auch das Plastik beschädigt werden kann. Durch Aufquellen, Degradation oder Erhitzen können Fehlinterpretationen hervorgerufen werden, aber auch mit Verlusten ist zu rechnen. Der Aufschluss, sofern dieser nötig ist, sollte nach den Anforderungen der Analysemethode ausgewählt werden (BRAUN et al., 2020, STOCK et al., 2019).

Saurer Aufschluss

Die bisher effektivste Methode sauer organisches Material zu entfernen ist die Nutzung von Salpetersäure (HNO_3) (COLE et al., 2011, FOEKEMA et al., 2013). Der Abbau des organischen Materials mit Salpetersäure (HNO_3) ist mit 94 bis 98 Prozent im Vergleich zu Salzsäure (HCI), Wasserstoffperoxid (H_2O_2) oder Natriumhydroxid (NaOH) am effektivsten. Es wurde allerdings auch gezeigt, dass bei der Behandlung der Umweltproben mit HNO₃ Polystyren und Polyethylen verklumpen und sich auflösen. Salzsäure wird nicht genutzt, da diese das organische Material nicht gut genug zersetzt, es somit zu ineffizient ist (STOCK et al., 2019).

Alkalischer Aufschluss

Neben Säuren können auch Laugen zum Abbau von organischem Material eingesetzt werden. COLE et al. (2011) zeigten, dass mit Natriumhydroxid bereits 90 Prozent des organischen Materials verdaut werden kann. Wenn die Temperatur und die Molarität erhöht wird, sind höhere Abbauraten möglich, jedoch wird auch das Kunststoffmaterial angegriffen. Von dem Abbau mit zehn molarer Natriumhydroxid-Lösung sind die Kunststoffarten Polycarbonat (PC), Celluloseacetat (CA), Polyethylenterephthalat (PET) und Polyvenylchlorid (PVC) betroffen. Foekema et al (FOEKEMA et al., 2013) untersuchten Mikroplastik in Nordseefischen. Um das organische Material aufzulösen wurde zehn molare Kaliumhydroxid-Lösung zur Probe hinzugegeben, welche zwei bis drei Wochen benötigte, um dieses aufzulösen. Kaliumhydroxid hat sich auch bei der Behandlung von marinen Sedimenten, wie Sand als effektiv erwiesen, allerdings wurde hierbei auch das Celluloseacetat zersetzt (STOCK et al., 2019).

Oxidativer Aufschluss

Eine weitere Möglichkeit zur Entfernung von organischen Material bietet der oxidative Aufschluss mit Wasserstoffperoxid. Frias et al. (FRIAS et al., 2018) empfehlen hierbei, Umweltproben für 18 Stunden mit zehnprozentiger Wasserstoffperoxidlösung zu behandeln. Werden höher konzentrierte Lösungen verwendet, so werden auch die Polymere angegriffen. Diese werden dünner, transparenter und kleiner bei dem Einsatz von 30 prozentiger H₂O₂-Lösung. Wird die Probe sieben Tage lang derartig behandelt, so können Polymerverluste von bis zu 30 Prozent entstehen. Polyethylen und Polypropylen werden bei halbkonzentrierter Lösung nicht angegriffen (STOCK et al., 2019).

Enzymatischer Aufschluss

Der enzymatische Abbau stellt die schonendste Methode zum gezielten Abbau organischen Materials dar (BRAUN (2020)). Jedoch ist diese sehr zeit- und kostenaufwändig, durch die spezifischen Ansprüche an die Enzyme je nach Material und Reaktionsbedingungen. So müssen die Bedingungen wie pH-Wert, Temperatur, Reaktionspuffer u. a. für jedes Enzym beachtet werden (STOCK et al., 2019). Beim Einsatz mehrerer Enzyme werden die Schritte nacheinander ausgeführt. Dazwischen muss die Probe jeweils abfiltriert werden. Die Aufarbeitung kann dadurch mehrere Tage dauern und teilweise nur zu einem unvollständigen Abbau von den natürlichen organischen Verbindungen führen. Tabelle 4 bietet eine Übersicht zu gängigen Enzymen.

Enzym	Spaltung von	Abbau von
Cellulase	Endo-1,4-beta-glycosidische-Bindungen	Cellulose
Protease	Peptidbindungen	Proteine
Lipase	Ester-Bindungen von Triacylglyceriden	Fette und Öle
Amylase	1,4-α-D-glycosidische-Bindungen	Stärke
Chitinase	1,4-β-poly-N-acetylglucosamin-Bindungen	Chitin
Pektinase	1,4-α-D-galactosiduronische-Bindungen	Pektin

Tabelle 4: Übersicht Enzyme zur Spaltung von organischem Material

Quelle: BRAUN et al. (2020)

Tabelle 5 zeigt abschließend eine Übersicht zu den zurzeit gängigen Probenaufarbeitsungsmethoden mit Anwendungsbereich, Vor- und Nachteilen.

Methode	Anwendungsbereich	Vorteile	Nachteile
Elektroseparator	Sediment	Reduzierung der Probemasse um ca. 90 %	Verlust von kleinen Sedimentproben möglich, nicht nutzbar für geringe Probenmengen
Munich Plastic Sediment Separator (MPSS)	Sediment (siehe Zinkchlorid)	Direkte Separation von gesamten, großen Probenmassen	Große Mengen an Lösung mit hoher Dichte notwendig (ZnCl2)
Organische Zersetzu	ng		
Saure Zersetzung (HNO ₃ , HCI)	Sediment, Wasser, Biota	HNO₃: Zersetzung der meisten biologischen Bestandteile	HNO ₃ : Auflösung von PS und PE möglich, HCI: unvoll- ständige Zersetzung bio. Bestandteile
Alkalische Zersetzung (NaOH)	Sediment, Wasser, Biota	Zersetzung der meisten biologischen Bestandteile	Degradation einiger Polymere (z. B. PC, CA, PET, PVC)
Alkalische Zersetzung (KOH)	Sediment, Wasser, Biota	Zersetzung der meisten biologischen Bestandteile, Resistenz der meistern Polymere	Zersetzung von CA, lange Einwirkzeit
Oxidative Zersetzung (H_2O_2)	Sediment, Wasser, Biota	Zersetzung der meisten biologischen Bestandteile	Polymere können angegriffen werden
Enzymatische Zersetzung	Sediment, Wasser, Biota	Zersetzung der meisten biologischen Bestandteile, ungefährlich	Zeitaufwändig, teilweise teuer, Enzyme sind probenabhängig
Dichtetrennung			
Natriumchlorid	Sediment, Wasser, Biota	Geringe Kosten und geringe Toxizität	Nicht alle Polymere abtrennbar (Dichte zu gering)
Natriumwolframat Dihydrat	Sediment, Wasser, Biota	Kosteneffizient, hohe Dichte	
Natriumpolywolframat	Sediment, Wasser, Biota	Hohe Dichte	Teuer
Kaliumformiat	Sediment, Wasser, Biota	Kosteneffizient, hohe Dichte, ungefährlich	Hygroskopisch
Zinkchlorid	Sediment, Wasser, Biota	Nicht teuer, hohe Dichte	Korrosiv, gefährlich
Natriumiodid	Sediment, Wasser, Biota	Hohe Dichte	Teuer
ÖI	Sediment, Wasser, Biota	Kosteneffizient, leichte Handhabung	Nur in wenigen Studien genutzt

Tabelle 5: Behandlung zur Probenvorbereitung

Quelle: STOCK et al. (2019)

3.2.3 Probenanalytik

3.2.3.1 Rasterelektronenmikroskopie mit energiedispersiver Röntgenspektroskopie

Die Rasterelektronenmikroskopie (SEM = scanning elecron microscopy) kombiniert mit der energiedispersive Nen Röntgenspektroskopie (EDS = energy-dispersive X-ray spectroscopy) erzeugt hochaufgelöste Bilder und Spektren der Probenoberfläche. Die Atome der Probe werden durch einen Elektronenstrahl angeregt, welche daraufhin eine elementspezifische, charakteristische Röntgenstrahlung aussenden. In Kombination von Oberflächenbildern und chemischer Zusammensetzung der Probe kann Mikroplastik detektiert werden und auch sein Degradationszustand, sowie Größe der Partikel beschrieben werden. Die Methode kann nur für feste Proben genutzt werden, die eine flache, polierte Oberfläche aufweisen oder aus dünnen Filmen bestehen. Für die Identifizierung sind gute Referenzspektren notwendig. Es kann eine Auflösung von 0,1 µm erreicht werden und ist für farbige Polymere, wie eingefärbtes PVC besonders effektiv. Zudem können anorganische Additive bestimmt werden (WIRKNOR ET AL, 2019, LI et al., 2018, ROCHA-SANTOS et al., 2015).

3.2.3.2 Optische Mikroskopie

Eine Methode zur Untersuchung von großem Mikroplastik ist die optische Mikroskopie. Dabei wird das Mikroplastik händisch von organischen Materialien getrennt. Die Dokumentation kann mit Kameras erfolgen. Diese Methode ist sehr fehleranfällig. So können andere Partikel, wie Sand oder Chitinfragmente fälschlicherweise für Mikroplastik gehalten werden. Je kleiner die Partikel werden, desto größer wird die Unsicherheit der Bestimmung, weshalb diese Methode auf eine Partikelgröße von minimal einem Millimeter limitiert ist. Um die Fehlinterpretation zu verringern, kann unterstützend ein Färbemittel wie Nilrot eingesetzt werden (STURM et al., 2019). Dabei wird die Probe in einem Milliliter Färbelösung für 48 Stunden eingelegt, bis alle Flüssigkeit verdampft ist. Anschließend können die Partikel unter UV-Licht betrachtet werden. Chlo-roform eignet sich gut als Lösemittel zur Einfärbung von PE, PP und PVC. Mit n-Hexan können PE, PP und PET eingefärbt werden. Durch die optische Mikroskopie können neben der Größe der Partikel auch die Morphologie, die Anzahl und die Farbe bestimmt werden. Die Methode ist jedoch wenig automatisierbar und damit sehr zeitaufwändig (WIRKNOR et al., 2019).

3.2.3.3 Pyrolyse-GC-MS

Die pyrolyse-Gaschromatographie-Massenspektrometrie (pyr-GC-MS) ist eine chemische Analysetechnik. Hierbei wird die Probe durch Erhitzen in kleine Bestandteile zersetzt, über Gaschromatographie separiert und massenspektrometrisch analysiert. Im Detail wird hierbei die Probe zunächst bei 600-1000 °C im Pyrolysator in kleinere Bestandteile zerstört. Die entstandenen flüchtigen Substanzen werden chromatographisch getrennt. Jedes Polymer liefert spezifische Verbrennungsprodukte, welche mit Massenspektrometrie identifiziert und quantifiziert werden können. Die Identifizierung der Ausgangsstoffe erfolgt durch Abgleich der Spektren mit Datenbanken. Ein positiver Nebeneffekt dieser Methode ist, dass organische Additive simultan bestimmt werden können. Ein großer Nachteil für den Routinebetrieb hingegen ist, dass die Proben händisch eingelegt werden müssen, es damit nicht automatisierbar ist. Zusätzlich ist die Analyse von nur einem Partikel möglich, damit ist die Methode auch größenlimitiert, da zu kleine Korngrößen nicht mehr händisch aufgenommen werden können. Es gibt allerdings Forschungsbemühungen, die daraufhin arbeiten, das ganze Filter in den Pyrolysator gegeben werden können (WIRKNOR et al., 2019).

3.2.3.4 Thermal-Extraction-Desorption-GC-MS

Das Verfahren Thermal-Extraction-Desorption-GC-MS ist das der Pyrolyse-GC-MS sehr ähnlich. Der größte Unterschied besteht darin, dass die Pyrolyse und das Analysesystem entkoppelt sind. Zudem ist die Aufgabe größerer Probenmengen von bis zu einem Gramm möglich. Die Oxidation erfolgt in einer Thermowaage (TGA) unter kontrollierten Bedingungen bis 1100 °C. Die Verbrennungsprodukte werden durch ein Spülgas auf den Festphasenadsorber getragen und dort gesammelt. Als Festphase wird häufig Polydimethylsiloxan (PDMS) genutzt. Der Adsorber kann auch während des Verbrennungsprozesses automatisch gegen einen unbeladenen ausgetauscht werden, so dass fraktionierte Messungen möglich werden. Sobald die Adsorber beladen sind, werden sie vollautomatisch in Thermodesorptionsröhrchen und anschließend zum Analysegerät gebracht. In der Thermodesorptionseinheit (TDS) werden die zuvor adsorbierten Verbrennungsprodukte erneut erhitzt und damit desorbiert. Durch ein inertes Spülgas (Helium) wird es in ein Kaltaufgabesystem getragen und dort aufkonzentriert, bevor es durch erneute kontrollierte Erhitzung auf eine Säule zur chromatographischen Trennung überführt wird. Die Analyse erfolgt mittels Massenspektroskopie. Auch hier erfolgt die Identifikation von Polymeren anhand der spezifischen Marker der Verbrennungsprodukte. Wird ein Polymer identifiziert, dann wird der Gehalt dieses quantifiziert. Durch die Aufnahme der Verbrennungsprodukte auf der Festphase wird das GC-MS-System gut vor schwer flüchtigen Substanzen und damit vor Kontaminationen geschützt. Durch diesen Zwischenschritt ist die Methode allerdings für kleinere Moleküle (< C5) weniger geeignet, da diese durch ihre hohe Flüchtigkeit nicht von dem Festphasenadsorber aufgenommen werden und damit nicht in das Analysesystem überführt werden können (DÜMICHEN et al., 2017, ROCHA-SANTOS et al., 2015).

3.2.3.5 FT-IR-Spektroskopie

Eine häufig genutzte Methode zur Mikroplastikbestimmung ist die Infrarotspektroskopie (IR-Spektroskopie). Sie bietet eine zerstörungsfreie Analyse der chemischen Struktur auf Basis von kovalenten Bindungen der Moleküle. Durch mittlere Infrarotstrahlung werden diese durch die Absorption der Energie zur Schwingung angeregt. Da jedes Molekül, für die Mikroplastikbestimmung im speziellen jedes Polymer, verschiedene Anteile von Bindungen vorweisen, entsteht ein spezifisches Schwingungsbild. Dieses fungiert wie ein "Fingerabdruck", was die Identifizierung von Molekülen ermöglicht. Dabei werden die aufgenommenen Spektren mit Datenbanken abgeglichen. Die Probe muss bei der Messung wasserfrei sein, da dessen IR-Spektrum das der Probe überlagern kann. Im Allgemeinen bietet die IR- und FT-IR- (Fourier-Transformation Infrarot) Spektroskopie zwei Messprinzipien, die Transmission und die Reflexion. Bei der Transmissionsmessung durchdringt der IR-Strahl die gesamte Probe, das Spektrum bildet somit den gesamten Partikel ab. Diese Methode ist allerdings auch anfällig für Totalabsorption bei zu dicken oder dunkel gefärbten Partikeln. Dabei können entweder Feinheiten oder das komplette Signal verloren gehen. Die Reflexionsmessung kann nur bei gut reflektierenden Proben eingesetzt werden. Hierbei trifft der IR-Strahl auf die Probe und die Reflexion wird detektiert. Eine Art dieser Messung ist die abgeschwächte Totalreflexion (kurz ATR = attenuated total reflection). Dabei wird ein Kristall direkt auf die zu vermessende Probe gepresst. Es wird ein Spektrum der Grenzfläche zwischen Kristall und Probe erhalten, welches die Oberfläche der Probe charakterisiert. Diese Methode wird für größere Partikel bis zu einer Größe größer als 500 Mikrometer genutzt. Kleinere Partikel können auf einem Filter aufgebracht und mit einem µ-ATR-Objektiv untersucht werden. Es wird händisch oder automatisch auf die zu untersuchenden Partikel gerichtet. Da mehrere Partikel nacheinander vermessen werden kann es geschehen, dass Partikel an der Kristalloberfläche haften bleiben und verschleppt werden. Zudem können harte Materialien den Kristall beschädigen. Die Kombination der FTIR-Messtechnik mit einem konfokalen Mikroskop (µ-FT-IR) ermöglicht eine Analyse kleinerer Partikel.

Bei dem Einsatz von focal plane array (FPA) Detektoren kann der Probendurchsatz stark erhöht werden. So kann beispielsweise eine Fläche von 0,7 mm x 0,7 mm innerhalb einer Minute unter der Erzeugung von ca. 16.000 Spektren analysiert werden. Mit Hilfe der IR-Mikroskopie können Partikel auf einem Filter chemisch kartiert werden. Als günstiges Filtermaterial hat sich Aluminiumoxid durchgesetzt, auch wenn hierbei nur ein eingeschränkter Messbereich von 3600-1250 cm⁻¹ genutzt werden kann. Für die Auswertung der Analyseergebnisse ist eine eigene Software notwendig, da der Zeitaufwand zur händischen Auswertung der vielen tausend Spektren zu hoch ist. Außerdem ist eine gründliche Probenreinigung zur Nutzung der Methode notwendig (WIRKNOR et al., 2019, LI et al., 2018, ROCHA-SANTOS et al., 2015, BRAUN et al., 2020).

3.2.3.6 Raman-Spektroskopie

Die Raman-Spektroskopie ist ebenso eine zerstörungsfreie analytische Methode, welche sich die Molekülschwingungen zu Nutze macht. Hierbei wird der Effekt der inelastischen Lichtstreuung an Molekülen genutzt. Dieser liefert ebenso ein Spektrum, welches als "Fingerabdruck" molekülspezifisch erzeugt wird. Neben der Polymerart können so aber auch Additive wie Pigmente oder Oxidative, sowie anorganische und organische Inhaltsstoffe charakterisiert werden. Wird diese Methode wiederum mit konfokaler optischen Mikroskopie gekoppelt (µ-Raman-Spektroskopie), kann eine räumliche Auflösung von einem Mikrometer erreicht werden. Die Messung ist unempfindlich gegenüber Wasser, aber empfindlich gegenüber Fluoreszenz, was Interferenzen versuchsacht. Dies kann sich nachteilig bei der Analyse von biologischen oder Umweltproben auswirken, weshalb eine Probenaufreinigung unerlässlich ist. Die Probe selbst kann für eine automatisierte Messung auf Silizium- oder Teflonfilter aufgetragen werden. Durch die feine räumliche Auflösung der Messmethode kann nur ein kleiner Ausschnitt von dem Filter analysiert werden. Diese Messung muss statistisch gesichert sein, um eine Extrapolation zu ermöglichen. Dennoch können bei Inhomogenität der Probe dadurch große Fehler entstehen. (BRAUN et al., 2020)

3.2.3.7 Dynamische Differenzkalorimetrie

Mit der Dynamischen Differenzkalorimetrie werden thermische Eigenschaften von Kunststoffen bestimmt. Dazu gehören die Glasübergangs- und Schmelztemperatur, sowie die spezifische Wärmekapazität. Die Probe wird in einen Tiegel gegeben, welcher zusammen mit einem leeren Referenztiegel in den Ofenraum des Geräts gestellt wird. Abbildung 9 zeigt skizzenhaft den Ofenraum.

Abbildung 9: Prinzip der Dynamischen Wärmestrom Differenzkalorimetrie

Diese Tiegel werden nach einem vorher festgelegtem Programm mit konstanter Heizrate erhitzt und abgekühlt. Die beiden Tiegel erfahren denselben Wärmestrom. Wird Energie durch chemische oder physikalische Umwandlungsprozesse aufgenommen, wird von einem endothermen Prozess gesprochen, bei Energieabgabe von einem exothermen. Die dadurch generierten Temperaturunterschiede vom Probentiegel zum Referenztiegel werden mit Messfühlern aufgenommen und in Wärmeströme in Abhängigkeit von der Zeit oder der Temperatur aufgetragen. Abbildung 10 zeigt die charakteristischen Kennwerte eines so generierten Thermogramms. Mit Hilfe der thermischen Eigenschaften und des daraus erzeugten Thermogramms können Kunststoffe identifiziert werden. Es wird sozusagen ein "thermischer Fingerabdruck" generiert, welcher mit Thermogrammen bekannter Polymerarten verglichen werden kann. Durch die integrierte Fläche unter dem Peak kann der Massengehalt quantifiziert werden. Dafür muss von der nun bekannten Kunststoffart zuvor eine Kalibrierungskurve aufgenommen worden sein (BRAUN et al., 2020).

Abbildung 10: Charakteristische Kennwerte einer DSC-Kurve

3.2.3.8 Vergleich bestehender Analysemethoden

Tabelle 6 listet die zuvor ausgeführten möglichen Analysetechniken zu Identifizierung und Quantifizierung von Mikroplastik nach dem Übersichtsartikel von LI et al (2018) ergänzend mit dem Statuspapier von BRAUN et al (2020) auf. Es zeigt die Vielfalt der nutzbaren Methoden, welche Vorzüge und Nachteile aufweisen und je nach Fragestellung genutzt werden können. Ist die Anzahl und Form der Partikel von Interesse, so können bildgebende Verfahren, gekoppelt mit spektroskopischen Methoden zur Identifizierung genutzt werden. Für die Bestimmung der Mengenbelastung in der Umweltprobe können chromatographische Methoden, mit anschließender Massenspektroskopie verwendet werden. Diese Methoden erfordern eine gründliche und damit aufwendige Probenaufarbeitung, um alles und natürlich organische und anorganische Material abzutrennen.

Tabelle 6: Behandlung zur Probenvorbereitung

Methode	Vorgehensweise	Erfassbare Partikelgröße	Vorteile	Nachteile			
Visuell							
Mikroskopische Zählung	Vorbehandelte Proben werden per Mikroskop identifiziert, Partikel werden direkt gezählt	Bis in Mikrometerbereich (μm) via Stereomikros- kop	Schnelle und kostengünstige Identifizierung von großen Mengen an großem Mikroplastik	Nicht für kleines Mikroplastik nutzbar, Keine Bestimmung der Art der Proben möglich, Identifikation mit anderer Methode notwendig, fehleranfällig			
Spektroskopisch							
FT-IR	Proben werden IR- Strahlung ausgesetzt, angeregte Schwingung der Probe hängt von der molekularen Zusammensetzung ab, Plastikpolymere haben sehr spezifische IR- Spektren mit deutlichen Bandmustern	> 500 µm mit ATR-FTIR > 20 µm mit mikros- kopisch gekoppeltem FTIR	Nicht destruktiv, gut etabliert, schnelle Analyse Durch automatische FT-IR- Bildgebung wie FPA viele tausend Spektren einer Fläche durch eine Messung erfassbar, starke Zeitreduktion	Proben müssen IR-aktiv sein, bei Proben <20 µm möglicherweise zu schwaches Signal Detektion ist beeinflusst von Umweltmatrixes, kann Spektren verfälschen, Aufreinigung nötig Wasser muss komplett eliminiert sein			
Raman	Proben werden einem Laserstrahl ausgesetzt, die Differenz der Frequ- enz des zurück gewor- fenen Lichts zum eingefallenen wird ver- glichen. Die Raman- Streuung ist substanz- spezifisch	Gekoppelt mit einem Mikroskop ist es eine Methode, die Partikel- größen bis einem Mikro- meter analysieren kann	Deckt auch Partikelgrößen von 1-20 µm ab mit hoher räumlichen Auflösung Relativ unempfindlich auf Wasser Nichttransparente und schwarze Partikel analysierbar Schnelle, automatisierbare Datensammlung	Große Interferenzen durch Fluo- reszenz von biologischen, organ- ischen und anorganischen Verun- reinigungen möglich Vorab Probenaufreinigung nötig Automatisierung noch nicht weit fortgeschritten, sehr zeitaufwendig			

Methode	Vorgehensweise	Erfassbare Partikelgröße	Vorteile	Nachteile
Rasterelektronenspektros- kopie	Bilder der Probenober- fläche wird durch die Wechselwirkung zwischen einem Elektronenstrahl und der Probe, Messung der Sekundärelektronen	Partikel bis in den Mikro- meterbereich sind mess- bar	Hochaufgelöste Probenbilder können erzeugt werden	Proben müssen im Hochvakuum beschichtet werden Keine detaillierten Identifikations informationen verfügbar
Chromatographisch				
Pyrolyse-GC/MS	Proben werden thermisch zersetzt, Produkte werden aufgefangen, chromato- graphisch getrennt und mittels Massenspektros- kopie analysiert Vergleichsspektren sind in Datenbanken hinterlegt	Methode nur nutzbar für Proben >500 µm, nur manuell mit Pinzetten bestückbar	Probe und organische Ad- ditive können zeitgleich analysiert werden Keine Lösemittel nötig Sensitiv und zuverlässig Datenbank von Spektren zu üblichen Polymeren verfügbar	Nur ein Partikel mit ausreichend Größe/Gewicht pro Messdurch- gang nicht automatisierbar
TED-GC/MS	Im wesentlichen gleicher Ablauf wie bei pyr-GC- MS, Nach thermischer Zersetzung Auffangen der Produkte auf Festphase, welche anschließend desorbiert wird	Methode nutzbar für Probenmassen bis 1000 µg, Partikel müssen handhabbar sein	Gleich Vorteile wie pyr-GC- MS, zusätzlich automatisierbar, weniger Störanfällig durch Entkopplung von thermischer Zersetzung und Analyse	Nicht anwendbar für leicht flüch- tige Verbrennungsprodukte (< C5)
Flüssigchromatographie	Proben werden in Löse- mittel gelöst Verteilung von molaren Massen über Größen- ausschlusschromato- graphie Quantifizierung über HPLC-Analyse	Ausreichende Proben- größe von mehreren Milligramm für die che- mische Extraktion nötig	Wiederfindungsraten von ge- eigneten Polymeren sind hoch	Keine physikalischen Informa- tionen gewinnbar Nur für wenige, in org. Lösemittel (THF & Hexafluoroisopropanol) lösliche Polymere wie PS und PET nutzbar

Methode	Vorgehensweise	Erfassbare Partikelgröße	Vorteile	Nachteile
Weitere Methoden				
Markierungsmethode	Hydrophobes Färbemittel wie Nilrot adsorbiert an Plastikpartikeln und fluoresziert unter UV-Licht Wird oft in Kombination mit optischer Mikroskopie genutzt	Mikroplastik bis in den Mikrometerbereich kann visualisiert und gezählt werden	Relativ schnelle Methode, unterstützend zur Mikros- kopie Geringe Kosten Fluoreszierende Partikel können schnell erfasst werden	Andere Partikel, wie organisches Material, kann ebenfalls vom Färbemittel eingefärbt werden und so zu falschen Ergebnissen führen
DSC-Analytik	Wärmestromabhängiges Thermogramm, erzeugt durch Messung von Temperatur des Probentiegels und Referenztiegels unter einer konstanten Heizrate	Größenunabhängig, Größenlimitierung durch Tiegelgröße	Quantitative und qualitative Auswertung von Mikroplastik Keine vollständige Entfernung von Fremdmaterialien notwendig	Partikelgrößenverteilung muss zu- vor gesondert bestimmt werden

Quelle: nach Li et al. (2018), ergänzend BRAUN et al. (2020)
3.3 Bestehende Forschungsprojekte in Deutschland

Da (Mikro-)Plastik in der Umwelt ein globales Thema ist, ist die Erarbeitung und Etablierung von internationalen Verfahrensvorschriften (ISO, CEN, OECD) notwendig. In Deutschland arbeitet das Umweltbundesamt an der Methodenentwicklung für Feldmethoden, ökotoxikologische und humantoxikologische Testverfahren und die Analytik von Mikroplastik im BMBF geförderten Forschungsvorhaben Plastik in der Umwelt (siehe Tabelle 7).

Projekttitel	Laufzeit	Kurzbeschreibung
Limnische Systeme		
EmiStop	01/2018 – 12/2020	Erfassung der Kunststoffemissionen im industriellen Abwasser
ENSURE	04/2018 - 03/2021	Entwicklung neuer umweltoptimierter Kunststoffe
MicBin	10/2017 – 09/2020	Bilanzierung des Eintrags von Plastik in der dt. Donau
MicroPlaTaS	01/2018 – 09/2020	Sedimentation von Mikroplastik in Talsperren
PLASTRAT	09/2017 – 08/2020	Lösungsstrategien: Verminderung urbaner MP-Einträge
REPLAWA	01/2018 – 12/2020	Reduktion der MP-Einträge über das Abwasser
RUSEKU	04/2018 - 03/2021	Untersuchungsverfahren von Kunststoffeintragspfaden
SubµTrack	09/2017 – 08/2020	Tracking von (Sub)MP (<1 µm), innovative Analysetools
Meere & Ozeane		
MicroCatch_Balt	08/2017 – 07/2020	MP-Quellen & Senken im Einzugsgebiet der Warnow & Küste
PLAWES	09/2017 – 08/2020	MP-Belastung Modellsystem Weser, ökosystemübergreifend
Green Economy	•	·
RAU	08/2017 – 07/2020	Reifenabrieb: Probenahme, Analytik & Maßnahmen
TextileMission	09/2017 – 08/2020	MP aus Textilien: Verfahren, Stoffströme, Umweltverhalten
Konsum		
Innoredux	02/2019 – 01/2022	Reduktion von Plastikmüll entlang der Wertschöpfungskette
InRePlast	01/2019 – 12/2021	Umweltpolitische Instrumente zur Reduzierung der Plastikverschmutzung
PlastikBudget	11/2017 – 10/2020	Budgetansatz für Kunststoffeinträge in die Umwelt
VerPlaPos	10/2017 – 09/2020	Vermeidung von Kunststoffabfällen durch Verbraucher
Recycling		
KuWert	08/2017 – 10/2019	Schiffgestützte Behandlung von Kunststoffen in marinen Ökosystemen
MaReK	07/2017 – 12/2019	Markerbasiertes Sortier- und Recyclingsystem für Kunststoffe
ResolVe	08/2017 – 07/2020	Recycling von Polystyrol durch Depolymerisation
solvoPET	10/2017 – 09/2020	Recycling von PET aus Mischmaterialien
Plastikpiraten	·	Citizen Science Projekt

Quelle: ECOLOGIC INSTITUT, (2018)

An der Universität Bayreuth wurde ein "Sonderforschungsbereich 1357 Mikroplastik" eingerichtet, wo die komplexen Fragen der biologischen Effekte, Verhalten und Migration in und zwischen Umweltkompartimenten sowie die Mechanismen der Degradation von Kunststoffen in natürlichen und technischen Systemen erforschen (UNIVERSITÄT BAYREUTH, 2020). Hierbei wird zur Identifizierung die FT-IR-Spektroskopie angewendet. Die Universität Bayreuth begleitet Analysevorhaben im Land und unterstützt Auftraggeber bei der Mikroplastikbestimmung. In Tabelle 8 sind Analyseergebnisse aus den Bundesländern Thüringen, Bayern und dem Süd-West-Ländern, welche sich für eine große Studie gemeinsam organisierten. Die Angaben erfolgen in Partikel pro Wasservolumen und bewegen sich im Bereich von zehn bis 50 Partikel/m³. Zur Übersicht werden die Daten, die in diesem Projekt in Sachsen erhoben wurden, mit aufgeführt.

Die Mitarbeitenden der Bundesanstalt für Gewässerkunde (BfG) veröffentlichten 2020 Untersuchungsergebnisse zur Mikroplastikbelastung in Wasser und Sediment der Elbe (SCHERER et al., (2020).

Des Weiteren wurden von anderen Forscherteams Mikroplastikanalysen der Wasserphase von Rhein (MANI et al., 2016) und Donau (LECHNER et al., 2014) durchgeführt. In Tabelle 9 sind die Ergebnisse der Studien zusammengefasst.

Ort	Zeitraum	Probe	Probenahme	Analytik	Ergebnis	nung
Baden- Württemberg Bayern Hessen Nordrhein- Westfahlen Rheinland-Pfalz	Herbst 2014 & Herbst 2015	52 Messstellen im EZG Rhein & Donau Wasser (ober- flächennah) Sediment (Ufer- & Grundsediment)	Wasser: Manta- Trawl (Schleppnetz, 300 µm Maschenweite)	Partikel > 500 μm: ATR-FT-IR < 500 μm & Fasern: FPA-FT-IR auf Filtern	An allen MST MP nachgewiesen v.a. Fragmente 95 % der Partikel aus PP, PE, PET/PES, PS, PVC	MP (300-1000 μm): 0-117,5 Partikel/m³ MW: 9,3 Partikel/m³
Bayern	2014 & 2015	3 Alpenseen (Chiemsee, Starnberger See, Ammersee) 1 Stausee (Altmühlsee)	Oberflächenwasser: Manta-Trawl (Schleppnetz, 300 µm Maschen- weite) Wassersäule: Planktonnetz (300 µm Maschen- weite) Ufersediment: Sedimentstechrohr Grundsediment: Ekmann-Greifer	Partikel > 500 µm: ATR-FT-IR < 500 µm & Fasern: FPA-FT-IR auf Filtern Ausgewählte Proben mit SWIR- Mikrospektroskopie	An allen MST MP nachgewiesen Partikel v.a. aus PP, PE, PET/PES, PS, PVC, PA	Wasseroberfläche: Median: 4 Partikel/m ³ Wassersäule: Median: 11 Partikel/m ³ Ufersediment: Median: 17.068 Partikel/m ² Grundsediment: Median: 5.709 Partikel/m ²
Thüringen	November 2018 & April 2019	4 Messstellen der Saale bei Jena	Wasser: Manta- Trawl (Schleppnetz, 300 µm Maschenweite)	Partikel > 500 μm: ATR-FT-IR < 500 μm & Fasern: FPA-FT-IR auf Filtern	An allen MST MP nachgewiesen v.a. Fragmente 95 % der Partikel aus PP, PE, PET/PES, PS, PVC	MP (300-1000 μm): (April 2019) 20-86,6 Partikel/m ³ MW: 53,2 Partikel/m ³
Sachsen	2019 - 2021	29 Umweltproben von 25 verschiedenen Messtellen	Flusssediment: Edelstahlschaufel, Van-Veen Greifer	DSC FT-IR als Vergleichsmethode	Qualitative Nach- weise an fünf MST, ein quantitativer Nachweis	Nachweis von PE, PP, PA 0,28 ± 0,20 mg/kg PE

Tabelle 8: Durchgeführte Untersuchungen in Deutschland (Bundesländer)

Quellen: Baden-Württemberg, Bayern, Hessen, Nordrhein-Westfalen, Rheinland-Pfalz: HEß et al. (2018)), Bayern: SCHWAIGER (2019), Thüringen: LÖDER (2020)

Fluss	Zeitraum	Probe	Probenahme	Analytik	Ergebnis	Größenordnung
Donau	2010 & 2012	Wasser zwischen Wien und Bratislava	Stationäre Treibnetze (500 μm Maschenweite)	Händisch ausgezählt mit Mikroskop (Zeiss [®] Axio Imager M1)	Fund von Pellets, Fragmenten und Kügelchen	MW: 17,4 Partikel/m³
Elbe	2015	11 Messstellen, von Wittenberg (Mittel- elbe) bis Vogelsand (Außenelbe)	Wasser: Plankton- netz (150 µm Maschenweite) Sediment: Van- Veen-Bodengreifer	Partikel > 500 μm: ATR-FT- IR < 500 μm pyr-GC- MS	An allen MST MP nachgewiesen v.a. Fasern in der Wasserphase, Fragmente und Kügelchen im Sediment Partikel aus PP, PE, PET/PES, PS, PVC	Wasser: MW: 5,57 Partikel/m ³ Sediment: MW: 3,35 *10 ⁶ Partikel/m ³
Rhein	2014	11 Messstellen zwischen Basel und Rotterdam (31 Proben)	Wasser: Manta- Trawl (300 µm Maschenweite)	ATR-FT-IR	Fund von Kügelchen, Fragmenten und Fasern Partikel aus PP, PE, PET/PES, PS, PVC	MW: 2 Partikel/m³ Max-MW (Duisburg- Zuilichen): 14,7 Partikel/m³

Tabelle 9: Durchgeführte Untersuchungen in europäischen Fließgewässern

Quellen: Donau: LECHNER et al. (2014), Elbe: SCHERER et al. (2020), Rhein: MANI et al. (2016)

4 Untersuchungen in Sächsischen Gewässern - angewandte Methoden

4.1 Sedimentprobenahme

Zur Probenahme wurden Stellen aufgesucht, an denen eine geringe Fließgeschwindigkeit herrscht und Sedimentation stattfindet z. B. am Gleithang, flache Stellen am Ufer, und Stellen hinter oder vor Hindernissen. Es wurden an jedem Standort entlang des Gewässers oder über die Breite mindestens sechs Stellen beprobt (vgl. Anhang 2).

Die Sedimentproben wurden aus dem fließenden Gewässer entnommen. Die Bewegung im Gewässer erfolgte stets stromaufwärts zu den Probenahmestellen. Gegen den Strom, mit ausgestrecktem Arm wurde eine Handschaufel flach in die Gewässersohle eingebracht und anschließend schnell und mit leichter Neigung gegen den Strom über Wasser gehoben. Es wurde eine runde Edelstahlschaufel (Abbildung 11) genutzt, welche einen Durchmesser von zwölf Zentimetern hat. Das geschlossene Ende der Schaufel verhinderte weitestgehend einen Abtrag des Feinsediments im Probenmaterial durch die Strömung.

Abbildung 11: Edelstahlhandschaufel mit entnommenem Sediment

Nachdem die Probe aus dem Wasser gehoben wurde, wurden die einzelnen Portionen in Edelstahlschalen (fünf Liter) gegeben und über eine Dauer von etwa fünf Minuten zur Sedimentation am Ufer stehen gelassen. Da bei der Probenahme viel Wasser (30 bis 90 Prozent), teilweise mit Feinmaterial beladen, anfallen konnte, wurde etwas Wasser aus den Schalen dekantiert. Die Sedimentproben wurden in einem Edelstahleimer (zehn Liter) gefüllt und mit einem Edelstahldeckel ohne Dichtung verschlossen. Der Deckel wurde vor Ort mit Aluminiumfolie umwickelt.

Ein wesentlicher Nachteil der Probenahme mittels Handschaufel ist die begrenzte Entnahmetiefe. Bei hochgerafftem Ärmel liegt diese je nach Armlänge des Probennehmers bei etwa 50 bis 65 Zentimetern. Weiterhin kann eine Mobilisierung der Feinanteile im Sediment und ein Abtransport durch die Strömung nicht gänzlich verhindert werden. Jedoch ist der Zeitaufwand relativ gering und die gesamte Probenahme dauerte je Standort nur 30 bis 45 Minuten.

Zur Entnahme aus größeren Tiefen kann ein geöffneter Greifer eingesetzt werden. In der Kampagne 2021 wurde an geeigneten Probenahmestellen ein Van-Veen-Bodengreifer aus Edelstahl (vgl. Abbildung 12) verwendet. Dieser bietet gegenüber der händischen Entnahme mittels Edelstahlschaufel den Vorteil, dass ein Abtrag des Feinsediments durch die Strömung verhindert wird. Allerdings eignet sich der Greifer ledig-

lich für feine Sedimente, da sonst größere Sedimentbestandteile ein komplettes Schließen des Greifers verhindern können, wodurch die feineren Probenbestandteile verloren gehen. Aus diesem Grund sollte die Verwendbarkeit des Greifers für die Sedimentprobenahme in Fließgewässern getestet werden.

Alternativ könnten kleine Gefrierlanzen in den Untergrund eingebracht werden, um das Sediment ohne jegliche Störung des Korngefüges und ohne zusätzliches Wasser zu entnehmen. Dabei müsste jedoch ein erheblich höherer technischer Aufwand eingeplant werden.

Abbildung 12: Van-Veen-Bodengreifer

Die Probenahmestellen wurden anhand des Fließgewässermessnetzes ausgewählt. Dabei wurden die Standorte mit potentiellen Eintragsquellen für Mikroplastik berücksichtigt, um eine etwaige hohe Belastung im Fließgewässersediment erfassen zu können. Die Karte in Abbildung 13 zeigt die Probenahmestellen der Messkampagnen 2020 und 2021. Dabei sind die in der Kampagne 2020 beprobten Stellen mit blauen Markierungen, die ausschließlich in der Kampagne 2021 beprobten Stellen mit gelben Markierungen und die in beiden Kampagnen beprobten Stellen mit grünen Markierungen dargestellt. Die Zuordnung der Probenbezeichnungen zu den jeweiligen Probenahmestellen ist in Tabelle 10 aufgeführt.

Nr. Probe- nahmestelle	OBF-Kennziffer	Bezeichnung OWK	Gewässer Typ-Nr.	Proben- bezeichnung
1	OBF16800	Lausitzer Neiße-3	9	MiPl 7
2	OBF17700	Lausitzer Neiße-10	17	MiPI 6
3	OBF21400	Spree-4	15_g	MiPI 5
4	OBF26791	Schwarze Elster-4	15	MiPI 19
5	OBF30410	Große Röder-5	15	MiPI 20
6	OBF32300	Freiberger Mulde-5	9.2	MiPI 2
7	OBF32900	Münzbach-2	5	MiPI 18, MiPI 22
8	OBF35350	Zschopau-4	9.2	MiPI 1
9	OBF37300	Flöha-2	9	MiPI 15, MiPI 24
10	OBF40500	Mulde-6	9.2	MiPI 3
11	OBF41202	Schwarzwasser-2	9	MiPI 16
12	OBF43000	Lungwitzbach-2	9	MiPI 17
13	OBF45000	Chemnitz-2	9	MiPI 4, MiPI 25
14	OBF47600	Mulde-7	17	MiPI 11
15	OBF49500	Weiße-Elster-1	5	MiPI 12

Tabelle	10: Zuordnung	Sediment	oroben zu	Probenahmest	ellen
1000110		ooannone			

Nr. Probe- nahmestelle	OBF-Kennziffer	Bezeichnung OWK	Gewässer Typ-Nr.	Proben- bezeichnung
16	OBF50300	Weiße Elster-5	9	MiPI 13
17	OBF50800	Weiße Elster-11	17	MiPI 10
18	OBF52000	Göltzsch-3	9	MiPI 14
19	OBF53701	Kleine Pleiße	19	MiPI 8, MiPI 27
20	OBF55400	Parthe-4	17	MiPI 9, MiPI 26
21	OBF06515	Wesenitz-1	5	MiPI 21
22	OBF10410	Höckenbach	5	MiPI 23
23	OBF34409	Zschopau-1	5	MiPI 30
24	OBF35800	Sehma	5	MiPI 29
25	Unterhalb OBF41202	Schwarzwasser-2	9	-
26	OBF51701	Göltzsch-2	5	MiPI 28

Legende: Gewässsertyp nach LAWA: 5 - Grobmaterialreiche, silikatische Mittelgebirgsbäche, 9 - Silikatische, fein- bis grobmaterialreiche Mittelgebirgsgflüsse, 9.2 - Große Flüsse des Mittelgebirges, 15 - Sand- und lehmgeprägte Tieflandflüsse, 15_g - Große sand- und lehmgeprägte Tieflandflüsse, 17 - Kiesgeprägte Tieflandflüsse, 19 - Kleine Niederungsfließgewässer in Fluss- und Stromtälern

Legende: Blaue Kreise – Probenahme 2020; Gelbe Kreise – Probenahme 2021; Grüne Kreise – Probenahme 2020 und 2021 Quelle: Eigene Abbildung nach Vorlage durch LfULG

Abbildung 13: Probenahmestellen der Messkampagnen 2020 und 2021

4.2 Probenaufbereitung

4.2.1 Planung der Stichproben

Das notwendige Probenvolumen orientierte sich gemäß der Norm DIN EN ISO 17892-4 nach dem Größtkorn einer Sedimentprobe und musste für eine sachgerechte Probenvorbereitung, die Laboruntersuchungen sowie eine Rückstellprobe ausreichen. Da zum Zeitpunkt der Probenahme noch keine einheitliche Richtlinie zu einem definierten Mindestvolumen für die Mikroplastikanalyse in Sedimenten existierte, wurde eine Trockenmasse von mindestens einem Kilogramm Sedimentverwendet. Es wurde bis zur konstanten Masse getrocknet.

4.2.2 Trocknung und Siebung

Die Trocknung der Sedimente aus der Kampagne 2020 erfolgte in Aluminiumschalen mit den Abmaßen 323 x 262 x 38 mm (packpack.de GmbH) im Trockenschrank (Heratherm OMH 400, Thermo Fisher Scientific Inc.) bei 60 °C. Der Trockenschrank ist im Innenraum mit Edelstahl ausgekleidet und verfügt über einen Frischluftpartikelfilter (Porengröße 0,3 µm). Weiterhin erfolgte das Homogenisieren, Wiegen (Paketwaage SBS-PT-40/1, Steinberg Systems), Einfüllen und Umfüllen der Proben stets unter einem Abzug, wobei ausschließlich mit Edelstahl- und Glasgeräten gearbeitet wurde. Die Arbeitsflächen wurden nach jedem Probenwechsel mit einem Naturhaarkehrbesen und einem Cellulosetuch gereinigt. Während des Trockenvorgangs wurden die Proben zweimal täglich auf ihre Massekonstanz geprüft. Für die Definition eines konstanten Trockenrückstands erfolgte die Orientierung an der Norm DIN EN 12880, welche besagt, dass die Masse des Trockenrückstands als konstant angesehen wird, wenn das Gewicht der Probe nach einer weiteren einstündigen Trocknung nicht mehr als 0,5 Prozent vom vorhergehenden Wert abweicht. Nach der Trocknung wurden die Proben einer Trockensiebung, unter Verwendung eines Analysensiebs (Drahtgewebesieb, 200/203 mm, Retsch GmbH) mit einer Maschenweite von fünf Millimetern unterzogen, da diese Größe nach allgemein anerkannter Definition die Obergrenze für Mikroplastikpartikel darstellt (FRIAS & NASH, 2019). Bei einem Aufgabevolumen von 200 Gramm durchlief jede Probe einen Siebvorgang von drei Minuten bei einer Amplitude von 2,5 bis 3,0 mm/"g". Die Siebung wurden im Intervallbetrieb durchgeführt. Dazu wurde die Siebung aller 30 Sekunden für zehn Sedkunden unterbrochen. Nach der Siebung wurde der Grobanteil des Sediments größer fünf Millimeter auf Makroplastik gesichtet. Der Feinanteil wurde dokumentiert, in eine Aluminiumschale überführt, verschlossen und bis zur Separation bei Raumtemperatur gelagert.

Die Trocknung der Proben aus der Kampagne 2021 erfolgte in gleicher Weise. Abweichend von der beschriebenen Methodik wurden nicht Teilproben in Aluminiumschalen, sondern die gesamten Proben in Zehn-Liter-Edelstahleimern getrocknet. Nach Erreichung der Massekonstanz und der Trockensiebung wurden die Fraktionen mit Partikelgrößen kleiner fünf Millimeter auf ein bis zwei Aluminiumschalen aufgeteilt und bis zur Separation gelagert.

4.2.3 Elektroseparation

4.2.3.1 Elektroseparation mittels Korona-Walzenabscheider

Zur Separation von Sediment und Mikroplastik in der Kampagnen wurden elektrostatische Korona-Walzenscheider Typ hamos KWS-XL und hamos KWS-XS (im Folgenden jeweils als Elektroseparator bezeichnet) genutzt. Vor der Separation der Umweltproben wurde eine Laminarflowbox über dem Elektroseparator sowie eine das Gerät umfassende Einhausung installiert. Abbildung 14 zeigt die Elektroseparatoren hamos KWS-XL (Abbildung 14A) und hamos KWS-XS (Abbildung 14B) und die Bezeichnung der einzelnen Bauteile.

Legende: 1 – Einfülltrichter; 2 – Vibrationsförderrinne; 3 – Korona-Elektrode; 4 – rotierende Walze; 5 – Fraktionierungsblech; 6 – Sedimentfraktion; 7 - Mischfraktion; 8 – polymerreiche Fraktion; 9 – Abstreifblech

Abbildung 14: Aufbau Korona-Walzenscheider hamos KWS-XL (A) und hamos KWS-XS (B)

Der verwendete Elektroseparator verfügt über die folgenden einstellbaren Parameter:

- Drehzahl: Walze bis maximal 150 U/min (von 0 bis 100 Prozent)
- Fördergeschwindigkeit: Schwingförderer (von 0 bis 100 Prozent)
- Hochspannung: von 0 bis 30 kV

Weiterhin ist die Stellung der Stellbleche zur Regelung der Fraktionsgrößen möglich. Die Fraktionierungsbleche wurden so eingestellt, dass Fraktionioerungsblech 1 einen Abstand von fünf Millimetern zur Walze aufwies. Stellblech 2 wurde möglichst weit in die Richtung der ersten Trennklappe ausgelenkt. Die Drehzahl der Walze wurde konstant bei 66 U/min (44 Prozent) gehalten und die Hochspannung auf 20 Kilovolt eingestellt. Die Fördergeschwindigkeit des Elektroseparators wurde so eingestellt, dass ein gewünschter Förderstrom von 1 kg/h erreicht werden konnte (11 Prozent). Zur Anpassung der Geräteparameter des Elektroseparators wurde ein im Labor hergestellter Modellsand genutzt. Der Modellsand zeichnete sich durch eine untere und obere Korngröße von je 100 und 5000 µm aus und wurde aus dem in Abschnitt 4.4.1 beschriebenen Cemex-Sand hergestellt. Die Herstellung des Modellsands und dessen Korngrößenverteilung wurde mittels Siebanalyse (Siebmaschine AS 200, Retsch GmbH, Siebe 200 x 50 mm) ermittelt.

Zur Prozessoptimierung aus den Erkenntnissen der Evaluation mit ultrahochmolekularem Polyethylen (UHMW-PE, 100 bis 200 µm) wurden Proben aus Modellsand und UHMW-PE zur elektrostatischen Separation hergestellt und die Wiederfindungsraten des Polymers ermittelt. Zur Präparation wurde Modellsand in ein Becherglas (2000 Milliliter) eingewogen (Präzisionswaage PG5001-S, Mettler Toledo, Genauigkeit 0,1 mg). Eine entsprechende Menge des UHMW-PE wurde eingewogen (Präzisionswaage BP221S, Sartorius, Genauigkeit 0,1 mg) und zum Modellsand gegeben. Das Modellsand-Polymer-Gemisch wurde homogenisiert und anschließend in ein 800-Milliliter-Becherglas überführt und mit Aluminiumfolie abgedeckt. Aus Modellsand und UHMW-PE wurden acht Proben (jeweils drei Replikate) mit verschiedenen Zusammensetzungen hergestellt (Tabelle 11).

Probenbezeichnung	Massenanteil PE [mg/kg]	Masse Modellsand [g]	Masse PE [g]
ModS-PE-100	100	1000	0,1000
ModS-PE-80	80	1000	0,0800
ModS-PE-60	60	1000	0,0600
ModS-PE-40	40	1000	0,0400
ModS-PE-20	20	1000	0,0200
ModS-PE-10	10	1000	0,0100
ModS-PE-5	5	1000	0,0050
ModS-PE-1	1	1000	0,0010

Tabelle 11: Übersicht der Modellsand-PE-Proben zur elektrostatischen Separation

Vor der Separation wurde der Separator mit einer Druckluftpistole gereinigt, eingeschaltet und mit der jeweiligen Probe beladen. Die Parameter des Separators wurden dann in der folgenden Reihenfolge in Betrieb genommen: Hochspannung, Walze, Vibrationsförderer. Wenn während der Separation kein Aufgabegut mehr gefördert werden konnte, wurde der relative Wert der Vibration der Förderrinne auf 30 Prozent erhöht bis sich kein Fördergut mehr auf dem Vibrationsförderer befand. Der Elektroseparator wurde in umgekehrter Reihenfolge des Einschaltens außer Betrieb genommen. Nach der Separation wurde der Rückstand hinter dem Abstreifblech mit einem Naturhaarpinsel in die polymerreiche Fraktion überführt. Die polymerreiche Fraktion wurde in ein 80-Milliliter-Becherglas überführt und deren Masse ermittelt (Präzisionswaage BP221S, Sartorius, Genauigkeit 0,1 mg). Mit der Mischfraktion wurde gleichermaßen verfahren. Der abgetrennte Modellsand wurde zurück in das Probengefäß überführt und dessen Masse ermittelt (Präzisionswaage PG5001-S, Mettler Toledo, Genauigkeit 0,1 mg). Anschließend wurde der Elektroseparator mit einem Industriesauger und der Druckluftpistole gereinigt. Die separierten Proben wurden in kunststofffreien Behältern aufbewahrt.

Im Gegensatz zu dem in der Kampagne 2020 genutzten Gerät (hamos KWS-XL) wurden am hamos KWS-XS seitens des Herstellers Anpassungen vorgenommen, um eine optimierte Separation von Mikroplastik-Sediment-Gemischen durchführen zu können, auch wenn das Funktionsprinzip gleich blieb. So wurde beispielsweise der Einfülltrichter mit einem Deckel versehen, um den ungewollten Eintrag von Mikroplastik aus der Luft sowie den Austrag des Probenmaterials in Form von trockenen Stäuben zu vermeiden. Eine weitere wichtige Änderung bestand in der Ausrichtung der Korona-Elektrode, da diese nun abgewinkelt nach unten zeigte und somit eine unerwünschte Ablenkung von Feinanteilen beim Transport von der Vibrationsrinne auf die Walze, wie es im älteren Modell der Fall war, minimiert wurde. Die dritte wichtige Neuerung bestand darin, dass das Abstreifblech nicht mehr an einer starren, sondern einer federbelasteten, gegen die Walze drückenden Halterung verschraubt war.

In Vorversuchen zeigte sich, dass sich das Abstreifblech aus Kupfer (vgl. Abbildung 15) durch den Kontakt mit der Walze stark abnutzte. Aus diesem Grund wurde zur Separation der in diesem Bericht beschriebenen Proben ein Wollstoff um das Abstreifblech gelegt, um so die Abnutzung des Blechs sowie einen Eintrag von Kupfer in die polymerreiche Fraktion zu verhindern.

Abbildung 15: Abstreifblech des Korona-Walzenscheiders hamos KWS-XS

4.2.3.2 Separation der Proben

Die Fördergeschwindigkeit des Elektroseparators wurde so eingestellt, dass ein Förderstrom von 1 kg/h erreicht wurde. Zur Anpassung der Geräteparameter des Elektroseparators wurde ein im Labor hergestellter Modellsand genutzt. Zur elektrostatischen Separation der Proben der Kampagne 2020 wurden die aufgeführten Parameter eingestellt (Tabelle 12).

Tabelle 12: Separation am hamos KWS-XL

Proben	MiPl 1 bis MiPl 20
Elektrodenspannung [kV]	20
Walzengeschwindigkeit [%]	44
Vibration [%]	11

Um das Optimierungspotential der Geräteparameter auf das Separationsergebnis bewerten zu können, wurden zwei verschiedene Methoden getestet: die Mehrfachseparation am hamos KWS-XL und die verbesserte Separation am hamos KWS-XS.

Proben	MiPI 8, MiPI 9, MiPI 14
Elektrodenspannung [kV]	20
Walzengeschwindigkeit [%]	44
Vibration 1. Separation [%]	11
Vibration 2. Separation [%]	14 (4 min), 16 (2 min), 18 (2 min), 20 (bis Ende)
Vibration 3. Separation [%]	16 (3 min), 18 (2 min), 20 (bis Ende)
Vibration 4. Separation [%]	16 (3 min), 18 (2 min), 20 (bis Ende)
Vibration 5. Separation [%]	16 (3 min), 18 (2 min), 20 (bis Ende)

Tabelle 13: Mehrfachseparation am hamos KWS-XL

Bei der Mehrfachseparation wurden die polymerreichen Fraktionen von Proben aus der Kampagne 2020 ausgewählt und erneut in vier Separationsdurchläufen separiert, wie in Tabelle 13 aufgeführt. Dabei dienten die erzielten polymerreichen Fraktionen als Probenmaterial für den folgenden Separationsdurchlauf. Nach jedem Durchlauf wurde zur Reinigung die Vibration der Förderrinne je eine Minute auf 25 Prozent und 30 Prozent erhöht.

Tabelle 14: Verbesserte Separation am hamos KWS-XS

Proben, nur polymerreiche Fraktion	MiPI 9, MiPI 10, MiPI 14, MiPI 16
Proben, Gesamtproben	MiPI 21, MiPI 22, MiPI 23, MiPI 24, MiPI 25, MiPI 27, MiPI 28, MiPI 29, MiPI 30
Elektrodenspannung [kV]	15
Walzengeschwindigkeit [%]	77
Vibration [%]	60

Bei der verbesserten Separation wurden die polymerreichen Fraktionen von Proben aus der Kampagne 2020 und die Gesamtproben aus der Kampagne 2021 mit den nach HAUFFE (2021) optimierten Einstellungen am hamos KWS-XS einmalig separiert, wie in Tabelle 14 dargestellt.

Der Abscheidegrad (AG), also jener Teil der Probe, welcher bei der Separation abgeschieden und der sogenannten Restfraktion zugeordnet wurde, berechnete sich nach Formel 1:

$$AG = \frac{m_{RF}}{m_0} \times 100 \tag{1}$$

 $\begin{array}{lll} AG & Abscheidegrad \\ m_{\text{RF}} & Masse \ der \ Restfraktion \\ m_0 & Masse \ der \ Ausgangsprobe \end{array}$

Bei der Mehrfachseparation wird dabei zwischen Gesamtabscheidegrad (kumulierter Abscheidegrad bezogen auf die bei der ersten Separation eingesetzte Probenmasse) und dem Abscheidegrad der einzelnen Separationsdurchläufe unterschieden.

Vor jeder verbesserten Separation am Elektroseparator hamos KWS-XS wurde Polycaprolacton (PCL), vertrieben als Polymorph der Firma Polyshape, aus der Siebfraktion von 100 bis 200 µm und mit einem auf die Ausgangsprobe bezogenenen Massenanteil von 200 mg/kg zu den polymerreichen Fraktionen und Gesamtproben gegeben. Anhand des Abscheidegrades wurde anschließend der zu erwartende PCL-Massenanteil nach Formel 2 berechnet:

$$w_{PCL_Soll} = w_{PCL_0} \times \frac{100}{100 - AG}$$
(2)

WPCL Soll	erwarteter PCL-Massenanteil nach Separation
W _{PCL_0}	PCL-Massenanteil in Ausgangsprobe
AG	Abscheidegrad

Aus dem Massenanteil von PCL im Sediment vor und nach der Separation wurde die Wiederfindungsrate nach Formel 3 berechnet (vgl. Abschnitt 4.3):

$$WFR = \frac{W_{PCL_Ist}}{W_{PCL_Soll}} \times 100$$

WFR Wiederfindungsrate

w_{PCL Ist} gemessener PCL-Massenanteil nach Separation

w_{PCL Soll} erwarteter PCL-Massenanteil nach Separation

(3)

Als weitere Parameter wurden die Separationsdauer sowie Raumtemperatur und relative Luftfeuchte erfasst. Sedimentfraktion und Mischfraktion wurden gemeinsam als Restfraktion (RF) erfasst. Ebenfalls erfasst wurde der Verlustgrad (VG) an Probenmaterial während der Separation, welcher sich aus der Differenz zwischen der Masse der Ausgangsprobe und der Summe aus polymerreicher und Restfraktion nach Formel 4 berechnet:

$$VG = \frac{m_0}{m_0 - m_{PRF} - m_{RF}} \times 100$$
 (4)

VGVerlustgradm0Masse der AusgangsprobemPRFMasse der polymerreichen FraktionmRFMasse der Restfraktion

4.2.4 Dichteseparation

Bei der Dichteseparation wird die zu untersuchende Probe mit einer Flüssigkeit vermischt und eine bestimmte Zeit geschüttelt bzw. gerührt. Anschließend sinken die Partikel mit hoher Dichte zu Boden und die Partikel mit niedriger Dichte steigen auf. Dabei wird genutzt, dass nahezu alle gängigen Kunststoffe eine Dichte von 0,8 bis 1,4 g/cm³ aufweisen (BRINKMANN & SCHMACHTENBERG, 2013), wohingegen Flusssedimente je nach Sedimenttyp eine Dichte von ca. 2 g/cm³ besitzen (LEPESQEUR et al., 2019). Die Dichte der Flüssigkeit sollte entsprechend zwischen diesen Werten liegen um eine Separation von Kunststoffen und Sediment zu ermöglichen. Die aufgestiegenen Mikroplastikpartikel werden von der Flüssigkeit getrennt und anschließend gesiebt bzw. filtriert.

Zur Durchführung der Dichteseparation wurde ein Separatormodell entwickelt (vgl. Abbildung 16). Hierbei wurden die Proben in eine Borosilikatflasche gefüllt, mit einer gesättigten Zinkchlorid-Lösung (Dichte 1,7 g/cm³, ca. ein Kilogramm pro Liter) vermischt (Füllstand 1, Abbildung 16) und anschließend mittels Magnetrührstab (Neodym in Polytetrafluorethylen) zwei Stunden gerührt. Anschließend wurden die Proben 72 Stunden equilibriert (1. Equilibrierphase), um ein Aufsteigen bzw. Absinken der Partikel zu ermöglichen. Während des Rührens und der Equilibrierphase wurden die Flaschen mit Aluminiumfolie abgedeckt, um einen Eintrag von Mikroplastik aus der Luft zu verhindern. Im Anschluss wurden Gewindeadapter (Polymilchsäure, Ultimaker), Kugelventil (1 ¼ Zoll, Messing, verchromt) und Edelstahlrohr (1 ¼ Zoll, verzinkt) aufgeschraubt (s. Abbildung 16). Das Gefäß wurde mit ZnCl₂-Lösung bis zu Füllstand 2 gefüllt und erneut equilibriert (2. Equilibrierphase). Anschließend wurde das Kugelventil geschlossen und die sich oberhalb des Ventils befindliche Flüssigkeit über ein Edelstahlsieb (Maschenweite 100 µm) filtriert. Der Bereich oberhalb des Kugelventils wurde mit deionisiertem Wasser gespült bis keine sichtbaren Feststoffe im oberen Bereich der Apparatur erkannt werden konnten. Diese Flüssigkeit wurde ebenfalls in das mit der polymerreichen Fraktion gefüllte Sieb gegeben. Die Siebe mit der darauf befindlichen polymerreichen Fraktion wurden bis zur Massekonstanz bei 30 °C im Umlufttrockenschrank getrocknet und anschließend mittels DSC analysiert.

Legende: 1 – Borosilikatglasflasche; 2 – Gewindeadapter aus Polymilchsäure; 3 – Kugelventil aus Messing, verchromt; 4 – Edelstahlrohr, verzinkt

Abbildung 16: Aufbau des Separatormodells zur Dichteseparation

Um festzustellen, mit welcher Herangehensweise eine optimale Übertragung der polymerreichen Fraktion in die Siebe erfolgt, wurden zunächst unterschiedliche Zeiten der ersten Equilibrierphase getestet und die polymerreichen Fraktionen der zweiten Equilibrierphase entweder mit der polymerreichen Fraktion der vorherigen Phase vereint oder in ein separates Sieb überführt. Mit den finalen Parametern wurden weitere acht Proben separiert. Dabei handelte es sich um Sedimentproben der Probenahmestellen Chemnitz-2, Kleine Pleiße, Flöha-2 und Münzbach-2, die bereits entweder mit den in Tabelle 12 beschriebenen Parametern (MiPI 4, MiPI 8, MiPI 15, MiPI 18) oder mit den optimierten Einstellungen aus Tabelle 14 (MiPI 22, MiPI 24, MiPI 25, MiPI 27) elektrosepariert wurden. Die Testparameter der Dichteseparation sind in Tabelle 15 dargestellt.

Probe	Verwendete polymerreiche Fraktion	Zugabe PCL	Equili- brier- phase 1	Equili- brier- phase 2	Überführung in
MiPI 3	hamos KWS-XL, vgl. Tabelle 12	nach ES	10 min	-	-
MiPI 2	hamos KWS-XL, vgl. Tabelle 12	nach ES	10 min	10 min	Neues Sieb
MiPl 7	hamos KWS-XL, vgl. Tabelle 12	nach ES	30 min	10 min	Neues Sieb
MiPl 13	hamos KWS-XL, vgl. Tabelle 12	nach ES	10 min	10 min	Sieb, Equilibrierphase 1
MiPl 17	hamos KWS-XL, vgl. Tabelle 12	nach ES	8 h	10 min	Sieb, Equilibrierphase 1
MiPI 4	hamos KWS-XL, vgl. Tabelle 12	nach ES	120 min	10 min	Sieb, Equilibrierphase 1
MiPl 8	hamos KWS-XL, vgl. Tabelle 12	nach ES	120 min	10 min	Sieb, Equilibrierphase 1
MiPl 15	hamos KWS-XL, vgl. Tabelle 12	nach ES	120 min	10 min	Sieb, Equilibrierphase 1
MiPl 18	hamos KWS-XL, vgl. Tabelle 12	nach ES	120 min	10 min	Sieb, Equilibrierphase 1
MiPI 22	hamos KWS-XS, vgl. Tabelle 14	vor ES	120 min	10 min	Sieb, Equilibrierphase 1
MiPI 24	hamos KWS-XS, vgl. Tabelle 14	vor ES	120 min	10 min	Sieb, Equilibrierphase 1
MiPI 25	hamos KWS-XS, vgl. Tabelle 14	vor ES	120 min	10 min	Sieb, Equilibrierphase 1
MiPI 27	hamos KWS-XS, vgl. Tabelle 14	vor ES	120 min	10 min	Sieb, Equilibrierphase 1

Legende: ES – Elektroseparation

Wie in den Versuchsreihen zur verbesserten Elektroseparation beschrieben, wurde allen Proben PCL mit einem Masseanteil von 200 mg/kg zugesetzt. Dabei ist zu beachten, dass die Proben, welchen das PCL bereits vor der Elektroseparation zugesetzt wurde, zu Beginn der Dichteseparation einen höheren Massenanteil an PCL aufwiesen als jene Proben, denen das PCL erst nach der Elektroseparation zugesetzt wurde. Die Dichte von handelsüblichem PCL liegt bei 1,1 bis 1,2 g/cm³ und somit niedriger als die der verwendeten ZnCl₂-Lösung. Die Berechnung von Abscheidegrad, erwartetem PCL-Massenanteil und Wiederfindungsrate erfolgte analog zu der in Abschnitt 4.2.3.2 beschriebenen Methode.

4.3 Ermittlung des Polymeranteils in Sedimentproben

4.3.1 Dynamische Differenzkalorimetrie

4.3.1.1 Geräte und Methoden

Zur Einwaage der Proben wurden die Laborwaagen BP210D der Firma Sartorius (Genauigkeit 0,01 mg) und die XSR105 von Mettler Toledo (Genauigkeit 0,01 mg) verwendet. Von jeder Probe wurden 5 unabhängige Stichproben eingewogen. Die Messungen erfolgten mit einer DSC 214 Polyma von Netzsch und der Software Netzsch Messung (Version 7.1.0). Das Messprogramm bestand aus erster Heizphase, Kühlphase und zweiter Heizphase mit Heiz- bzw. Kühlraten von 20 K/min zwischen -70 und 300 °C mit isothermen Phasen von fünf Minuten. Bei PVC wurde eine Höchsttemperatur von 130 °C im Temperaturprogramm berücksichtigt. Die Auswertung erfolgte mit der Software Proteus v7.0 der Netzsch GmbH.

4.3.1.2 Massenermittlung aus dem Thermogramm

In die Studie wurden die Polymere PE niedriger Dichte (LD-PE), UHMW-PE, Polypropylen (PP), Polyvinylchlorid (PVC), Polyethylenterephthalat (PET), Polystyrol (PS) und PCL einbezogen. Die Größe der Mikroplastikpartikel betrug 100 bis 200 µm. Für jeden Polymertyp wurden 15 Proben mit verschiedenen Einwaagen von 0,05 bis 1,00 mg analysiert. 10 Messungen wurden für die Kalibrierung und 5 Messungen für die Validierung verwendet. Die Schmelz- und Kristallisationsvorgänge wurden mit einer linearen Grundlinie ausgewertet. Die Auswertung der Glasübergänge erfolgte durch eine Auswahl von vier Temperaturen zur Anwendung der Halbstufenregel. Für die Berechnung der Schmelzenthalpie, Kristallisationsenthalpie und den Wärmekapazitätsänderungen beim Abkühlen bzw. Aufheizen werden die entsprechenden spezifischen Größen mit der Masse der Einwaage gemäß Formel 5 multipliziert.

$dh_{m,i} = dH_{m,i} * m_i$	
$dh_{c,i} = dH_{c,i} * m_i$	(5)
$dcp_{m,i} = dCp_{m,i} * m_i$	(5)
$dcp_{c,i} = dCp_{c,i} * m_i$	

dh _{m,i}	Schmelzenthalpie dcp _{m,i}	Wärmekapazitätsänderung (heizen)
dH _{m,i}	spez. Schmelzenthalpie dCp _{m,i}	spez. Wärmekapazitätsänderung (heizen)
dh _{c,i}	Kristallisationsenthalpie dcp _{c,i}	Wärmekapazitätsänderung (kühlen)
dH _{c,i}	spez. Kristallisationsenthalpie	dCp _{c,i} spez. Wärmekapazitätsänderung (kühlen)
mi	Masse an Polymer	

Die Auswertung erfolgte durch multiple Regression gemäß FAHRMEIR et al. (2009).. Dazu werden bei bekannter Einwaage die Koefizienten β_n gemäß Formel 6 für jeden Polymertyp ermittelt

$$m_{i} = \beta_{1} * dh_{m,i} + \beta_{2} * dh_{c,i} + \beta_{3} * dcp_{m,i} + \beta_{4} * dcp_{c,i} + \beta_{0}$$
(6)

 $\begin{array}{ll} \mathsf{m}_{\mathsf{i}} & \mathsf{Masse des jeweiligen Polymers} \\ \beta_n & \mathsf{Koeffizienten des Polymertyps} \\ dh_{m,i} & \mathsf{Schmelzenthalpie} \\ dh_{c,i} & \mathsf{Kristallisationsenthalpie} \\ dcp_{m,i} & \mathsf{Wärmekapazitätsänderung beim Erwärmen} \\ dcp_{c,i} & \mathsf{Wärmekapazitätsänderung beim Abkühlen} \end{array}$

Konnten extensive Größen ($dh_{m,i}$, $dh_{c,i}$, $dcp_{m,i}$, $dcp_{c,i}$) nicht aus dem Thermogramm bestimmt werden, so wurden diese auf Null gesetzten. Die Formel 6 wurde für alle Polymertypen verwendet. Anschließend wurde auf der Grundlage von 5 Messungen die Standardabweichung der Residuen berechnet. Die Residuen beschreiben die Abweichung eines Wertes, der aus einem mathematischen Modell stammt, zu einem realen Messwert. Die Berechnung des Mikroplastikanteils in der getrockneten Sedimentprobe erfolgte unter der Annahme, dass der Polymeranteil der Probe bei der Separation vollständig in die polymerreiche Fraktion überführt wurde, nach Formel 7. Weiterhin wird angenommen, dass die Homogenität der Probe hinreichend sei, um eine Beprobung durch eine geringe Anzahl an Stichproben zu ermöglichen.

$$NG = \omega_{p,i} = \frac{m_{PRF}}{m_{AS}} * \frac{m_i}{m_{EW,DSC}}$$
(7)

NG	Nachweisgrenze
$\omega_{p,i}$	Massenanteil Polymer in mg/kg in der getrockneten Sedimentprobe
m _{AS}	Masse der Stichprobe zur Separation aus der getrockneten Sedimentprobe
m _{PRF}	Masse der polymerreichen Fraktion nach der Anreicherung
<i>m</i> _{UP}	Masse der getrockneten Sedimentprobe
mi	Masse an Polymer, ermittelt mit DSC nach Formel 6
<i>m_{EW,DSC}</i>	Masse der Stichprobe aus der polymerreichen Fraktion m_{PRF} zur DSC-Messung
	(Einwaage im Tiegel)

Mit der Formel 7 wurden aus der polymerspezifischen Bestimmungs- bzw. Nachweisgrenze für die Masse m_i die Nachweis- und Bestimmungsgrenzen als Massenanteil in der getrocknenten Sedimentprobe ausgewiesen. Von den 5 Wiederholungen mit vergleichbarer Einwaage wurde im Sinne einer konservativen Behandlung der Messwerte der jeweils niedrigste Wert $m_{EW,DSC}$ zugrundegelegt.

4.3.2 Fourier-Transform-Infrarotmikroskopie

Ausgewählte Proben wurden zusätzlich mit dem FTIR-Mikroskop iN10 der Firma Thermo Fisher Scientific (Reflexion, DTLAGS-Detektor, 64 Scans, Apertur 100 x 50 µm) untersucht. Potenzielle Polymerpartikel wurden händisch aussortiert und mittels Reflexionsmessung bestimmt. Die Ermittlung des Polymertyps erfolgte durch Datenbankabgleich mit der in der Software integrierten Datenbank Hummel Polymer Sample Library.

4.4 Testung der Methode mit artifiziellen Mikroplastikpartikeln

4.4.1 Sedimente zur Testung der Methode

Sand, welcher für die hier beschriebenen Arbeiten durch die Cemex Deutschland AG (Dresden, Deutschland) aus der Kiesgrube Zeithain in der Elbaue zur Verfügung gestellt wurde, wird im Folgenden als Cemex-Sand bezeichnet. Als weiteres Testmaterial wurde Elbsediment direkt aus dem Fluss entnommen. Die Probenahmestelle ist in Tabelle 16 sowie in Abbildung 17 genauer beschrieben.

	0		
Fluss	Datum der Probenahme	Probenahmestelle	GPS-Koordinaten
Elbe	26. August 2020	Kleiner Strand oberhalb der Brücke "Blaues Wunder", Dresden	51° 02' 50,6" N 13° 48' 59,0" E

Tabelle 16: Angaben zur Probenahmestelle an der Elbe

Abbildung 17: Probenahmestelle des Elbsediments zu Testung der Methode

Die Probennahme erfolgte im circa 20 Zentimeter tiefen Wasser etwa 0,5 Meter im Fluss. Mit einer Metallschaufel wurde das Sediment in einen Edelstahleimer gefüllt. Nach fünf Minuten Sedimentation wurde das überstehende Wasser abdekantiert und der zurückbleibende Feststoff in eine 50-Liter-Aluminiumbox überführt. Es wurde 40 Kilogramm Sediment aus der Elbe entnommen.

Zur Trocknung der Sedimente wurde der in Abschnitt 4.2.2 beschriebene Trockenschrank bei einer Temperatur von 60 °C genutzt. Nach der Trocknung wurden aus dem Elbsediment alle Partikel größer als fünf Millimeter abgetrennt. Dazu wurde die Siebmaschine StE UWL 400 der Firma Haver und Böcker genutzt sowie das dazugehörige Sieb mit einer Maschenweite von fünf Millimetern und einem Durchmesser von 400 mm. Für die Siebung wurden je drei Kilogramm Sediment aufgegeben und 15 Minuten mit 1500 U/min gesiebt. Anschließend wurde eine Siebanalyse durchgeführt, bei der sich an der Norm DIN 66165-1 orientiert wurde.

4.4.2 Herstellung der PCL-Polymerpartikel

Für die Untersuchungen wurde PCL verwendet. Das PCL wurde in der Kryomühle zerkleinert. Dazu wurden je Vermahlung ca. zwei Gramm PCL (Analysenwaage LA 230 S, Sartorius, Genauigkeit 0,1 mg) in den Edelstahlmörser der Mühle (Pulverisette, Fritsch GmbH) vorgelegt. Die Stahlkugel (Radius = 50 mm) wurde mit in den Mörser gelegt, das Geräte wurde verschlossen und mit ca. einem Liter flüssigen Stickstoff gekühlt, bis kein starkes Sieden des Stickstoffs mehr zu erkennen war. Die Mahldauer betrug insgesamt 20 Minuten und wurde mit einer Amplitude von 1,5 mm durchgeführt. In Intervallen von fünf Minuten wurde die Vermahlung unterbrochen und ca. 150 Milliliter an flüssigem Stickstoff nachgefüllt. Anschließend wurde das Mahlgut mit Hilfe eines Naturhaarpinsels entnommen und ohne einen zusätzlichen Reinigungsschritt der Mühle der nächste Ansatz gestartet. Der Vorgang wurde mehrfach wiederholt. Das gesamte Mahlgut wurde in einem Trockenschrank (Binder GmbH) vier Stunden bei 40 °C getrocknet und durch eine Siebklassierung (fünf Minuten, Amplitude von 1,5 mm, Siebturm AS 200, Retsch GmbH) und den Sieben der Maschenweite 63 und 250 µm klassiert.

4.4.3 Mikroskopische Auswertung der Partikelgrößen

Die drei Größenfraktionen (kleiner 63, 63 bis 250 und größer 250 µm) wurden am FTIR-Mikroskop iN10 (Thermo Fisher Scientific) unter Verwendung eines automatischen Mappings einer Fläche von circa einem Quadratzentimeter und der Software "Partikelwizard" analysiert.

4.4.4 Proben für die Separation von artifiziellen Sedimenten

Aus den natürlichen Sedimenten (Abschnitt 4.4.1) und den PCL-Partikeln (Tabelle 25) wurden Proben zur Elektroseparation (Tabelle 17, Tabelle 18) hergestellt. Dazu wurden je 500 Gramm Sediment mit verschiedenen PCL-Fraktionen versetzt, sodass Massenanteile von 100, 10 und 1 mg/kg erreicht wurden.

Cemex-Sand:

Lfd. Nr.	PCL-Massenanteil [mg/kg]	Partikelgröße PCL [µm]	Masse Sediment [g]	Masse PCL [g]
1	100	>250	500	0,0500
2	10	>250	500	0,0050
3	1	>250	500	0,0005
4	100	63 bis 250	500	0,0500
5	10	63 bis 250	500	0,0050
6	1	63 bis 250	500	0,0005
7	100	<63	500	0,0500
8	10	<63	500	0,0050
9	1	<63	500	0,0005

Tabelle 17: Probenübersicht zur Separation von Cemex-Sand mit PCL

Elbsediment:

Tabelle 18: Probenübersicht zur Separation von Elbsediment mit PCL

Lfd. Nr.	PCL-Massenanteil [mg/kg]	Partikelgröße PCL [µm]	Masse Sediment [g]	Masse PCL [g]
10	100	> 250	500	0,0500
11	10	> 250	500	0,0050
12	1	> 250	500	0,0005
13	100	63 bis 250	500	0,0500
14	10	63 bis 250	500	0,0050
15	1	63 bis 250	500	0,0005
16	100	< 63	500	0,0500
17	10	< 63	500	0,0050
18	1	< 63	500	0,0005

Die Separation von Sedimenten mit artifiziellem Mikroplastik wurde wie in Abschnitt 4.2.3.2, Tabelle 12 beschrieben, durchgeführt.

5 Ergebnisse und Diskussion

5.1 Identifizierung und Quantifizierung des Polymeranteils

5.1.1 Identifizierung

Die Temperaturen zur Ermittlung der Enthalpien und Wärmekapazitätsanserungen sind in Tabelle 19 dargestellt und bilden die Grundlage für eine automatisierte Auswertung.

Polymer	Tempe der Sc enth [°	raturen hmelz- alpie C]	Tempera Kristalli enth [°	turen der sations- alpie C]	Temperatur derTemperatur dWärmekapazitäts-Wärmekapazitäänderung beiänderung beiAufheizungAbkühlung[°C][°C]			ur der Temperatur der azitäts- Wärmekapazitäts- g bei änderung bei ung Abkühlung [°C]				
Polymer	T _{UGS}	T _{OGS}	T _{UGS}	T _{OGS}	T ₁	T ₂	T ₃	T ₄	T ₁	T ₂	T ₃	T ₄
LD-PE	80	113	105	90	-	-	-	-	-	-	-	-
UHMW-PE	90	134	119	105	-	-	-	-	-	-	-	-
PP	130	166,5	125	110	-	-	-	-	-	-	-	-
PET	205	250	190	150	-	-	-	-	-	-	-	-
PS	-	-	-	-	80	90	120	130	125	110	75	60
PVC	-	-	-	-	55	65	95	120	97,5	90	70	60
PCL	38,4	57,5	36,1	15,6	-	-	-	-	-	-	-	-

Tabelle 19: Temperaturen zur Auswertung der Thermogramme

Legende: T_{UGS} – Temperaturuntergrenze der Integration zur Bestimmung der Schmelzenthalpie; T_{OGS} - Temperaturobergrenze der Integration zur Bestimmung der Kristallisationsenthalpie; T₁,T₂,T₃,T₄. Temperaturwerte zur Auswertung der Glasübergänge

Bei Bedarf, z.B. stärkerem Grundlinienrauschen, wurden die Werte händisch korrigiert. Beim Glasübergang war der maximale Betrag der Korrektur zehn Kelvin, bei der Schmelz- und Kristalisationsenthalpie fünf Kelvin.

5.1.2 Quantifizierung

Die direkte Einwaage der Polymere in die DSC-Tiegel war durch die Mindesteinwaage der verwendeten Analysenwaagen auf 0,05 mg limitiert. Die Einwaagen sind aus dem Anhang Anhang 1.2 zu entnehmen.

Aus Formel 6 wurden die in Tabelle 20 zusammengefassten in Koeffizienten der multiplen Regression berechnet.

Polymer	b [mg]	a₁ [mg/mJ]	a ₂ [mg/mJ]	a₃[mg/mJ]	a₄ [mg/mJ]
LD-PE	-0,01213	-0,00343	-0,01759	0	0
UHMW-PE	-0,01645	-0,00426	-0,01441	0	0
PET	-0,02450	0,04924	0,01132	0	0
PP	-0,02791	0,01648	0,00387	0	0
PS	-0,22549	0	0	0,72348	3,38930
PVC	-0,02640	0	0	1,07312	2,63838
PCL	-0,00605	0,00031	-0,01439	0	0
PA	0,04869	0,01494	-0,00118	0	0

 Tabelle 20: Koeffizienten zur Berechnung der Masse an Polymer m_i (im Tiegel)

Quelle der PA-Daten: Expósito Montañez, 2021

Repräsentativ für diese Vorgehensweise der Validierung sind die berechneten Massen von LD-PE in Tabelle 21 und in Abbildung 18 durch die entsprechenden Residuen visualisiert. Die Validierungsdaten der restlichen Polymere befinden sich im Anhang Anhang 1.2. Es zeigt sich, dass die Güte der Kalibrierung mit einer Stichproben-Standardabweichung der Residuen von 0,05 mg den durch die Waage bedingten Fehler von 0,05 mg (Analysenzertifikat des Herstellers) entspricht.

Messung /Codierung	Masse [mg] (Einwaage)	Masse [mg] (aus Kalibriergerade)
1 / K061	0,12	0,14
2 / K062	0,43	0,44
3 / K063	0,19	0,21
4 / K064	0,73	0,68
5 / K065	0,93	1,02

Tabelle 21: Daten der Validierung von LD-P	ten der Validierung von LD-	Validierun	der	Daten	21:	Tabelle
--	-----------------------------	------------	-----	-------	-----	---------

Abbildung 18: Residuen aus der Validierung der LD-PE Kalibrierung

Auf der Grundlage von Validierungsdaten wurden aus der Standardabweichung der Residuen die Nachweis- und Bestimmungsgrenzen berechnet. Dabei wurde die einfache Standardabweichung als Nachweis- und die dreifache Standardabweichung als Bestimmungsgrenze festgelegt. Dabei wurde berücksichtigt, dass die mögliche minimale Einwaage von 0,05 mg nicht unterschritten wurde. Das Bedeutet, wird aus der Validierung eine Standardabweichung kleiner 0,05 mg erhalten, so wird diese auf 0,05 mg festgelegt. Tabelle 22 fasst die Einwaagen an Polymer je Tiegel für die einzelnen Grenzwerte zusammen.

Tabelle 22: Nachweis- und Bestimmungsgrenzen

Grenzwert	Polymergruppe 1 LD-PE, UHMW-PE, PP, PET, PA, PVC	Polymergruppe 2 PS
Nachweisgrenze	0,05 mg je Tiegel	0,14 mg je Tiegel
Bestimmungsgrenze	0,15 mg je Tiegel	0,42 mg je Tiegel

5.1.3 Diskussion zur gewählten Regression und zur Datenauswertung

5.1.3.1 Regressionsmodell

DIN-Norm 32645:2008-11 beschreibt die Festelgung der Nachweisgrenze (NG), Erfassungsgrenze (EG) und Bestimmungsgrenze (BG) und empfiehlt als Grundlage eine einfache lineare Regression. Vergleichend zur hier bevorzugten mutiplen Regression wurde die Kalibrierung für LD-PE durch die lineare Regression der Masse an LD-PE und der entsprechenden Schmelzenthalpie durchgeführt.

Aus der einfachen linearen Regression gehen die in Tabelle 23 dargestellten Kennwerte hervor.

Tabelle 23: Statistische Kennwert der linearen Regression von LD-PE nach DIN 32645:2008-11

Statistischer Kennwert	Variable	Zahlenwerte
Summe der Fehlerquadrate	SSE	227,90
Steigung	b	100,87

Bei Verwendung der linearen Regression gemäß DIN-Norm 32645:2008-11 gehen die Kennwerte SSE und *b* zunächst in die Verfahrensstandardabweichung s_{x0} ein (vgl. Formel 8).

$$s_{x0} = \frac{s_{y,x}}{b} = \frac{\sqrt{\frac{SSE}{n-2}}}{b} = 0,053$$
 wobei $SSE = \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$ (8)

- *s*_{x0} *Verfahrensstandardabweichung*
- s_{y,x} Reststandardabweichung der Messwerte der Kalibrierung
- b Steigung der Kalibriergeraden
- SSE Summe der Fehlerquadrate
- n Anzahl der Kalibrierproben
- i Laufzahl für Kalibrierproben
- \hat{y}_i Geschätzter Funktionswert bei der Kalibrierung
- *y_i* Messwert der Kalibrierprobe

Aus der Verfahrensstandardabweichung s_{x0} können gemäß DIN-Norm 32645:2008-11 unter Berücksichtigung eines statistischen Faktors $\Phi_{f,\alpha}$ (vgl. Formel 9) über eine Schnellabschätzung die Nachweis-, Erfassungs- und Bestimmungsgrenzen ermittelt werden (vgl. Formel 10).

$x_{(NG)} =$	1,2 ·	$\phi_{n:\alpha}$ ·	S_{x0}	wobei	$\phi_{n:\alpha} =$	$\phi_{10:0.05}$	= 1,9
(1.0)		,,	200		, , , , , , , , , , , , , , , , , , , ,	, 10,0,00	

X _(NG)	Nachweisgrenze nach Schnellschätzung
$\boldsymbol{\Phi}_{n;\alpha}$	Faktor zur Schnellabschätzung der Nachweisgrenze
S _{x0}	Verfahrensstandardabweichung

$x_{(NG)} = 1,2 \cdot 1,9 \cdot 0,053 = 0,12 \ mg$	
$x_{(EG)} = 2 \cdot x_{NG} = 0,24 mg$	(10)
$x_{(BG)} = 12 \cdot s_{x0} = 0,63 mg$	

 $x_{(NG)}$ Nachweisgrenze nach Schnellschätzung $x_{(EG)}$ Erfassungsgrenze nach Schnellschätzung $x_{(BG)}$ Bestimmungsgrenze nach Schnellschätzung

In der DIN-Norm 32645:2008-11 wird die Erfassungsgrenze (EG) als untere Grenze für einen Analyseprozess deklariert. Aus den Validierungsdaten geht hervor, dass die Grenzen berechtigterweise sehr hohe und sichere Werte angeben. Die DIN-Norm sieht jedoch nur die Deklaration der statistischen Kennwerte für eine einfache lineare Regression vor. Demnach können die Daten aus der mutiplen Regression nicht mit denen der DIN-Norm verglichen werden.

Mit Hilfe der multiplen Regressionen wurde aus den Daten zur Validierung eine Bestimmungsgrenze von 0,15 mg an LD-PE je Tiegel berechnet. Diese Grenze wurde wie bereits beschrieben durch die dreifache Toleranz der Analysenwaage von 0,05 mg, entsprechend 0,15 mg, festgelegt. Die mittlere Standardabweichung σ der Residuen aus den Validierungsdaten der multiplen Regression von LD-PE zeigen ebenfalls einen Wert von 0,05 mg an. Es ist naheliegend, dass die Genauigkeit des Analyseprozesses entscheidend durch die Toleranzen der verwendeten Analysenwaagen bedingt wird. Grundsätzlich könnte die kleinste Einwaage durch Verwendung verdünnter Polymerproben auch weiter abgesenkt werden. Dies erfolgte im Rahmen dieser Studie vereinbarungsgemäß nicht. Die Verfahrensstandardabweichung s_{x0} der einfachen Regression und die mittlere Standardabweichung σ der Residuen aus der multiplen Regression sind annährend identisch. Es wurde dennoch die multiple Regression gewählt, da diese zwar keine bessere Prognosegüte gewährleistet, aber wie in Abbildung 19 dargestellt die Störanfälligkeit der Analyse durch eine geringere Streuung der Residuen minimiert wird. Die Residuen der multiplen Regression sind zudem besser um den Nullwert gestreut. Bei der einfachen Regression hingegen kommt es neben der stärkeren Streuung zu einem Unterbefund.

Schriftenreihe des LfULG, Heft 3/2022 | 59

(9)

Abbildung 19: Residuen der Validierungsdaten aus der einfachen (links) und multiplen Regression (rechts)

Die Veröffentlichung von BITTER & LACKNER (2021) gibt für die Polymertypen teils geringere Bestimmungsgrenzen (LD-PE: 0,06 mg, PP: 0,07 mg, PA6: 0,09 mg, PET: 0,19 mg) an. Das Polymer PS wird in der Studie wegen fehlendem Schmelzbereich nicht behandelt. BITTER & LACKNER (2021) haben sich bei der Berechnung der Bestimmungsgrenzen auf das Signal-Rausch-Verhältnis gestützt. Die Angaben zum Rauschen der DSC wurden vom Hersteller übernommen. Grundsätzlich ist dieses Vorgehen zulässig. Auch die in dieser Studie ermittelten Thermogramme zeigen interpretierbare Signale unterhalb der von uns angegebenen Werte. Die aus den gerätespezifischen Kennwerten berechneten Nachweis- und Bestimmungsgrenzen liegen deutlich niedriger als jene, die aus den hier vorliegenden Messdaten ermittelt wurden. Im Sinne einer konservativen Interpretation der Messdaten werden im Folgenden nur die Nachweis- und Bestimmungsgrenzen aus der experimentellen Ermittlung verwendet.

5.2 Anpassung der Geräteparameter des Elektroseparators mit UHMW-PE

Abbildung 20 zeigt die Wiederfindungsraten im von UHMW-PE in Modellsand. Im mittleren Konzentrationsbereich von 10 mg/kg bis 80 mg/kg wurden annähernd konstante Wiederfindungsraten von 90 Prozent erhalten. Bei 100 mg/kg konnte eine erhöhte Wiederfindungsrate von ca. 120 Prozent detektiert werden. Eine Ursache dafür könnte die diskrete Verteilung von UHMW-PE-Partikeln sein. Was bedeutet, dass die Partikel nicht homogen in der Polymerfraktion verteilt sein könnten und daher vereinzelt eine zu große Menge an Partikeln in den DSC-Tiegel eingewogen wird. Im Verhältnis zur Ausgangsmasse ergibt sich dann eine Wiederfindungsrate über 100 Prozent. Der Unterschied der durchschnittlichen Partikelgröße zwischen UHMW-PE und den Modellsand könnte dabei die Entmischung der Probe verstärken, da dieser zu einer Anreicherung die kleineren Polymerpartikel am Boden der Proben führen könnte. Bei sehr kleinen Polymerfraktionen könnte die Anwesenheit einzelner Sandkörner im DSC-Tiegel einen entscheidenden Effekt auf die Wiederfindungsrate haben, da diese, aufgrund Ihrer hohen Dichte, das Gewicht der Stichprobe stark verändern ohne die Polymermasse zu erhöhen. Das würde zu scheinbar höheren bzw. niedrigeren Wiederfindungsraten führen. Bei UHMW-PE-Konzentrationen unterhalb von 40 mg/kg nimmt die Streuung der Wiederfindungsraten und damit auch deren Fehler stark zu. Der Einfluss der diskreten Verteilungen nimmt hier wahrscheinlich zu. Durch das Inbezugsetzen von Schmelzenthalpie und Polymermasse im DSC-Tiegel wurde gezeigt, dass ab einer Konzentration von 20 mg/kg die Bestimmungsgrenze der DSC unterschritten wurde. Diese Messungen konnten dementsprechend nicht quantitativ ausgewertet werden.

Abbildung 20: Wiederfindungsraten von UHMW-PE in Modellsand

5.3 Testung der Methode mit artifiziellen Proben

5.3.1 Charakterisierung der Modellsedimente

Es wurden zwei natürliche Sedimente verwendet und derer Partikelgrößenbereich ermittelt. Der Partikelgrößenbereich der Sedimente und deren d_{50} -Werte sind in Tabelle 24 gezeigt.

Eigenschafft	Cemex-Sand	Elbsediment
Abbildung der natürlichen Sedimente		
Partikelgrößenbereich (d10- d90) [µm]	260 bis 1700	200 bis 2300
d50-Wert [µm]	664	435

Tabelle 24: Eigenschaften der natürlichen Sedimente

Der Cemex-Sand wies einen größeren d_{50} -Wert von 664 µm auf, hatte aber einen kleineren Partikelgrößenbereich als das Elbsediment. Das Elbsediment war mit einem d_{50} -Wert von 435 µm bedeutend feiner als der Cemex-Sand. Der größere Partikelgrößenbereich weist dennoch darauf hin, dass neben kleinen Partikeln auch eine nicht zu vernachlässigende Menge großer Partikel im Sediment vorliegen. In den Abbildungen in Tabelle 24 wird deutlich, dass das Elbsediment Muscheln, Reste von Holzkohle und Glassplitter enthielt. Beide Sedimente sind als Feinkies mit rundem Korn zu bezeichnen, wobei der Cemex-Sand hellbraun erscheint und das Elbsediment gräulich.

5.3.2 Mikroskopische Auswertung der Partikelgrößen des artifiziellen Mikroplastiks

In Abbildung 21 ist die Formgebung der Partikel zu erkennen. Es gibt Bruchkanten und wenig sphärische Partikelformen, wobei die Exzentrizität der beobachtbaren Querschnitte nicht tiefgründiger bestimmt wurde. Das beschriebene Erscheinungsbild gilt für alle untersuchten Fraktionen. Die Qualität der Klassierung wurde anhand der Partikelanzahl bewertet. Tabelle 25 zeigt die Klassen mit den entsprechenden prozentualen Anteilen an Partikelfraktionen. Es zeigt sich, je kleiner die Zielgröße der Fraktion ist, desto weniger liegt der Verteilungsschwerpunkt der Partikelgrößen in dem zu erwartenden Größenbereich. Die Partikel wurden für die weiteren Untersuchungen zur Testung der Methode verwendet.

Abbildung 21: Ergebnis der Partikelgrößenerfassung von PCL der Klasse 63 bis 250 µm

Tabelle 25: Partikelgrößenanalyse PCL

Fraktionen	Anteil der Partikel kleiner als die Größe der Polymerfraktion [%]	Anteil der Partikel in der Größe der Polymerfraktion [%]	Anteil der Partikel größer als die Größe der Polymerfraktion [%]	Summe aller Partikel
< 63µm Fraktion	0,0	44,2	55,8	181
63 -250µm Fraktion	25,1	57,8	17,1	351
> 250 µm	12,8	87,2	0,0	148

5.3.3 Separation von Sedimenten mit artifiziellen Mikroplastik

Für den Cemex-Sand konnte ein durchschnittlicher Abscheidegrad von $99,6 \pm 0,1$ %erzielt werden und für das Elbsediment $94,0 \pm 1,9$ %. Der Abscheidegrad des Cemex-Sandes ist aufgrund seiner gröberen Beschaffenheit deutlich höher als der des feineren Elbsediments. Die Ergebnisse deuten daher darauf hin, dass der Abscheidegrad stark von der Partikelgröße des Sediments abhängig ist. Eine Übersicht der Proben, deren Zusammensetzung und der Ergebnisse befindet sich im Anhang Anhang 1.1.

Die Massen der polymerreichen Fraktionen nach der Elektroseparation betrugen durchschnittlich 2,10 \pm 0,23 g für den Cemex-Sand und 30 \pm 10 g für das Elbsediment.

5.3.4 Bestimmung der Wiederfindungsrate

Die Wiederfindungsrate von PCL wurde mit Formel 3 berechnet. Die Bestimmungsgrenze für PCL ist wie bei allen teilkristallinen Polymeren mit 0,15 mg pro Tiegel anzugeben.

Resultierend aus den drei abhängigen Größen je Sediment wurde für die grafische Auswertung ein dreidimensionales Diagramm gewählt. Abbildung 22 zeigt die Wiederfindungsrate in Sand und Elbsediment. Im dargestellten Diagramm des Elbsediments (vgl. Abbildung 22B) wurde die Wiederfindungsrate der Messungen E002 und E003 zur besseren Anschaulichkeit ausgeschlossen. Es zeigte sich, dass nur bei einem Massenanteil von 100 mg/kg und einer Partikelgröße von 63 bis 250 µm eine verlässliche Wiederfindungsrate von 95,6 ± 10,9 % bestimmt werden konnte. In Abbildung 22A sind die Daten des Cemex-Sandes dargestellt. Die Messung E044 wurde wegen fehlender Reproduzierbarkeit nicht dargestellt. Es zeigte sich, dass eine Wiederfindungsrate von 105,6 ± 19,4 % bei einem Massenanteil von 100 mg/kg in der Fraktion von 63 bis 250 µm erreicht wurde. Somit zeichnen sich durch die genannten Dimensionen die Bedingungen für den unteren Grenzwert der Methodik ab. Die Wiederfindungsraten fallen bei Abweichung von diesen Parametern in Abhängigkeit vom Sediment unterschiedlich stark ab. Es gab erhebliche Unterschiede in Bezug auf die Abscheidegrade und die damit verbundenen Massen der polymerreichen Fraktionen aus dem Elektroseparator. Die Masse der polymerreichen Fraktion des Elbsediments ist mit 30,17 ± 9,85 g um den Faktor 15 größer als die Masse der polymerreichen Fraktion des Cemex-Sandes mit durchschnittlich 2,1 ± 0,2 g. Folglich ist das PCL in der polymerreichen Fraktion des Elbsediments durch die Elektroseparation deutlich geringer aufkonzentriert worden als im Cemex-Sand. Dadurch konnte bei der Einwaage in die DSC-Tiegel (circa 20 mg) kein ausreichender Massenanteil an PCL erreicht werden. Die Qualität der Separation erwies sich somit als limitierender Schritt in der Prozesskette. Dabei zeigt sich in Abbildung 22 auch das Potential der Separation. Die Wiederfindungsrate in der Fraktion kleiner 63 µm des Cemex-Sands lag bei Massenanteilen von 100 und 10 mg/kg bei jeweils 56,24 ± 0,64 % und 42,31 ± 1,14 %. Demnach kann bei einer ausreichenden Anzahl an Partikeln in einer stark angereicherten Sedimentprobe eine homogene Verteilung in der polymerreichen Fraktion angenommen werden. Dieser Effekt nimmt mit sinkendem Durchmesser der Partikel in den entsprechenden Fraktionen zu.

Legende: WFR - Wiederfindungsrate

Abbildung 22: 3D-Diagramm der Wiederfindungsrate von PCL in Cemex-Sand (links) und das Elbsediment (rechts)

Das Experiment zur Bestimmung der Wiederfindungsraten zeigt die aktuellen Grenzen des Analyseprozesses auf. Bei einer Optimierung der Separationsmethodik sollte der Fokus auf der Minimierung der Sedimentanteile in der polymerreichen Fraktion und somit einer stärkeren Anreicherung von Polymer in der Probe liegen. Die Möglichkeit, in Partikelgrößenbereichen kleiner 300 µm Analysen vorzunehmen, ist angesichts bestehender Herausforderungen hervorzuheben (KOELMANS et al., 2019).

Zur Veranschaulichung der Partikelgrößenabhängigkeit der Analyse wurde eine Hochrechnung vorgenommen. Zur Herstellung einer Probe mit einem PCL-Massenanteil von 10 mg/kg wurden 5,02 mg PCL der Partikelfraktion kleiner 63 µm und 6,83 mg PCL der Partikelfraktion kleiner 250 µm in Cemex-Sand eingewogen. Unter der Annahme von idealen sphärischen Partikeln, einer monodispersen Verteilung bei 63 bzw. 250 µm und einer Dichte ρ_{PCL} von 1,2 g/cm³ der PCL-Partikel, kann bei vollständiger Überführung der PCL Partikel in die polymerreiche Fraktion von mindestens 38.000 Polymerpartikeln mit einem Durchmesser von 63 µm in der polymerreichen Fraktion ausgegangen werden. Gleichfalls bedeutet dies für Partikel der Größe 250 µm eine Partikelanzahl *N* von knapp über 500 Partikeln (vgl. Formel 11).

$$N_{Einwaage} = \frac{3 * m_{Einwaage}}{4 * \pi * r_{Partikel}^3 * \rho_{PCL} * 10^{-9}}$$
(11)

N _{Einwaage}	Partikelzahl nach Einwaage
m _{Einwaage}	Masse Einwaage
r _{Partikel}	Radius der Partikel
ρ_{PCl}	Dichte der PCL-Partikel

Anzumerken ist dabei, dass unter den benannten idealen Bedingungen und einer Raumausfüllung von 67 Prozent nur 2.730 der idealen 250 µm großen Partikel in den DSC-Tiegel, dessen Volumen 40 Mikroliter beträgt, passen (vgl. Formel 12). $N_{max} = \frac{3 * V_{Tiegel} * f}{4 * \pi * r_{Partikel}^3 * 10^{-9}} \qquad wobei \qquad f = 0,67$

NmaxMaximale PartikelzahlVTiegelVolumen des TiegelsfRaumausfüllungrPartikelRadius der Partikel

Zur Bestimmung der Wiederfindungsrate wurden Stichproben von ca. 20 mg aus den polymerreichen Fraktionen entnommen. Unter der Voraussetzung einer Konzentrationsangabe und der Annahme einer Gleichverteilung der Partikel in der polymerreichen Fraktion, lässt sich die Anzahl der Partikel in der Stichprobe durch Formel 13 aus dem Massenverhältnis der Stichprobe und der polymerreichen Fraktion berechnen. Eine Streuung der Wiederfindungsraten von 56,24 \pm 0,64 %wird demnach bei PCL-Partikeln der Fraktion kleiner 63 µm durch 318 Partikel hervorgerufen. Bei PCL-Partikeln der Fraktion größer 250 µm wird die Streuung der Wiederfindungsraten von weniger als fünf Partikeln verursacht. Die Hochrechnung bestätigt demnach die Beobachtungen, dass die Streuung der Wiederfindungsrate mit der Größe der zu untersuchenden Mikroplastikpartikel zunimmt.

$$N_{Stichprobe} = \frac{m_{Einwaage} - m_{Stichprobe}}{m_{Zielfraktin}} * N_{Einwaage}$$
(13)

NStichprobePartikelzahl der StichprobemEinwaageMasse der EinwaagemStichprobeMasse der StichprobemZielfraktionMasse der ZielfraktionNEinwaagePartikelzahl der Einwaage

5.4 Sedimentprobenahme, Trocknung und Siebung

Durchschnittlich erreichten alle Sedimente der Kampagne 2020 nach zwei Tagen Massenkonstanz. Der Wasseranteil der Proben lag im Mittel bei 39 Prozent (siehe Tabelle 26). Da die Sedimente in ihrer Beschaffenheit sehr verschieden waren (siehe Tabellen in Anhang 1.3), variierte der Wasser- sowie Grobund Feinanteil nach der Trockensiebung. Vereinzelt konnten in den Grobfraktionen sowie in einer Feinfraktion Mikro-, Meso- sowie Makroplastik identifiziert werden (Abbildung 23).

Proben- bezeichnung	FM in Behälter [g]	TM in Behälter [g]	Behältnis [g]	Wassergehalt [%]
MiPI 1	4558	2592	28	43,4
MiPI 2	3002	1611	28	46,8
MiPI 3	2239	1588	28	29,4
MiPI 4	2506	1863	27	25,9
MiPI 5	2131	1047	28	51,5
MiPI 6	2314	1732	27	25,4
MiPI 7	2011	1585	28	21,5
MiPl 8	1910	1069	28	44,7
MiPI 9	2888	1442	29	50,6
MiPI 10	4250	1019	28	76,5
MiPI 11	1947	1091	28	44,6
MiPI 12	2308	1588	28	31,6
MiPI 13	2484	1793	29	28,1
MiPI 14	1940	1246	28	36,3
MiPI 15	3320	1006	27	70,3
MiPI 16	2019	1307	28	35,8
MiPI 17	2074	1454	28	30,3
MiPI 18	2259	1653	28	27,2
MiPI 19	15770	11053	1186	32,3
MiPI 20	13710	9607	1210	32,8

Tabelle 26: Trockenmasse und Wassergehalt der Sedimentproben 2020

Legende: FM – Feuchtmasse, TM – Trockenmasse

Abbildung 23: Grobfraktionen der Proben MiPL 10 (A), MiPL 9, (B) und Feinfraktion der Probe MiPL 7 (C) mit Meso-, Makro- und Mikroplastikbefunden.

Nach der Siebung wurden alle Sedimente der Kampagne 2020 einer visuellen Klassifizierung gemäß der Normen DIN ISO 14688-1 und DIN ISO-14688-2 unterzogen. Um die Kontamination der Sedimente während der Siebung durch synthetische Fasern aus der Raumluft so gering wie möglich zu halten, wurde auf eine Siebanalyse verzichtet. Genaue Angaben zur Korngrößenverteilung der Sedimentproben entfallen somit. Der Ergebnisse der Auswertung der Sichtprüfung sind in Tabellen im Anhang Anhang 1.3 zusammengefasst. Bereits während der Probennahme und Trocknung konnten erhebliche Unterschiede bezüglich der Sedimentbeschaffenheit beobachtet werden. Die Proben waren meist grobkörnig, wobei die Hauptkornfraktion oft zwischen Kies bis Feinkies variierte. Kiesgroße Körner sind in der Regel Gesteinsbruchstücke, welche aus Sandstein, Kalk, Feuerstein oder Granit bestehen können. Sand- und feinere Körner bestehen für gewöhnlich aus Quarz, Glimmer, Feldspat oder Tonmineralen (DIN ISO 14688-1). Zudem besteht die Möglichkeit, dass Kies- und Sandkörner mit Mineralstoffen, wie Eisenoxidbelägen überzogen sind. Diese Eigenschaft wies vor allem die Probe MiPI 5 (Abbildung 24), welche aus der Spree stammt, auf und ist durch den inzwischen eingestellten Braunkohletagebau in der Lausitz zu begründen. Über Jahrzehnte wurde eine tiefgründige Grundwasserabsenkung zur Förderung der Braunkohle vorgenommen, welche dazu führte, dass im Boden vorkommendes Pyrit mit Luftsauerstoff in Kontakt kam (Pyritverwitterung). Die Verwitterungsprodukte wurden nach Einstellung des Tagebaus und dem damit verbundenen Wiederanstieg des Grundwassers in Form von Eisenhydroxid und Sulfat in die Fließgewässer und Seen der Lausitz,

darunter auch die Spree, eingetragen. Weiterhin wurde beobachtet, dass die Sedimente, welche einen hohen Wasseranteil aufwiesen, einen grau-schwarzen Farbton im feuchten Zustand sowie einen moderigen Geruch zeigten, welcher sich durch Erhitzen verstärkte. Diese Eigenschaften sind typisch für einen hohen organischen Anteil in den Sedimenten. Durch eine Quantifizierung des organischen Kohlenstoffanteils in den Sedimenten, eine sogenannte TOC (total organic carbon)-Feststoffanalyse, könnte diese Annahme bestätigt werden.

Abbildung 24: Feinkornfraktion der Probe MiPI 5

In der Kampagne 2021 konnten mit Ausnahme der Probenahmestellen 11 und 25 am Schwarzwasser alle Stellen im März 2021 beprobt werden. Die Sedimentbeprobung am Schwarzwasser war nicht durchführbar, da geeignete Probenahmebereiche aufgrund der innerstädtischen Verbauung (Hochwasserschutzmauer) des Flusses nur schwer zugänglich sind und zum Zeitpunkt der geplanten Probenahme durch hohen Pegelstand und Fließgeschwindigkeit eine sichere Beprobung nicht möglich war (vgl. Abbildung 73).

In Tabelle 27 sind die Probenahmetechnik sowie die Trockenmassen (Gesamtprobe, Fraktionen kleiner fünf Millimeter und Fraktionen größer fünf Millimeter) der Proben aufgeführt. Von den zehn beprobten Stellen kam nur bei fünf der Van-Veen-Greifer zum Einsatz, wobei von diesen fünf wiederum nur zwei ausschließlich mit dem Greifer durchgeführt werden konnten. Die Verwendung des Greifers ist nur bei feinen Sedimenten empfehlenswert, da sonst größere Steine oder biologische Matrix (z. B. Laub, Stöcke) ein Schließen des Greifers verhindern, wodurch die aufgenommene Probenmasse wieder abgegeben wird.

Proben- bezeichnung	Proben- ahmetechnik	TM gesamt [g]	TM [g] < 5 mm	TM [g] > 5 mm
MiPI 21	Greifer	5526,53	5496,53	30,00
MiPI 22	Greifer, händisch	6608,63	5146,24	1462,39
MiPI 23	Greifer, händisch	5957,11	5647,77	309,34
MiPI 24	Greifer	5173,39	4345,74	827,65
MiPI 25	händisch	7826,38	5831,96	1994,42
MiPI 26	händisch	338,49	-	-
MiPI 27	händisch	4067,16	2655,83	1411,33
MiPI 28	händisch	7347,03	4689,17	5023,34
MiPI 29	händisch	9712,51	4471,90	2875,13
MiPI 30	Greifer, händisch	4803,76	4200,70	603,06

Tabelle 27: Probenahmetechnik und Trockenmassen der Sedimentproben 2021

Legende: TM - Trockenmasse

Für MiPI 26 wurde keine Siebung durchgeführt. Die zugehörige Probenahmestelle 20 (Parthe-4) befindet sich in einem Flussabschnitt, an dem das Gewässer von Laubbäumen überdacht wird, weshalb der Grund des Flusses mit Laubresten bedeckt war (vgl. Abbildung 68). Da zusätzlich auch viele große Steine im Sediment vorgefunden wurden, war eine Beprobung von mineralischem Sediment nur sehr schwer möglich. Nach Trocknung der Probe zeigte sich, dass diese hauptsächlich aus biologischer Matrix bestand und nach dem Trocknungsprozess als gleichförmige Masse vorlag, die nur händisch zerkleinert werden konnte (vgl. Abbildung 25). Aufgrund des hohen Biomasseanteils wurde auf eine weitere Bearbeitung (Siebung, Separation) verzichtet, da diese nicht zielführend gewesen wäre. Alle anderen Proben wiesen hauptsächlich mineralische Bestandteile unterschiedlicher Korngrößenverteilung auf, wie in Abbildung 25B dargestellt und konnten daher weiterbearbeitet werden.

Abbildung 25: Getrocknete Proben MiPI 26 (A) und MiPI 21 (< 5 mm, B)

5.5 Elektrostatische Separation von Umweltproben

5.5.1 Elektrostatische Separation am hamos KWS-XL – Proben 2020

In Abbildung 26 sind die Abscheidegrade AG der 20 Umweltproben und die Masse m_{PRF} der dazugehörigen polymerreichen Fraktion gezeigt. Bei 13 Umweltproben konnte ein Abscheidegrad von über 90 Prozent erreicht werden. Bei vier Umweltproben konnten Abscheidegrade zwischen 70 und 80 Prozent erreicht werden. In den drei Umweltproben MiPI 9, MiPI 15 und MiPI 16 wurden sehr niedrige Abscheidegrade mit jeweils 42, 32 und 63 Prozent erreicht. Eine Übersicht aller Umweltproben befindet sich im Anhang Anhang 1.4.

Abbildung 26: Abscheidegrad der Umweltproben und die Masse deren Polymerfraktionen

Die polymerreiche Fraktion sollte für eine quantitative Auswertung möglichst klein sein (möglichst kleiner ein Gramm). Bei keiner der separierten Umweltproben konnte eine solche Verkleinerung der Probe erreicht werden. Die Umweltproben MiPI 3 und MiPI 6 zeigen die kleinsten polymerreichen Fraktionen mit 4,5 g bzw. 8,1 g. Gleichzeitig konnten hier die größten Abscheidegrade erreicht werden (99,3 % bzw. 99,4 %). Elf polymerreiche Fraktionen wiesen eine Masse zwischen zehn und 100 g auf. Die polymerreichen Fraktionen der verbleibenden sieben Umweltproben wogen zwischen 218,9 g und 624,0 g, wobei die Proben mit den niedrigsten Abscheidegrade nebenfalls die größten Massen der polymerreichen Fraktionen aufwiesen (MiPI 9: 633,8 g; MiPI 15: 624,0 g; MiPI 16: 437,8 g).

Abbildung 27 zeigt die polymerreichen Fraktionen der Umweltproben mit besonders hohen und niedrigen Abscheidegraden. Auffällig ist der hohe Anteil an feinem Material in den polymerreichen Fraktionen. Dies könnte darauf zurück zu führen sein, dass feine Partikel aufgrund der Rauheit der rotierenden Walze an dieser anhaften, unabhängig von deren elektrostatischer Aufladung. In den größten Polymerfraktionen konnten zusätzlich große Mengen pflanzlichen Materials gefunden werden. Es lässt sich somit eine Abhängigkeit der Separationsgüte von der Partikelgrößenverteilung ableiten. Besonders der Anteil feiner Partikel beeinflusst die Separation stark. Sehr feine Partikel und Schluff (kleiner 100 µm) können schlechter abgetrennt werden als Partikel mit Größen im, vom Hersteller des verwendeten Elektroseparators hamos KWS-XL, empfohlenen Arbeitsbereich (100 bis 5000 µm). Ein Vergleich der Abscheidegrade von Elbsediment und Cemex-Sand (vgl. Abschnitt 5.3.4) bestätigt diese Vermutungen. Der Anteil von organischem Material könnte ebenfalls einen Einfluss auf die Güte der Separation haben, wurde hier aber nicht weiter untersucht. Ein optimaler Abscheidegrad von über 99,9 % konnte für keine Umweltprobe erreicht werden.

Abbildung 27: Polymerreiche Fraktionen von Umweltproben mit sehr hohen (MiPI 3, MiPI 6) und niedrigen (MiPI 9, MiPI 15, MiPI 16) Abscheidegraden

Auswertung der Mikroplastikanalyse

Mit der bestehenden Methode konnten in einer Stichprobe der angereicherten Umweltprobe MiPI 15 (LA15_3) Signale detektiert, die einem Schmelz- und Kristallisationsprozess zugeordnet werden konnten (siehe Tabelle 28). Eine Reproduktion dieser Ergebnisse war in den anderen vier Einwaagen der Probe MiPI 15 nicht möglich.

Tabelle 28: Zusammengefasste Ergebnisse der Umweltprobe LA15_3

LA15_3	Einwaage	Schmelzbereich	Т _т	dh _m	Kristallisationsbereich	<i>Т</i> _с	dh _c
	[mg]	[°C]	[°С]	[mJ]	[°C]	[°С]	[mJ]
	13,63	181,3 bis 216,2	206,5	5,461	175,5 bis 157,1	167,6	-4,592

Abbildung 28 zeigt das Thermogramm der Stichprobe mit dem detektierten Signal. Zudem wurden die Schmelzbereiche aus der Kalibrierung von PET (K077 mit 0,09 mg, K076 mit 0,29 mg) zur Visualisierung dargestellt.

Abbildung 28: Vergleich von Schmelzbereichen der Umweltprobe mit Kalibrierdaten von PET (a) K076, (b) Umweltprobe, (c) K077

Das detektierte Signal in der Stichprobe von MiPI 15 tritt in einem niedrigeren Temperaturbereich auf und weist eine geringere Intensität als die Signale der Kalibrierproben von PET auf. Die Abweichung ist aber, aufgrund von Schnittmengen der Schmelzbereiche zwischen der Umweltprobe und dem Kalibrierstandard, als nicht signifikant zu betrachten. Die Alterung oder mögliche Additive des Polymers in der Umweltprobe könnte die beobachtete Abweichung erklären. Eine methodische Berücksichtigung der genannten Faktoren (Alterung und Additivierung) ist durch die verwendete Kalibrierung nicht gegeben. Es wäre jedoch denkbar, dass das Signal durch ein anderes Polymer mit ähnlichen Schmelz- und Kristallisationsbereich verursacht wurde. Eine endgültige Bestimmung des Polymers ist aufgrund der genannten methodischen Bedingungen nicht möglich. Aus den nachgewiesenen Signalen lässt sich dennoch zweifelsfrei auf das Vorkommen von Mikroplastik in der Umweltprobe schließen. Demnach ist die Verwendung der DSC, als Methode zum Nachweis von Mikroplastik in Sedimentproben, für das Umwelt-Monitoring geeignet. Durch zusätzliche Polymerstandards für die Kalibrierung dieser Methode kann die Bandbreite der qualitativ und quantitativ erfassbaren Mikroplastikpartikel erweitert werden.

Ergänzend wurden die Partikel der Stichprobe LA 15_03 mittels FT-IR-Mikroskopie charakterisiert. (Abbildung 29 und 22). Es konnte ein potentieller Mikroplastikpartikel identifiziert werden. Der transparente Partikel haftete an einem weiteren Sedimentpartikel an und wies einen Durchmesser von 250 µm auf.

Abbildung 29: Mikroskopische Aufnahme eines Mikroplastikpartikels aus dem Sediment

Ein Abgleich des aufgenommenen Spektroms mit geräteinternen Spektrenbibliotheken ergab, dass es sich mit hoher Wahrscheinlichkeit um einen Partikel aus PA handelt. Dies bestätigt die Annahme, dass in der untersuchten Stichprobe Mikroplastikpartikel vorkommen.

Abbildung 30: Spektren Auswertung Partikel aus der Probe MiPI 15

Die Interpretation des DSC-Signals auf Basis der PET-Kalibrierung ist somit nicht zulässig. Der Temperaturbereich des detektierten Signals in der Stichprobe LA15_03 stimmt gut mit dem Schmelzbereich von PA überein. Die durchgeführten Analysen weisen mit einer hohen Wahrscheinlichkeit darauf hin, dass in der Sedimentprobe MiPI 15 Mikroplastikpartikel aus PA vorliegen. Durch einen Kalibrierstandard aus PA könnten die bisherigen Ergebnisse überprüft und bestenfalls bestätigt werden. Tabelle 29 fasst diese zusammen. Demnach konnte die Masse des Partikels nicht quantifiziert werden. Die Nachweisgrenze liegt bei 3102 mg/kg, es handelte sich hierbei um einen zufälligen Fund.

Tabelle 29: Mikroplastikbefund nach elektrostatischer Separation am hamos KWS-XL

Probenbezeichnung (Teilprobe)	оwк	Тур	Masse [mg]	Konzentration in Teilprobe [mg/kg]	NG [mg/kg]	BG [mg/kg]
MiPI 15 (3/5)	Flöha-2	PA	n.q.	-	3129,03	9387,08

Legende: BG – Bestimmungsgrenze; NG – Nachweisgrenze; n.q. – nicht quantifizierbar

5.5.2 Mehrfachseparation am hamos KWS-XL – Proben 2020

Gesamtabscheidegrad sowie Abscheidegrad und Verlustrate je Separationsdurchlauf der 5-fachen Separation sind in Abbildung 31 dargestellt (Messdaten im Anhang Anhang 1.5). In den Proben MiPI 8, MiPI 9 und MiPI 14 wurde nach dem ersten Separationsdurchlauf ein Abscheidegrad von 93,30 %, 42,25 % und 78,06 % des aufgegebenen Sediments erzielt. Wie bereits in den vorangegangenen Abschnitten beschrieben, beeinflussen Korngrößenverteilung und chemische Zusammensetzung der Sedimente die in der Elektroseparation erzielbaren Abscheidegrade. In den folgenden vier Separationsdurchgängen erhöhte sich der Gesamtabscheidegrad in den Proben MiPI 8, MiPI 9 und MiPI 14 auf 94,66 %, 46,12 % und 83,18 %. Die Abscheidegrade der einzelnen Separationsdurchläufe lagen bei 1,27 % bis 9,53 %. Bei jedem Separationsdurchgang wurde ein Masseverlust festgestellt, das heißt, die Massebilanz von aufgegebener Masse und der erhaltenen Fraktionen ist nicht vollständig geschlossen. Beim Vergleich mit den Abscheidegraden der einzelnen Separationsdurchgänge wird deutlich, dass diese die Masseverluste von 0,44 %bis 4,74 % nur gering übersteigen. Bei der Diskussion der deutlich niedrigeren Abscheidegrade der zweiten bis fünften Separation im Vergleich zur ersten Separation sind mehrere Faktoren zu beachten. An erster Stelle ist die durch die vorangegangene Separation bereits veränderte Zusammensetzung der Probe, speziell ein geringerer mineralischer Anteil, zu berücksichtigen. Zum anderen lag die relative Luftfeuchte im Raum während der ersten Separation mit 46 % bis 61 % deutlich höher als während der zweiten bis fünften Separation mit 26 % bis 30 %. Die Luftfeuchte könnte somit direkt die aufgegebenen Sedimente bzw. die elektrostatische Aufladung als Grundlage der Separationsmethode beeinflusst haben. Gleichzeitig reduziert die hohe Luftfeuchte jenen Anteil der Probenmenge, welcher in Form von Feinstaub während der Separation verloren geht. Inwiefern dieser Parameter im Vergleich zu anderen physikochemischen Eigenschaften der Proben das Separationsergebnis von Fließgewässersedimenten beeinflusst haben könnte, war im Rahmen der durchgeführten Untersuchungen nicht abschließend zu klären und sollte in künftigen Studien untersucht werden.

Insgesamt stellte sich die Mehrfachseparation aufgrund der nur marginalen Erhöhung der abgeschiedenen Probenmenge als ungeeignet heraus, den Anreicherungsfaktor und somit Nachweis- und Bestimmungsgrenze von Mikroplastik in den untersuchten Sedimenten signifikant zu verbessern. Dementsprechend konnte auch nach der Mehrfachseparation kein Mikroplastik in den Sedimentproben nachgewiesen werden.

Abbildung 31: Gesamtabscheidegrad nach Mehrfachseparation von MiPl 8 (A), MiPl 9 (B) und MiPl 14 (C)

5.5.3 Verbesserte Separation am hamos KWS-XS - Proben 2020 und 2021

Die Abscheidegrade der polymerreichen Fraktionen aus der Kampagne 2020 und der Gesamtproben der Kampagne 2021 sind in Abbildung 32 dargestellt. In den polymerreichen Fraktionen der bereits im Vorjahr separierten Proben MiPI 9, MiPI 10, MiPI 14 und MiPI 16 wurden Abscheidegrade von 32,8 %, 11,2 %, 49,9 % und 12,1 % ermittelt (vgl. Abbildung 32). Durch diese vergleichsweise niedrigen Abscheidegrade wurde die Bestimmungsgrenze des Gesamtverfahrens nur minimal gesenkt. Verglichen mit den Abscheidegraden des zweiten Durchlaufs der Mehrfachseparation (2,5 % bis 7,7 %) führten die optimierten Geräteparameter des hamos KWS-XS jedoch zu einer besseren Abscheidung der Sedimentproben. Eine vergleichbare Tendenz zeigte sich bei den Proben der Probenahmekampagne 2021 (vgl. Abbildung 32). In den Proben MiPI 21 bis MiPI 30 lagen die Abscheidegrade bei 74,4 % bis 97,7 %. Hierdurch konnte die Bestimmungsgrenze der DSC auf bis zu 16,04 mg/kg für PE, PP, PET, PA, PVC bzw. 44,92 mg/kg für PS abgesenkt werden. Im Vergleich dazu wurden am Altgerät (hamos KWS-XL) mit den ursprünglichen Geräteparametern (vgl. erster Separationsdurchlauf der Mehrfachseparation, Abbildung 31) niedrigere Abscheidegrade von 42,3 % bis 93,3 % erzielt. Diese Ergebnisse unterstreichen das Optimierungspotential der Elektroseparation durch Variieren geeigneter Geräteparameter. Es konnten jedoch auch mit den optimierten Geräteeinstellungen und dem Einsatz eines an die Separation von Fließgewässersedimenten angepassten Elektroseparators keine Mikroplastikpartikel in den untersuchten Sedimentproben detektiert werden. Dies ist vornehmlich auf die äußerst geringe Belastung der Proben mit Mikroplastik zurückzuführen. Die deutliche Verbesserung der Abscheidegrade zeigt jedoch, dass sich die elektrostatische Separation grundsätzlich auch zur Detektion niedriger Mikroplastikbelastungen in Sedimentproben eignet.

Abbildung 32: Abscheidegrad nach verbesserter Separation polymerreicher Fraktionen (A) und Gesamtproben (B)

Durch die zuvor beschriebenen, vergleichsweise niedrigen Abscheidegrade der polymerreichen Fraktionen der bereits im Vorjahr separierten Sedimentproben MiPI 9, MiPI 10, MiPI 14 und MiPI 16, lagen die Bestimmungsgrenzen der DSC deutlich oberhalb der zu erwartenden PCL-Konzentration, wie in Tabelle A 3 dargestellt. Dementsprechend wurde auch kein PCL detektiert. In den Proben MiPI 21 bis MiPI 30 konnten mit Ausnahme der Proben MiPI 24 und MiPI 27 (erwartete Konzentration unterhalb der Bestimmungsgrenze) Wiederfindungsraten von 44 % \pm 27 % bis 105 % \pm 49 % erzielt werden. Interessanterweise wurde der erst-

genannte Wert in Probe MiPI 21 berechnet, obwohl hier die erwartete PCL-Konzentration mit 1197,7 mg/kg unterhalb der Bestimmungsgrenze von 6684,8 mg/kg lag. Dass dennoch PCL gemessen werden konnte, lässt sich vermutlich auf die heterogene Verteilung der Mikroplastikpartikel in den Sedimentproben zurückführen, wie bereits von HAUFFE (2021) beschrieben. Auffällig waren ebenfalls die großen Abweichungen der Wiederfindungsrate, welche umso größer waren, je näher die erwartete PCL-Konzentration an der Bestimmungsgrenze lag (vgl. Tabelle A 3). Dies war zumeist auf Teilproben zurückzuführen, in denen aufgrund der heterogenen Verteilung von PCL in der polymerreichen Fraktion kein PCL nachgewiesen werden konnte. Ein Grund für die ungleichmäßige Verteilung könnte in der unterschiedlichen Partikel- und Korngrößenverteilung von PCL und Sedimentprobe liegen, was in zukünftigen Studien weiter untersucht werden sollte. Eine Verbesserung der Homogenität der Wiederfindungsraten könnte erreicht werde, indem die für die Messung bestimmten Proben in mehrere Teilproben aufgeteilt und diese jeweils einzeln gemessen würden, wie von HAUFFE (2021) beschrieben. Da die verwendeten Probentiegel lediglich eine Probenmenge von maximal 20 mg erlaubten, sollten zukünftige Studien untersuchen, inwiefern Umfang und Bewertung der Stichproben zu einer repräsentativen Bestimmung der Mikroplastikkonzentrationen in der Gesamtprobe beitragen. Es ist zu bedenken, dass die stichprobenhafte Messung inhomogen verteilter Partikel in Umweltproben aufgrund statistischer Zusammenhänge unabhängig von den verwendeten Methoden zur Probenahme, Anreicherung, Identifizierung und Quantifizierung mit relativ breiten Streuungen der Messwerte verbunden ist. Diesem Phänomen könnte prinzipiell durch Untersuchung einer viel größeren Anzahl an Stichproben begegnet werden. Die Probenahme in sensiblen Ökosystemen, Logistik und Abreitsaufwand setzen dem jedoch Grenzen, die eine Verbesserung der statistischen Parameter um Größenordnungen über die Probenmenge nicht sinnvoll erscheinen lassen.

5.6 Dichteseparation

5.6.1 Ermittlung der Separationsparameter und resultierende Abscheidegrade

Abbildung 33: Abscheidegrad nach Dichteseparation mit variierenden Parametern

In den Versuchen zur Ermittlung der Separationsparameter wurden Abscheidegrade von 98,79 % bis 99,98 % erzielt, wie in Tabellen im Anhang Anhang 1.7 und Abbildung 33 dargestellt. Dabei war kein Zusammenhang zwischen der Dauer der Equilibrierphase auf Füllstand 2, in welcher die Partikel bis oberhalb des Kugelventils steigen konnten und dem Abscheidegrad erkennbar. In den Proben MiPI 2 und MiPI 7 wurde nach der ersten Equilibrierphase von jeweils zehn und 30 Minuten und dem Dekantieren der aufgestiegenen Partikel, eine zweite Equilibrierphase von zehn Minuten durchgeführt, nach welcher die neu aufgestiegenen Partikel in ein separates Sieb überführt wurden. Da bei der Separation der Probe MiPI 7 nach einer ersten Equilibrierphase von 30 Minuten und einer zweiten Equilibrierphase von zehn Minuten noch eine polymerreiche Fraktion von 4,5 mg erzielt werden konnte, wurde für die folgenden Dichteseparationsversuche eine längere erste Equilibrierphase von mindestens 120 Minuten festgesetzt, um eine möglichst vollständige Erfassung von Partikeln geringer Dichte in der polymerreichen Fraktion zu ermöglichen.

Mittels Dichteseparation wurden Abscheidegrade von 95,79 % bis 99,99 % erzielt, wie in Abbildung 34 dargestellt (Messdaten in Tabellen im Anhang 1.7). Dabei lagen die Abscheidegrade der 2020 am hamos KWS-XL separierten Proben mit 95,79 % bis 99,45 % (Abbildung 27A) deutlich unterhalb der 2021 am hamos KWS-XS separierten Proben mit 99,49 % bis 99,99 % (Abbildung 27B). Die Proben MiPI 4 bis 18 wurden 2021 an denselben Probenahmestellen genommen wie die Proben MiPI 22 bis 27, welche im Jahr 2020 genommen wurden. Für die unterschiedlichen Separationsergebnisse beider Probegruppen können verschiedene Faktoren ursächlich sein wie die Verwendung unterschiedlicher Geräte (hamos KWS-XL und hamos KWS-XS) und Parameter (Separationsdauer, Luftfeuchte, Probeneigenschaften, Anteil biologische Matrix, etc.) der Elektroseparation durch verschiedene Probenparameter (Korngrößenverteilung, Anteil biologische Matrix). Einschränkungen der Anwendbarkeit können sich dabei vor allem aus den Eigenschaften der Probe ergeben. Grundsätzlich konnte gezeigt werden, dass die Kombination der beiden Separationsmethoden möglich ist. Dies bietet den Vorteil, dass im Schritt der Dichteseparation nur noch mit kleinen, laborüblichen Probenmengen gearbeitet werden muss. Dies bietet sowohl in Hinblick auf den Arbeitsaufwand als auch den Betriebsmittelverbrauch (ZnCl₂) erhebliche Vorteile.

Abbildung 34: Abscheidegrade nach Dichteseparation von 2020 (A) und 2021 (B) elektroseparierten polymerreichen Fraktionen

5.6.2 Wiederfindungsraten des internen Standards PCL

Wie im Anhang Anhang 1.7 dargestellt, reichten die Wiederfindungsraten des PCL von 0 bis 192 \pm 42 %. Ein deutlicher Unterschied konnte zwischen den beiden zuvor benannten Probengruppen (MiPI 4 bis 18, elektrosepariert 2020; MiPI 22 bis 27, elektrosepariert 2021) hinsichtlich der Wiederfindung von PCL festgestellt werden. In den Proben MiPI 4 (Bestimmungsgrenze bei 353,2 mg/kg) und MiPI 18 (Bestimmungsgrenze bei 218,1 mg/kg) konnte kein PCL detektiert werden, wohingegen in Probe MiPI 8 mit 9 \pm 6 % nur eine sehr niedrige Wiederfindungsrate gemessen wurde. In den Proben MiPI 22, MiPI 24, MiPI 25 und MiPI 27 wurden deutlich höhere Wiedefindungsraten von 53 \pm 2 % bis 192 \pm 42 % festgestellt. Es ist dabei anzunehmen, dass die unterschiedlichen Wiederfindungsraten auf die Zugabe von PCL nach (MiPI 4 bis MiPI 18) oder vor der Elektroseparation (MiPI 22 bis 27) zurückzuführen sind, da das PCL in den letztgenannten Proben zu Beginn der Dichteseparation bereits stärker angereichert war, als in den Proben, in welchen das PCL erst direkt vor der Dichteseparation zugegeben wurde.

Bei der Diskussion der hohen Schwankungsbreiten ist ebenfalls die heterogene Verteilung des PCL in den Sedimentproben zu beachten. Dies ist durch die gleichfalls stark variierenden Werte nach verbesserter Elektroseparation naheliegend (vgl. Anhang Anhang 1.7). Weiterhin könnte hier die stark unterschiedliche Menge an biologischer Matrix in der polymerreichen Fraktion eine Rolle spielen. Um die organischen Bestandteile der polymerreichen Fraktion nach erfolgter Dichteseparation zu eliminieren, wird die polymerreiche Fraktion in einigen Studien über längere Zeit mit Oxidationsmitteln und Säure behandelt. So behandelten SCHERER et al. (2020) ihre angereicherte Fraktion fünf Tage mit einer 10:1-Mischung aus 30-prozentigem Wasserstoffperoxid und zehn-prozentiger Schwefelsäure, bevor die resultierende Suspension auf einen Filter gezogen wurde. Da diese Methode einen Teil der Mikroplastikfracht (sowohl der zu detektierenden Belastungen als auch des internen Standards PCL) zersetzen kann und zudem einen hohen Zeitaufwand erfordert, wurde auf diesen Schritt verzichtet.

Basierend auf den erzielten Ergebnissen ist eine abschließende Bewertung der Verwendung von PCL als interner Standard nicht möglich, da in zukünftigen Studien der Einfluss der zuvor beschriebenen Faktoren auf die Wiederfindungsrate untersucht werden sollte. KURZWEG (2020) reicherte Sedimentproben der Elbe mit PE verschiedener Massenanteile an und führte anschließend eine elektrostatische sowie Dichteseparation der Proben durch. Nach Analyse der Wiederfindungsraten mittels DSC konnten Wiederfindungsraten von 25 bis 253 % gemessen werden. Da diese Werte einen ähnlich hohen Schwankungsbereich wie die in dieser Studie für PCL erzielten Daten aufweisen, liegt nahe, dass dieser Effekt nicht polymerspezifisch sondern auf Parameter der Sedimentproben oder der Separationsmethoden zurückzuführen sind.

5.6.3 Ergebnisse der Mikroplastikbestimmung

Proben- bezeichnung (Teilprobe)	оwк	Тур	Masse [mg]	Massenanteil in Teilprobe [mg/kg]	NG [mg/kg]	BG [mg/kg]
MiPI 3 (1/3)	Mulde-6	HD-PE	n.q.	-	0,09	0,28
MiPI 4 (5/5)	Chemnitz-2	HD-PE	n.q.	-	1,07	3,21
MiPl 7 (3/3)	Lausitzer Neiße-3	HD-PE	n.q.	-	0,37	1,12
MiPI 13 (2/5)	Weiße Elster-5	Polyamid	n.q.	-	1,42	4,27
MiPI 13 (4/5)	Weiße Elster-5	PE/PP	n.q.	-	1,42	4,27
MiPI 17 (1/3)	Lungwitzbach-2	HD-PE	0,20	26917,90	0,13	0,38
MiPI 17 (2/3)	Lungwitzbach-2	HD-PE	0,17	24495,68	0,13	0,38
MiPI 18 (1/5)	Münzbach-2	HD-PE	n.q.	-	0,86	2,58
MiPI 18 (2/5)	Münzbach-2	HD-PE	n.q.	-	0,86	2,58
MiPI 18 (3/5)	Münzbach-2	HD-PE	n.q.	-	0,86	2,58

Tabelle 30: Mikroplastikbefunde Dichteseparation

Legende: BG – Bestimmungsgrenze; HD-PE – Polyethylen hoher Dichte; NG – Nachweisgrenze; n.q. – nicht quantifizierbar; PP - Polypropylen

Die Ergebnisse der DSC-Analytik sind in Tabelle 30 zusammengefasst. Für die angereicherten Proben MiPI 3, 4, 7, 13, 17 und 18 konnten thermische Signale von HD-PE und in Probe MiPI 13 Signale von PA und PP nachgewiesen werden. Dabei konnten in der Probe MiPI 13 Polyamid (Abbildung 35), Polyethylen und Polypropylen (Abbildung 35) nachgewiesen werden. In Abbildung 35 sind die Thermogramme der drei Teilproben von MiPI 17 dargestellt. Dabei sind die Signale zwischen 21,8 °C und 51,6 °C PCL und zwischen 102,0 °C und 134,0 °C HD-PE zuzuordnen. In den Teilproben 1 und 2 lagen die berechneten Massen an HD-PE bei 0,20 mg und 0,17 mg, was unter Berücksichtigung des durch die Siebung, Elektroseparation und Dichteseparation erzeugten Abscheidegrades eine Konzentration des HD-PE von 0,28 ± 0,20 mg/kg in der ungesiebten, getrockneten Sedimentprobe ergibt. Dieser Wert ist aufgrund der geringen Stichprobenmenge (n =3) statistisch nicht belastbar. Gleichwohl deutet die Tatsache, dass in zwei Teilproben HD-PE quantifiziert werden konnte und in einer Teilprobe kein HD-PE nachgewiesen werden konnte darauf hin, dass von einer heterogenen Verteilung von HD-PE in der Probe auszugehen ist. Dadurch ist die Hochrechnung von detektierten Mikroplastikbelastungen in Teilproben auf die Gesamtprobe sehr fehleranfällig, da eine repräsentative Probennahme somit kaum möglich ist.

Abbildung 35: Thermogramme der Proben MiPI 13 (A,B) und MiPI 17 (C)

Die Thermogramme der drei Teilproben von MiPI 18 sind in Abbildung 36 dargestellt. Eine Quantifizierung war aufgrund der schwachen PE-Signale nicht möglich. Die Mikroplastikbelastung der dargestellten Teilproben lag somit zwischen Nachweis- und Bestimmungsgrenze (NG bei 0,86 mg/kg; BG bei 2,58 mg/kg).

Abbildung 36: Thermogramm von Probe MiPI 18

Die vereinzelten Mikroplastikbefunde, welche in den Vor- und Hauptversuchen zur Dichteseparation gemacht wurden, führen zu der Frage, inwiefern Flusssedimente als Senke von Mikroplastik fungieren bzw. welche Einflussfaktoren zu einer hohen Belastung führen können. SCHERER et al. (2020) stellten bei der Analyse von Wasser- und Sedimentproben der Elbe fest, dass die Belastung der Sedimente um den Faktor 600.000 höher war als in den Wasserproben. Gleichzeitig stellten die Autoren fest, dass Flusswehre zu einer deutlich verringerten Belastung mit Mikroplastik im Sediment führen, wohingegen urbane Gebiete wie der Hamburger Hafen nur gering zu einer Belastung mit Mikroplastik beitragen. Im Bericht zur Elbe-Expedition 2020 berichteten KURZWEG et al. (2021), dass eine hohe ubiquitäre Belastung des Elbsediments mit Mikroplastik eher unwahrscheinlich ist. Vielmehr stellten die Autoren Befunde von Polyethylen und Polyethylenterephthalat in strömungsberuhigten Bereichen wie Häfen, Buhnenfeldern und Ruhezonen fest.

Übertragen auf die in diesem Bericht untersuchten Probenstellen bedeutet dies, dass eine reine Integration der Probenahme zur Bestimmung der Mikroplastikbelastung von Flusssedimenten in das Fließgewässermessnetz nicht zielführend ist. Stattdessen sollten insbesondere Wehre, Buhnenfelder und strömungsberuhigte Bereiche in den Fokus zukünftiger Studien genommen werden, um die Zonen hoher Mikroplastikbelastungen identifizieren zu können. Diese sollten auch auf ihr Potential zur Abbildung der Entwicklung des Eintrags mikroplastischer Partikel in die Gewässer bewertet werden.

5.6.4 Untersuchung einzelner Partikel mittels FT-IR-Mikroskop aus Kampagne 2021

Im Rahmen der Probenahme und Probenaufbereitung wurden Sichtprüfungen potentiell kunststoffhaltiger Partikel durchgeführt und für die Untersuchung mittels FT-IR-Mikroskop zurückgestellt. Dabei wurden Partikel aus den Proben MiPI 7, MiPI 16, MiPI 21, MiPI 23, MiPI 24, MiPI 25, MiPI 29, MiPI 30 extrahiert. Keine der Proben zeigte Signale, die eindeutig einem Polymertyp zugeordnet werden konnten (vgl. beispielhaft Abbildung 37). Dies kann daran liegen, dass es sich bei den unterschiedlich gefärbten Partikeln um Keramik- oder Glassplitter handelte. Die Partikel wurden mittels DSC untersucht, wobei sich bestätigte, dass es sich nicht um Mikroplastik handelte.

Abbildung 37: Partikel und FT-IR-Einstrahlspektrum aus MiPI 7

5.7 Mikroplastikbelastung in Sedimentproben

5.7.1 Übersicht

In Tabelle 31 sind die detektierten Mikroplastikbelastungen der untersuchten Fließgewässersedimentproben zusammengefasst. Es zeigt sich, dass die Nachweis- und Bestimmungsgrenze durch elektrostatische und Dichteseparation der Proben teilweise deutlich abgesenkt werden konnten. Dabei stellte sich insbesondere die Kombination aus Elektroseparation mit anschließender Dichteseparation der Proben als deutlich effektiver heraus als die Mehrfachseparation der Proben am Elektroseparator. Somit führte diese Methodik auch zur Detektion einer Belastung der Sedimentprobe MiPI 17 von der Probenahmestelle Lungwitzbach-2 mit PE mit einem Massenanteil von $0,28 \pm 0,20$ mg/kg. Ebenfalls war es möglich, in weiteren Proben (MiPI 3, MiPI 4, MiPI 7, MiPI 13, MiPI 18) nach Elektroseparation und Dichteseparation Befunde von PE, PA und PP zu detektieren. In den restlichen Sedimentproben konnten keine Polymere nachgewiesen werden.

			LD-PE, UHMW-PE, PP, PA, PVC, PET			PS		
Probe	оwк	Methode	NG [mg/kg]	BG [mg/kg]	Umwelt- konz. [mg/kg]	NG [mg/kg]	BG [mg/kg]	Um- welt- konz. [mg/ kg]
MiPI 1	Zschopau-4	ES 2020	302,89	908,68	< NG	848,10	2544,31	< NG
	Freiberger	ES 2020	66,39	199,17	< NG	185,89	557,68	< NG
MiPI 2	Mulde-5 MiPl 2	ES 2020 + DS	0,11	0,32	< NG	0,30	0,89	< NG
	Mulde-6	ES 2020	25,91	77,74	< NG	72,56	217,68	< NG
MiPl 3		ES 2020 + DS	0,09	0,28	< BG (HD-PE)	0,26	0,78	< NG
	Chemnitz-2	ES 2020	104,39	313,16	< NG	292,28	876,85	< NG
MiPI 4		ES 2020 + DS	1,07	3,21	< NG	3,00	8,99	< NG
MiPI 5	Spree-4	ES 2020	375,33	1126,00	< NG	1050,93	3152,80	< NG
MiPl 6	Lausitzer Neiße-10	ES 2020	28,49	85,47	< NG	79,78	239,33	< NG
	Lausitzer	ES 2020	85,21	255,63	< NG	238,58	715,75	< NG
MiPI 7	Neiße-3	ES 2020 + DS	0,37	1,12	< BG (HD-PE)	1,05	3,14	< NG
	Kleine Pleiße	ES 2020	280,92	842,76	< NG	786,57	2359,72	< NG
MiPI 8		ES 2020 + DS	13,77	41,31	< NG	38,56	115,68	< NG
	Parthe-4	ES 2020	2151,53	6454,59	< NG	6024,28	18072,85	< NG
MiPI 9		ES 2020 + 2021	715,03	2145,08	< NG	2002,08	6006,23	< NG
	Weiße Elster-11	ES 2020	1237,44	3712,33	< NG	3464,84	10394,51	< NG
MiPI 10		ES 2020 + 2021	773,56	2320,69	< NG	2165,98	6497,94	< NG
MiPI 11	Mulde-7	ES 2020	762,88	2288,64	< NG	2136,06	6408,19	< NG
MiPI 12	Weiße Elster-1	ES 2020	434,00	1302,00	< NG	1215,20	3645,61	< NG
	Weiße Elster-5	ES 2020	139,12	417,37	< NG	389,54	1168,62	< NG
MiPI 13		ES 2020 + DS	1,42	4,27	< BG (PA, PE, PP)	3,98	11,94	< NG
MiPI 14	Göltzsch-3	ES 2020	627,67	1883,00	< NG	1757,47	5272,40	< NG

Tabelle 31: Mikroplastikbelastung an den Messstellen

Probe	оwк	Methode	LD-PE	, UHMW-F PVC, PI	PE, PP, PA, ET			
		ES 2020 + 2021	258,52	775,55	< NG	723,85	2171,54	< NG
	Flöha-2	ES 2020	3129,03	9387,08	< BG (PA)	8761,28	26283,83	< NG
MiPI 15		ES 2020 + DS	63,18	189,54	< NG	176,91	530,72	< NG
	Schwarz-	ES 2020	1159,50	3478,49	< NG	3246,59	9739,78	< NG
MiPI 16	wasser-2	ES 2020 + 2021	704,26	2112,78	< NG	1971,93	5915,79	< NG
	Lungwitzbach-2	ES 2020	28,37	85,11	< NG	79,44	238,31	< NG
MiPI 17		ES 2020 + DS	0,13	0,38	0,28 ± 0,20 (HD-PE)	0,35	1,06	< NG
	Münzbach-2	ES 2020	107,89	323,66	< NG	302,08	906,24	< NG
MiPI 18		ES 2020 + DS	0,86	2,58	< BG (HD-PE)	2,41	7,23	< NG
MiPI 19	Schwarze Elster-4	ES 2020	186,31	558,92	< NG	521,66	1564,98	< NG
MiPI 20	Große Röder-5	ES 2020	563,42	1690,27	< NG	1577,59	4732,76	< NG
MiPI 21	Wesenitz-1	ES 2021	355,98	1067,95	< NG	996,76	2990,27	< NG
MiPI 22	Münzbach-2	ES 2021	5,35	16,04	< NG	14,97	44,92	< NG
		ES 2021 + DS	0,53	1,58	< NG	1,48	4,43	< NG
MiPI 23	Höckenbach	ES 2021	6,69	20,06	< NG	18,72	56,17	< NG
	Flöha-2	ES 2021	449,74	1349,22	< NG	1259,27	3777,81	< NG
MiPI 24		ES 2021 + DS	2,23	6,69	< NG	6,24	18,72	< NG
	Chemnitz-2	ES 2021	17,04	51,11	< NG	47,70	143,10	< NG
MiPI 25		ES 2021 + DS	0,54	1,62	< NG	1,51	4,53	< NG
MiPI 26	Parthe-4	nicht separiert	-	-	-	-	-	-
MiPI 27	Kleine Pleiße	ES 2021	413,88	1241,65	< NG	1158,87	3476,62	< NG
		ES 2021 + DS	14,51	43,52	< NG	40,62	121,85	< NG
MiPI 28	Göltzsch-2	ES 2021	166,13	498,40	< NG	465,17	1395,52	< NG
MiPI 29	Sehma	ES 2021	49,85	149,56	< NG	139,59	418,78	< NG
MiPI 30	Zschopau-1	ES 2021	136,73	410,20	< NG	382,85	1148,55	< NG

Bei einer partikulären Umweltprobe kann die Annahme von Homogenität der Probe und vollständiger Überführung des Polymeranteils in die polymerreiche Fraktion nicht immer gewährleistet werden. Die Quantifizierung der für eine umfassende statistische Auswertung notwendigen Anzahl an Stichproben würde bei derartigen Proben eine wesentlich höhere Probenmenge erfordern. Die Umsetzung dieses Ansatzes ist mit dem Rahmen der hier vorliegenden Studie nicht vereinbar, da eine entsprechend große Probenmenge unweigerlich zu einem großen Eingriff in das Ökosystem der betroffenen Probenahmestelle führen würde. Daher wurde versucht, den Anreicherungsgrad des Polymers in der Probe über die Separation durch einen internen Standard zu beschreiben. Aus den hier vorliegenden Daten kann jedoch noch nicht mit hinreichender Sicherheit die Eignung des Standardmaterials PCL für die Beschreibung der Anreicherungsfaktoren der untersuchten Polymertypen PE, PP, PS, etc. abgeleitet werden. Auch weitere Arbeiten konnten zeigen, dass nicht unbedingt von Wiederfindungsraten in der Nähe von 100 Prozent ausgegangen werden kann. Die Arbeiten von HAUFFE (2021), HIPPAUF (2021) und KURZWEG (2020) zeigen, dass die verschiedenen Separationsmethoden und -parameter systematisch eine unvollständige Überführung der Polymeranteile in die polymerreiche Fraktion zur Folge haben können. Dieser Effekt kann durch Faktoren wie Partikelgröße, Luftfeuchtigkeit sowie Beimengungen von organischem Material beeinflusst sein. Hierzu sind weiterführende Studien notwendig. Ohne exakte, polymerspezifische Anreicherungsfaktoren können die ermittelten Daten im Sinne einer Orientierung an der Größenordnung der Belastung verstanden werden, welche an den untersuchten Probennahmestellen sehr niedrig war.

Jedoch können auch niedrige Mikroplastikbelastungen in Frischwassersedimenten ökotoxikologische Effekte haben. So konnten ZIAJAHROMI et al. (2018) zeigen, dass PE (Partikelgrößen ein bis 126 µm) mit einem Massenanteil von 500 Partikeln per Kilogramm Sediment zu negativen Effekten auf Wachstum, Überleben und Schlupferfolg von Larven der Mückenart *Chironomus tepperi* führen können. Des Weiteren können Schadstoffe in aquatischen Ökosystemen an Kunststoffe adsorbieren und somit indirekte Effekte in diversen Spezies auslösen (RIOS et al., 2010). Aufgrund der geringen Datenlage in der aktuellen Fachliteratur zur Wirkung von Mikroplastik auf Fließgewässersysteme muss deren Risikobewertung durch weitere Studien unterstützt werden (BELLASI et al., 2020).

5.7.2 Betriebswirtschaftliche Hochrechnung zur angewandten Methodik

Eine Hochrechnung der Gesamtkosten für die Methode unterteilt sich in drei additive Terme. Diese werden in Formel 14 aufgezeigt.

	Gesamtkosten = Investkosten + Fixkosten + Personalkosten	(14)
Investkosten	Alle Kosten zur Beschaffung der Geräte (Abschreibung)	
Fixkosten	laufende Kosten durch Verbrauchsmaterial und Energie	
Personalkosten	Alle Arbeitsstunden des Personals multipliziert mit den pro Stunde anfallender	n Kosten

Unter dem Punkt "Investkosten" sind der Elektroseparator, der Trockenschrank mit Filteraufsatz, die DSC und das FTIR-Mikroskop aufzuführen. Eine Abschätzung der Kosten ergibt somit eine Summe von ca. 175.000 Euro. Die Geräte können nach der Absetzung für Abnutzung zu elf Jahren (Trockenscharank) und sechs Jahren (analytische Geräte) abgeschrieben werden. Die Investkosten werden je nach Abschreibungsdauer berücksichtigt. Die Fixkosten unterteilen sich in die Posten Verbrauchsmaterialen (DSC-Tiegel, Aluschalen) sowie Energie und Betrieb (elektrischer Strom, Argongas). Bei der Auflistung werden laborübliche Geräte (Bechergläser, Laborwaage, Probenahmegeräte) nicht aufgeführt. Die Arbeitsstunden unterteilen sich in aktive Personalstunden und in passiven Zeitaufwand, welcher aber keine Personalkos-

ten verursacht z.B. Mess- und Trocknungszeiten. Die Kalkulation der Posten bezieht sich auf die Analyse von 20 Probenahmestellen und wird durch die Angabe "Kosten je Probennahme" verallgemeinert. Es zeigte sich, dass mit der angewandten Methode eine Umweltprobe für weniger als 430 Euro innerhalb von 24 Stunden analysiert werden kann (Tabelle 32).

Arbeitsschritt	Personalkosten [€]	Materialkosten [€]	Aktive Dauer [h]	Passive Dauer [h]
Probenahme	100	0,5	1	0
Probenvorbereitung	87,5	2,44	1,75	8
Separation ES	87,5	2,13	1,75	0
Analytik	115	30,57	2,3	8,3
Summe	390	35,64	6,8	16,3

Tabelle 32: Zusammenfassung der Kosten und des Zeitbedarfs für eine Umweltprobe

Im Laufe des Projekts ist die Notwendigkeit für die Etablierung der zusätzlichen Dichteseparation erkannt worden. Tabelle 33 zeigt die Hochrechnung unter Berücksichtigung der Dichteseparation in den Kosten.

Arbeitsschritt	Personalkosten [€]	Materialkosten [€]	Aktive Dauer [h]	Passive Dauer [h]
Probenahme	100	0,5	1	0
Probenvorbereitung	87,5	2,44	1,75	8
Separation ES+DS	179	18,43	3,58	74
Analytik	115	30,57	2,3	8,3
Summe	481,5	51,9	8,6	90,3

Tabelle 33: Zusammenfassung der Kosten unter Berücksichtigung der Dichteseparation

Somit kann eine Umwletprobe für ca. 535 Euro innerhalb von ca. 100 Stunden analysiert werden. Die Dichteseparation hat durch einen hohen passiven Zeitbedarf und somit einen entscheidenden Einfluss auf die Gesamtanalysendauer.

Ein Vergleich der Kostenaufstellung zu anderen Analysenmethoden steht noch aus. Zum Zeitpunkt Oktober 2020 gibt es keinen vergleichbaren Ansatz, welcher die Kosteneffizienz in den Fokus der Methodenentwicklung rückt und eine derart schlüssige Kostenaufstellung gewährleisten kann (Campanale et al., 2020).

Dies ist im Vergleich zu anderen, häufig genutzten Methoden wie die Analyse mittels μ -FT-IR nach händischer Aufarbeitung ein enormer Zeitgewinn und damit günstiger als bisher etablierte Methoden. Die Forschenden des Alfred-Wegener-Instituts (AWI, 2019) haben deren Vorgehen bei der Analyse von Mikroplastik aus Kläranlagenwasser ausführlich dargestellt. Das Forscherteam benötigte ab dem Zeitpunkt der Probenahme bis zum Ergebnis 17 Arbeitstage. Andere Quellen berichten von einer Analysezeit mit μ FT-IR für eine Filterfläche von 14,8 mm x 14,8 mm von circa vier Stunden (Braun et al. 2020). Die zuvor benötigte Aufreinigung der Umweltproben ist ebenfalls sehr zeitintensiv. Für die Dichteseparation von Sedimentproben wird zudem eine benötigte Zeit von bis zu zwölf Stunden angegeben (Wendt-Potthoff et al., 2017).

Durch die vergleichsweise geringen Anschaffungskosten gegenüber andere Methodenansätzen z.B. Pyrolyse GC-MS zeigen sich die ökonomischen Vorteile der DSC-Methode. Zu erwähnen ist dabei, dass die DSC nicht zwingend als potentiell geeignete Methode für die Mikroplastikanalyse aufgelistet wird (MÜLLER et al., 2020; PRIMPKE et al., 2020), obwohl die Eignung der DSC durch einen Ringversuch nachgewiesen wurde (BECKER et al., 2020).

6 Fazit und Ausblick

Nach einer umfangreichen Auswertung der vorhandenen Literatur zur Untersuchung von Mikroplastik wurde in diesem Bericht das Optimierungspotential der elektrostatischen Separation von Fließgewässersedimenten mit anschließender qualitativer und quantitaver Analyse mittels DSC zur Detektion der Mikroplastik-Belastung in sächsischen Gewässern untersucht. Die dargestellten Ergebnisse zeigen, dass durch die Anreicherung der Mikroplastikpartikel im Elektroseparator die Bestimmungsgrenze der DSC bis 16,04 mg/kg für PE, PP, PET, PA, PVC bzw. 44,92 mg/kg für PS gesenkt werden konnte.

Mit der Dichteseparation mittels ZnCl₂-Lösung konnten noch höhere Abscheidegrade erzielt werden, was eine niedrigste Bestimmungsgrenze von 0,28 mg/kg für PE, PP, PET, PA, PVC bzw. 0,78 mg/kg für PS zur Folge hatte. Durch die Kombination aus elektrostatischer Separation mit optimierten Geräteparametern und einer anschließenden Dichteseparation können somit deutlich niedrigere Mikroplastikbelastungen diskutiert werden als in der Kampagne 2020.

Mit der erreichten Bestimmungsgrenze sind Mikroplastik-Konzentrationen detektierbar, welche in den letzten Jahren in einer Vielzahl von internationalen Studien in Flusssedimenten gemessen wurden (vgl. ADOMAT & GRISCHEK, 2021). Auch Genauigkeit und Präzision sind mit den Angaben literaturüblicher Methoden andererer Autoren vergleichbar.

Gleichwohl können die verwendeten Methoden zu Probenahme und -aufbereitung noch weiter verbessert werden. Dabei sollten weitere probenspezifische Parameter wie Partikelgrößenverteilung und chemische Zusammensetzung Berücksichtigung finden. Perspektivisch sollte anhand dieser Parameter eine Klassifizierung der Proben und eine daran orientierte Vorbehandlung und Separationstechnikauswahl erfolgen.

Die Probenahmestellen, welche für dieses Forschungsprojekt gewählt wurden, wiesen geringe Mikroplastikbelastungen von Polyethylen hoher Dichte (Mulde-6, Chemnitz-2, Lausitzer Neiße-3, Lungwitzbach-2), Polyamid (Weiße Elster-5) und eines Polyethylen-Polypropylen-Copolymers (Weiße Elster-5) auf. Die Signale waren jedoch so schwach, dass nur für den Polyethylen-Befund im Sediment des Lungwitzbaches eine Quantifizierung durchgeführt werden konnte. Demzufolge lässt sich der Befund auf eine Polyethylenbelastung der getrockneten Sedimentprobe von 0,28 ± 0,20 mg/kg hochrechnen. Die nur vereinzelt festgestellten niedrigen Signale von Mikroplastik deuten darauf hin, dass die Gewässer nicht ubiquitär mit mikropartikulären Kunststoffen belastet sind, sondern diese vielmehr punktuell in ruhigen Zonen und Sedimentsenken akkumulieren könnten. Die Auswahl von geeigneten Sedimentsenken als Probenahmestellen ist daher empfehlenswert. Hierfür ist eine alleinige Beprobung der Sedimente an Messstellen des Gewässergütemessnetzes des Freistaates Sachsen, wie es in den in diesem Bericht beschriebenen Probenahmkampagnen durchgeführt wurde, nicht ausreichend. Für zukünftige Untersuchungen zu Mikroplastikbelastungen in Fließgewässersedimenten sollten weitere Daten wie bekannte Schadstoffsenken sowie die Hydromorphologie des Gewässers mit herangezogen werden. Ebenso sollten Stau- und Wehranlagen bei diesen Überlegungen mit einbezogen werden, da in den davor befindlichen Ruhezonen potentielle Akkumulationsbereiche für mikropartikuläre Kunststoffe liegen.

Die an der HTW entwickelte Methode zum Mikroplastikmonitoring zeigt sich als grundsätzlich geeignet, Mikroplastikbelastungen in Fließgewässersedimenten zu quantifizieren. Sie bietet im Vergleich zu anderen angewandten Methoden den Vorteil eines relativ geringen Material- und Zeitaufwandes und damit verbundene niedrigere Kosten, was einen Ansatz für eine routinetaugliche Methode darstellt. Sie bietet zudem viel Optimierungspotential bei der Sedimentprobenahme sowie der Anreicherung der Mikroplastik mittels elektrostatischer und Dichteseparation. Die anschließende Messung mittels DSC ermöglicht eine kosten- und zeitarme, qualitative und quantitative Analysenmethode. Bis zum Einsatz in einem Routinelabor sollten jedoch noch weitere Anpassungen vorgenommen werden.

An keiner beprobten Stelle ist eine vergleichbar hohe Belastung der Sedimente mit Mikroplastik wie beispielsweise in der Rhein-Main-Studie von Klein et.al. (2015) gefunden worden. Frei et al. (2019) zeigten, dass die Mikroplastikbelastungen nicht ubiquitär im Sediment des Roten Mains vorhanden sind, sondern in Punktbelastungen vorliegen, was zu Differenzen von einem bis 30.000 Partikeln je Kilogramm trockenem Sediment führen kann (Frei et al., 2019). Die Autoren stellten dabei fest, dass das Ökosystem Fluss nicht nur ein Transportsystem für Mikroplastikbelastungen darstellt, sondern insbesondere in der hyporheischen Zone große Mengen an Kunstoffen akkumulieren können. Ein Vergleich der vorliegenden Ergebnisse mit anderen Studien legt nahe, dass eine Ausrichtung der Probenahmestellen zur Untersuchung von Mikroplastik an Gewässergütemessstellen erfolgen kann, diese unter Berücksichtigung hydromorphologischer Parameter und bekannter Schadstoffsenken durch eine Fokussierung auf geeignete Stillwasserzonen an Wehren, Buhnenfeldern und in Häfen ergänzt werden sollte (Kurzweg et al., 2021).

Literaturverzeichnis

- ADOMAT, Y., GRISCHEK, T. (2021): Sampling and processing methods of microplastics in river sediments A review. In: Science of the Total Environment, S. 143691
- ALFRED-WEGENER-INSTITUT (2019): Internetpublikation Im Fokus, Müll im Meer: Die Suche nach dem Mikroplastik, https://www.awi.de/im-fokus/muell-im-meer/die-suche-nach-dem-mikroplastik.html, 02.12.2020
- BECKER, R., ALTMANN, K., SOMMERFELD, T., BRAUN, U. (2020): Quantification of microplastics in a freshwater suspended organic matter using different thermoanalytical methods outcome of an interlaboratory comparison. In: Journal of Analytical and Applied Pyrolysis, S. 104829
- BELLASI, A., BINDA, G., POZZI, A., GALAFASSI, S., VOLTA, P., & BETTINETTI, R. (2020): Microplastic contamination in freshwater environments: A review, focusing on interactions with sediments and benthic organisms. In: Environments, 7(4), S. 30
- BERTLING, J., BERTLING, R., HAMANN, L. (2018): Kunststoffe in der Umwelt: Mikro- und Makroplastik. Ursachen, Mengen, Umweltschicksale, Wirkungen, Lösungsansätze, Empfehlungen. Kurzfassung der Konsortialstudie, Fraunhofer-Instutut für Umwelt-, Sicherheits- und Energietechnik, UMSICHT (Hrsg.), Oberhausen https://www.umsicht.fraunhofer.de/content/dam/umsicht/de/dokumente/publikationen/ 2018/kunststoffe-id-umwelt-konsortialstudie-mikroplastik.pdf, 01.04.2020
- BITTER, H., LACKNER, S. (2021): Fast and easy quantification of semi-crystalline microplastics in exemplary environmental matrices by differential scanning calorimetry (DSC). In: Chemical Engineering Journal, 423, S. 129941
- BRAUN, U., JEKEL, M., GERDTS, G., IVLEVA DR., N. P., REIBER, J. (2018): Internetpublikation Diskussionspapier im Rahmen des Forschungsschwerpunktes Plastik in der Umwelt: Mikroplastik-Analytik. https://bmbf-plastik.de/sites/default/files/2018-10/Diskussionspapier%20Mikroplastik-Analytik.pdf, 14.10.2019
- BRAUN ET AL. (2020): Internetpublikation Statuspapier im Rahmen des Forschungsschwerpunktes Plastik in der Umwelt: Mikroplastik-Analytik Probenamhe, Probenaufarbeitung und Detektionsverfahren, https://bmbf-plastik.de/sites/default/files/2020-

11/Statuspapier_Mikroplastik%20Analytik_Plastik%20in%20der%20Umwelt_2020.pdf, 01.12.2020

- BRINKMANN, S., SCHMACHTENBERG, E. (2013): Saechtling Kunststoff Taschenbuch, 31. Auflage, München: Carl Hanser Verlag
- BUNDESINSTITUT FÜR RISIKOFORSCHUNG (BFR) (2019): Internetpublikation Mikroplastik: Fakten, Forschung und offene Fragen, https://www.bfr.bund.de/cm/343/mikroplastik-fakten-forschung-und-offene-fragen .pdf, 05.02.2020
- BUNDESMINISTERIUM FÜR BILDUNG UND FORSCHUNG (BMBF) (2018): Internetpublikation MikroPlaTaS Was mit Mikroplastik in Talsperren und Staubereichen passiert, https://bmbf-plastik.de/sites/default/files/2018-12/Infoblatt_MicroPlaTas_2018_p.pdf, 20.08.2020
- BUNDESREGIERUNG (2020): Internetpublikation, https://www.facebook.com/Bundesregierung/photos/a.76993 8079764597/3273511196073927/?type=3&theater, 01.12.2020
- BUSSE, L., RECHENBERG, B. (2019): Plastik in der Umwelt, Publikation des Umweltbundesamtes, www.um weltbundesamt.de/publikationen/kunststoffe-in-der-umwelt, 07.10.2019
- CAMPANALE, C., SAVINO, I., POJAR, I., MASSARELLI, C., URICCHIO, V. F. (2020): A Practical Overview of Methodologies for Sampling and Analysis of Microplastics in Riverine Environments. In: Sustainability, 12, 17, S. 6755
- CENTER FOR INTERNATIONAL ENVIRONMENTAL LAW (CIEL) (2019): Internetpublikation Plastic & Health: The Hidden Costs of a Plastic Planet. https://www.ciel.org/plasticandhealth/, 01.12.2020

- COLE, M., LINDEQUE, P., HALSBAND, C., GALLOWAY, T. (2011): Microplastics as contaminants in the marine environment: A review. In: Marine Pollution Bulletin, Vol. 62, Heft 12, S. 2588-2597, https://doi.org/ 10.1016/j.marpolbul.2011.09.025, 01.12.2020
- CORCORAN, M., SHERIF, M. I., SMALLEY, C., KARL, A. L., ROCKNE, J., GIESY, J. P., STURCHIO, N. C. (2018): Accumulation rates, focusing factors, and chronologies from depth profiles of 210Pb and 137Cs in sediments of the Laurentian Great Lakes. In: Journal of Great Lakes Research, Vol. 44, Heft 4, S. 693-704, https://doi.org/10.1016/j.jglr.2018.05.013, 01.12.2020
- DIN 32645:2008-11 (2008): Chemische Analytik Nachweis-, Erfassungs- und Bestimmungsgrenze unter Wiederholbedingungen Begriffe, Verfahren, Auswertung. Berlin: Beuth
- DIN EN 12880 (2000): Charakterisierung von Schlämmen Bestimmung des Trockenrückstandes und des Wassergehalts. Berlin: Beuth
- DIN EN ISO 14688-1 (2018): Geotechnische Erkundung und Untersuchung Benennung, Beschreibung und Klassifizierung von Boden Teil 1: Benennung und Beschreibung. Berlin: Beuth
- DIN EN ISO 14688-2 (2018): Geotechnische Erkundung und Untersuchung Benennung, Beschreibung und Klassifizierung von Boden Teil 2: Grundlagen für Bodenklassifizierungen. Berlin: Beuth
- DIN EN ISO 17892-4 (2017): Geotechnische Erkundung und Untersuchung Laborversuche an Bodenproben – Teil 4: Bestimmung der Korngrößenverteilung. Berlin: Beuth
- DIN EN ISO 66165-1 (2016): Partikelgrößenanalyse Siebanalyse Teil 1: Grundlagen. Berlin: Beuth
- DÜMICHEN, E., EISENTRAUT, P., CELINA, M., BRAUN, U. (2017): Internetpublikation Polymere und Mikroplastik in der Umwelt. https:// analyticalscience.wiley.com/do/10.1002/gitfach.16029, 30.10.2019

DURISCH-KAISER, E., RENSCH, D. (2019): Internetpublikation – Mikroplastik in Abwasser und Gewässern, Amt für Abfall, Wasser, Energie und Luft, Konton Zürich, Baudirektion, https://www.zh.ch/content/dam/ zhweb/bilder-dokumente/themen/umwelt-tiere/wassergewaesser/gewaesserschutz/abwasserreinigungsanlagenara/mp_in_abwasser_und_gew%C3%A4ssern_awel_2019.pdf, 07.09.2020

- DRIS, R., GASPERI, J., ROCHER, V., SAAD, M., RENAULT, N., TASSIN, B. (2015): Internetpublikation -Microplasticcontamination in an urban area: a case study in Greater Paris. In: Environmental Chemistry, CSIROPublishing, https://hal-enpc.archives-ouvertes.fr/hal-01134553, 01.12.2020
- ECOLOGIC INSTITUT (HRSG.) (2018): BMBF-Forschungsschwerpunkt Plastik in der Umwelt Quellen Senken • Lösungsansätze. Vorstellung der Verbundprojekte. 3., überarbeitete Auflage, Berlin: Ecologic Institut, https://bmbf-plastik.de/sites/default/files/2018-11/181009_PlastikNet_Brochuere_de_web_nov .pdf, 02.04.2020
- ESSEL, R., ENGEL, L., CARUS, M., AHRENS, R. H. (2015): Quellen für Mikroplastik mit Relevanz für den Meeresschutz in Deutschland, Publikation des Umweltbundesamtes, Texte 63/2015, https://www. umweltbundesamt.de/sites/default/files/medien/378/publikationen/texte_63_2015_quellen_fuer_mikropl astik_mit_relevanz_fuer_den_meeresschutz_1.pdf, 10.10.2019
- EXPÓSITO MONTAÑEZ, L. A. (2021): Untersuchungen zur Mikroplastikanalyse mittels DSC. Masterarbeit, HTW Dresden
- FAHRMEIR, L., KNEIB, T., LANG, S. (2009): Regression Modelle, Methoden und Anwendungen, 2. Auflage, Berlin: Springer-Verlag
- FOEKEMA, E. M., DE GRUIJTER, C., MERGIA, M. T., VAN FRANEKER, J. A., MURK, A. T. J., KOELMANS, A. A. (2013): Plastic in North Sea Fish. In: Environmental Science Technology, Vol. 47, Heft 15, S. 8818-8824, https://doi.org/10.1021/es400931b, 01.12.2020
- FREI, S., PIEHL, S., GILFEDDER, B. S., LÖDER, M. G. J., KRUTZKE, J., WILHELM, L., & LAFORSCH, C. (2019): Occurence of microplastics in the hyporheic zone of rivers. In: Scientific reports, 9(1), S. 1-11

- FRIAS, J., PAGTER, E., NASH, R., O'CONNOR, I., CARRETERO, O., FILGUEIRAS, A., VIÑAS, L., GAGO, J., ANTUNES, J., BESSA, F., SOBRAL, P., GORUPPI, A., TIRELLI, V., PEDROTTI, M. L., SURAIA, G., ALIANI, S., LOPES, C., RAIMUNDO, J., CAETANO, M., PALAZZO, L., DE LUCIA, G. A., CAMEDDA, A., MUNIATEGUI, S., GRUEIRO, G., FERNANDEZ, V., ANDRADE, J., DRIS, R., LAFORSCH, C:, SCHOLZ-BÖTTCHER, B. M., GERDTS, G. (2018): Standardised Protocol for Monitoring Microplastics in Sediments, JPI Oceans BASEMAN project, https://repository.oceanbestpractices.org/handle/11329/1206, 01.12.2020
- FRIAS, J. P. G. L., NASH, R. (2019): Microplastics: Finding a consensus on the definition. In: Marine Pollution Bulletin, 138, S. 145 - 147
- FUHR, L. (2019): Plastikatlas Daten und Fakten über eine Welt voller Kunststoff, 3. Auflage, Berlin: Heinrich Böll Stiftung in Zusammenarbeit mit dem BUND
- GOUIN, T. (2020): Toward an Improved Understanding of the Ingestion and Trophic Transfer of Microplastic Particles: Critical Review and Implications for Future Research. In: Environmental Toxicology and Chemistry, Vol. 39, Heft 6, S. 1119-1137, https://doi.org/10.1002/etc.4718, 12.06.2020
- HAUFFE, M. (2021): Elektrostatische Separation von Mikroplastik-Sediment-Gemischen. Bachelorarbeit, HTW Dresden
- HEß, M., DIEHL, P., MAYER, J., RAHM, H., REIFENHÄUSER, W., STARK, J., SCHAIGER, J. (2018): Mikroplastik in Binnengewässern Süd- und Westdeutschlands Bundesländerübergreifende Untersuchungen in Baden-Württemberg, Bayern, Hessen, Nordrhein-Westfalen und Rheinland-Pfalz, Teil 1: Kunststoffpartikel in der oberflächennahen Wasserphase, Karlsruhe, Augsburg, Wiesbaden, Recklinghausen, Mainz. https://bmbf-plastik.de/sites/default/files/2018-04/L%C3%A4nderbericht_Mikroplastik_in_Binnengew %C3%A4ssern_0.pdf, 02.10.2019
- HIPPAUF, P. (2021): Dichteseparation von Mikroplastik in Sedimentproben. Bachelorarbeit, HTW Dresden
- HUFNAGL, B., STEINER, D., RENNER, E., LÖDER, M. G. J., LAFORSCH, C., LOHNINGER, H. (2019): A methodology for the fast identification and monitoring of microplastics in environmental samples using random decision forest classifiers. In: Analytical Methods, Heft 11, S. 2277-2285, https:// doi.org/10.1039/C9AY00252A, 18.02.2020
- IMHOF, H. K., SCHMID, J., NIESSNER, R., IVLEVA, N. P., LAFORSCH, C. (2012): A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. In: Limnology and Oceanography Methods, Vol. 10, Heft 7, S. 524-537, https://doi.org/10.4319/lom. 2012.10.524, 01.12.2020
- IMHOF, H. K., IVLEVA, N. P., SCHMID, J., NIESSNER, R., LAFORSCH, C. (2013): Contamination of beach sediments of a subalpine lake with microplastic partiles. In: Current Biology, Vol. 23, Heft 19, S. R867-R868 https://doi.org/10.1016/j.cub.2013.09.001, 13.01.2020
- KLAEGER, F., TAGG, A. S., OTTO, S., BIENMÜLLER, M., SARTORIUS, I., LABRENZ, M. (2019): Residual Monomer Content Affects the Interpretation of Plastic Degradation. In: Scientific Reports, Heft 9, Artikelnummer 2120 https://doi.org/10.1038/s41598-019-38685-6, 11.10.2019
- KLEIN, S., WORCH, E., KNEPPER, T. P. (2015): Occurrence and Spatial Distribution of Microplastics in River Shore Sediments of the Rhine-Main Area in Germany. In: Environmental Science & Technology, 49, 10, S. 6070 - 6076
- KOELMANS, A. A., MOHAMED NOR, N. H., HERMSEN, E., KOOI, M., MINTENIG, S. M., DE FRANCE, J. (2019): Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. In: Water research, 155, S. 410 – 422
- KURZWEG, L., SCHIRRMEISTER, S., ADOMAT, Y., FAIST, S., SOCHER, M., BAUER, R., HARRE, K., GRISCHEK, T. (2021): Mikroplastik in Sedimentproben der Elbe, Erprobung einer neuartigen Methode zur Mikroplastikanalyse im Rahmen der Elbe-Expedition 2020. Bericht, HTW Dresden
- KURZWEG, L. (2020): Untersuchungen zur Aufbereitung von Umweltproben zur Bestimmung von Mikroplastik mittels dynamischer Differenzkalorimetrie. Masterarbeit, HTW Dresden

- KUSCH, P. (2017): Chapter 7 Application of Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). In: Comprehensive Analytical Chemistry, Heft 75, S. 169-207, http://dx.doi.org/10.1016/ bs.coac.2016.10.003, 27.07.2020
- LENZ, R., LABRENZ M. (2018): Small Microplastic Sampling in Water: Development of an Encapsulated Filtration Device. In: water, Heft 10, S. 1055 ff.
- LECHNER, A., KECKEIS, H., LUMESBERGER-LOISL, F., ZENS, B., KRUSCH, R., TRITTHART, M., GLAS, M., SCHLUDERMANN, E. (2014): The Danube so colourful: A potpourri of plastic litter outnumbers fish larvae in Europe's largest river. In: Environmental Pollution, Heft 188, S. 177-181 https://doi.org/10.1016/ j.envpol.2014.02.006, 13.01.2020
- LEPESQEUR, J., HOSTACHE, R., MARTÍNEZ-CARRERAS, N., MONTARGÈS-PELLETIER, E., HISSLER, C. (2019): Sediment transport modelling in riverine environments: on the importance of grain-size distribution, sediment density, and suspended sediment concentrations at the upstream boundary. In: Hydrology and Earth System Sciences, 23, S. 3901 – 3915
- LI, J., LIU, H., CHEN, J. P. (2018): Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. In: Water Research, Heft 137, S. 362-374, https://doi.org/10.1016/j.watres.2017.12.056, 02.03.2020
- LIEBMANN, B. (2015):Internetpublikation Mikroplastik in der Umwelt. Wien, Umweltbundesamt GmbH https://www.umweltbundesamt.at/fileadmin/site/publikationen/rep0550.pdf, 03.02.2020
- LÖDER, M. G. J., GERDTS, G. (2015): Methodology Used for the Detection and Identification of Microplasstics – A critical Appraisal. In: Marine Anthropogenic Litter, S. 201-227, https://doi.org/10.1007/978-3-319-16510-3_8, 01.12.2020
- LÖDER, M., WILCZEK, U., MARTIROSYAN H. (2020): Internetpublikation Orientierende Untersuchungen zur Mikroplastikkontamination in Fließgewässern Thüringens am Beispiel der Saale 2018/2019 -Ergebnisberichthttps://tlubn.thueringen.de/fileadmin/00 tlubn/Wasser/Fluesse und Baeche/Dokumente/Gewaessergu

ete_UEberwachung/Ergebnisbericht_FINALE_VERSION_30.04.2020.pdf, 07.09.2020

- MANI, T., HAUK, A., WALTER, U., BURKHARDT-HOLM, P. (2016): Microplastics profile along the Rhine River. In: Scientific Reports, Heft 5 Artikel 17988, https://doi.org/10.1038/srep17988, 01.12.2020
- MARTENS, H. (2011): Recyclingtechnik. Heidelberg: Spektrum Akademischer Verlag.
- MASURA, J., BAKER, J., FORSTER, G., ARTHUR, C. (2015): Internetpublikation Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum NOS-OR&R-48, https://marinedebris. noaa.gov/sites/default/files/publications-files/noaa_microplastics_methods_manual.pdf, 24.08.2020
- MENDOZA, L. M. R., BALCER, M. (2019): Microplastics in freshwater environments: A review of quantification assessment. In: Trends in Analytical Chemnistry, Heft 113, S. 402-408, https://doi.org/10.1016/j.trac.2018.10.020, 03.03.2020
- MIKLOS, D., OBERMAIER, N., JEKEL, M. (2016): Mikroplastik: Entwicklung eines Umweltbewertungskonzepts, Publikation des Umweltbundesamtes, Texte 32/2016, https://www.umweltbundesamt.de/sites/default/ files/medien/378/publikationen/texte_32_2016_mikroplastik_entwicklung_eines_umweltbewertungskon zeptes.pdf, 25.02.2020
- MSFD TECHNICAL SUBGROUÜ ON MARINE LITTER (2013): Internetpublikation: Guidance on Monitoring of Marine Litter in European Seas. https://mcc.jrc.ec.europa.eu/documents/201702074014.pdf, 13.09.2021
- MÜLLER, Y. K., WERnicke, T., Pittroff, M., Witzig, C. S., Storck, F. R., Klinger, J., Zumbülte N. (2020): Microplastic analysis-are we measuring the same? Results on the first global comparative study for microplastic analysis in a water sample. In: Analytical and bioanalytical chemistry, 412, 3, S. 555 – 560
- OTT, G., WURSTER, U., ZIPPERLE, J. (2015): Internetpublikation der Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg Mikro-Kunststoffe: Grundlagen und Sachstand. https://pudi. lubw.de/detailseite/-/publication/46575-Grundlagen_und_Sachstand.pdf, 13.01.2020

- PRATA, J. C., DA COSTA, J. P. DUARTE, A. C., ROCHA-SANTOS, T. (2018): Methods for sampling and detection of microplastics in water and sediment: A critical review. In: Trends ind Analtical Chemistry, Heft 110, S. 150-159, https://doi.org/10.1016/j.trac.2018.10.029, 24.08.2020
- PRIMPKE, S., CHRISTIANSEN, S. H., COWGER, W., DE FROND, H., DESHPANDE, A., FISCHER, M., HOLLAND, E. B., MEYNS, M., O'DONNELL, B. A., OSSMANN, B. E., PITTROFF, M., SARAU, G., SCHOLZ-BÖTTCHER, B. M., WIGGIN, K. J. (2020): Critical Assessment of Analytical Methods for the Harmonized and Cost-Efficient Analysis of Microplastics. In: Applied Spectroscopy, 74, 9, S. 1012 – 1047
- REDONDO-HASSELERHARM, P. E., GORT, G., PEETERS, E. T. H. M., KOELMANS, A. A. (2020): Nano- and microplastics affect the composition of freshwater benthic communities in the long term. In: Science Advances, Vol. 6, Artikel 5, https://doi.org/10.1126/sciadv.aay4054, 20.08.2020
- RENNER, G. (2020): Internetpublikation Development of new spectroscopic and multivariate chemometric methods for the characterization of microplastics in the marine environment. https://doi.org/ 10.17185/duepublico/71529, 12.11.2020
- RIOS, L. M., JONES, P. R., MOORE, C., & NARAYAN, U. V. (2010): Quantitation of persistent organic pollutants adsorbed on plastic debris from the Northern Pacific Gyre's "eastern garbage patch". In: Journal of Environmental Monitoring, 12(12), S. 2226-2236
- ROCHA-SANTOS, T., DUARTE, A. C. (2015): A critical overview of the analytical approaches to the occurence, the fate and the behavior of microplastics in the environment. In: Trends in Analytical Chemistry, Heft 65, S. 47-53 https://doi.org/10.1016/j.trac.2014.10.011, 24.08.2020
- SCHERER, C., WEBER, A., STOCK, F., VURUSIC, S., EGERCI, H., KOCHLEUS, C., ARENDT, N., FOELDI, C., DIERKES, G., WAGNER, M., BRENNHOLT, N., REIFFERSCHEID, G. (2020): Comparative assessment of microplastics in water and sediment of a large European river. In: Science of the Total Environment, 738, S. 139866, https://doi.org/10.1016/j.scitotenv.2020.139866, 07.09.2020
- SCHWAIGER, J. (2019): Mikroplastik in bayrischen Seen. Eine Pilotstudie, Augsburg: Bayrisches Landesamt für Umwelt. www.bestellen.bayern.de/application/eshop_app000003?SID=2113182443&ACTIONx SESSxSHOWPIC(BILDxKEY:%27lfu_was_00309%27,BILDxCLASS:%27Artikel%27,BILDxTYPE:%27P DF%27), 04.08.2020
- SCHWEIZER ZENTRUM FÜR ANGEWANDTE ÖKOTOXIKOLOGIE (2015): Internetpublikation Mikroplastik in der Umwelt, Infoblatt. https://www.oekotoxzentrum.ch/media/2243/2015 mikroplastik de.pdf, 07.09.2020
- SONG, Y. K., HONG, S. H., JANG, M. KANG, J.-H., KWON, O. Y., HAN, G. M., SHIM, W. J. (2014): Large Accumulation of Micro-sized Synthetic Polymer Particles in the Sea Surface Microlayer. In: Environmental Science & Technology, Vol. 48, Heft 16, S. 9014-9021, https://doi.org/10.1021/es501757s, 01.12.2020
- STENMARK, Å., BELLEZA, E. L., FRÅNE, A., BUSCH, N., LARSEN, Å., WAHLSTRÖM, M. (2017): Hazardous substances in plastics, Copenhagen: Nordic Council of Ministers, http://dx.doi.org/10.6027/TN2017-505, 01.12.2020
- STOCK, F., KOCHLEUS, C., BÄNSCH-BALTRUSCHAT, B., BRENNHOLT, N., REIFFERSCHEID, G. (2019): Sampling techniques and preparation methods for microplastic analyses in the aquatic environment – A review. In: Trends in Analytical Chemestry, Heft 113, S. 84-92 https://doi.org/10.1016/j.trac.2019.01.014, 04.10.2019
- STÖVEN, K., JACOBS, F., SCHUG, E. (2015): Mikroplastik: Ein selbstverschuldetes Umweltproblem im Plastikzeitalter. In: Journal f
 ür Kulturpflazen, Vol. 67, Heft 7, S. 241-250, https://doi.org/10.5073/ JfK.2015.07.01, 27.07.2020
- STURM, M. T., KLUCZKA, S., WILDE, A., SCHUHEN, K. (2019): Internetpublikation Determination of particles produced during boiling in differenz plastic and glass kettles via comparative dynamic image analysis using FlowCam®. Analytic News, https://analytik.news/en/papers/pdf/wasserdreinull4e.pdf, 20.10.2020
- UMWELTBUNDESAMT (2020a): Internetpublikation Kunststoffverbrauch nach Branchen https://www.umwelt bundesamt.de/sites/default/files/medien/384/bilder/dateien/4_abb_anteil-kunstst-verarbeitungbranche_2021-01-11.pdf, 13.09.2021

- UMWELTBUNDESAMT (2020b): Internetpublikation Anteil der Kunststoffsorten an der Verarbeitungsmenge https://www.umweltbundesamt.de/sites/default/files/medien/384/bilder/dateien/3_abb_anteil-kunststverarbeitung-sorten_2021-01-11.pdf, 13.09.2021
- UNIVERSITÄT BAYREUTH (2020): Internetpublikation Sonderforschungsbereich 1357 Mikroplastik, https:// www. sfb-mikroplastik.uni-bayreuth.de/de/, 02.12.2020
- WENDT-POTTHOFF, K., IMHOF, H. K., WAGNER, M., PRIMKE, S., FISCHER, D., SCHOLZ-BÖTTCHER, B. M., LAFORSCH, C. (2017): Mikroplastik in Binnengewässern. Handbuch Angewandte Limnologie. WILEY-VCH Verlag GmbH & co. KGaA, Weinheim. https://doi.org/10.1002/9783527678488.hbal2016003, 02.12.2020
- WIRNKOR, V. A., EBERE, E. C., NGOZI, V. E. (2019): Microplastics, an emerging concern: A review of analytical techniques for detecting and quantifying microplatics. In: Analytical Methods in Environmental Chemistry Journal, Heft 2, S. 15-32, https://doi.org/10.24200/amecj, 17.02.2020
- ZHANG, S., WANG, J., LIU, X., QU, F., WANG, X., WANG, X., LI, Y., SUN, Y. (2019): Microplastics in the environment: A review of analytical methods, distribution, and biological effects. In: Trends in Analytical Chemistry, Heft 111, S. 62-72, https://doi.org/10.1016/j.trac.2018.12.002, 17.02.2020
- ZIAJAHROMI, S., KUMAR, A., NEALE, P. A., LEUSCH, F. D. (2018): Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates. In: Environmental Pollution, 236, S. 425-431

Anhang

Anhang 1 Messdaten

Anhang 1.1 Methodentestung mit artifiziellen Proben

Lfd. Nr.	Matrix	m _{Matrix} [g]	Partikelgröße PCL	m _{Polymer} [g]	w _{Polymer} [mg/kg]	m _{RF} [g]	m _{MF} [g]	m _{PRF} [g]	AG [%]
1	Cemex-Sand	501,0	>250 µm	0,05002	100	496,1	1,2391	1,735	99,65
2	Cemex-Sand	502,0	>250 µm	0,00683	10	495,8	1,7002	2,2704	99,55
3	Cemex-Sand	499,0	>250 µm	0,00043	1	493,4	1,0309	2,4121	99,52
4	Cemex-Sand	499,9	63 – 250 µm	0,04998	100	494,6	1,1066	2,0912	99,59
5	Cemex-Sand	499,9	63 – 250 µm	0,00506	10	494,6	1,0826	2,1727	99,57
6	Cemex-Sand	499,6	63 – 250 µm	0,00094	1	494	1,1275	2,2067	99,56
7	Cemex-Sand	500,2	<63 µm	0,04987	100	495,5	1,0058	1,7457	99,65
8	Cemex-Sand	499,9	<63 µm	0,00502	10	494,6	1,4233	2,0068	99,60
9	Cemex-Sand	500,2	<63 µm	0,00057	1	494,3	1,51	2,2707	99,55
10	Elbsediment	499,8	>250µm	0,04995	100	454,4	9,6207	34,4528	93,11
11	Elbsediment	499,4	>250µm	0,00524	10	450	11,174	36,6393	92,66
12	Elbsediment	500,6	>250µm	0,00065	1	450,5	10,8483	37,8524	92,44
13	Elbsediment	499,9	63 – 250 µm	0,05015	100	442	12,9125	43,0939	91,38
14	Elbsediment	500,0	63 – 250 µm	0,00502	10	454,6	11,3682	32,7107	93,46
15	Elbsediment	500,5	63 – 250 µm	0,00054	1	457,9	10,5977	31,009	93,80
16	Elbsediment	500,1	<63 µm	0,05002	100	463,5	10,0551	25,2152	94,96
17	Elbsediment	499,8	<63 µm	0,00498	10	473,8	6,4436	18,0135	96,40
18	Elbsediment	500,4	<63 µm	0,00084	1	482	4,7923	12,5476	97,49

Tabelle A 1: Übersicht der Proben aus natürlichen Sedimenten und PCL

Legende: AG – Abscheidegrad; m_{Matrix} – Masse Matrix; m_{Polymer} – Masse Polymer; w_{Polymer} – Massenanteil Polymer; m_{RF} – Masse Restfraktion; m_{MF} – Masse Mischfraktion; m_{PRF} – Masse polymerreiche Fraktion

Anhang 1.2 Kalibrierungsdaten

Tabelle A 2: Rohdaten der K-Reihe für LD-PE, UHMW-PE, PP und PET

Lfd. Code	Polymer	m₀ [mg]	$\frac{dH_c}{\left[\frac{mJ}{mg}\right]}$	dh _c [mJ]	Т _с [°С]	$\frac{dH_m}{\left[\frac{mJ}{mg}\right]}$	dh _m [mJ]	<i>Т_т</i> [°С]
K001	LD-PE	0,05	-89,75	-4,488	94,2	117,00	5,85	106,9
K002	LD-PE	0,06	-72,59	-4,355	93,5	89,06	5,3436	107,6
K003	LD-PE	0,30	-80,71	-24,213	94,1	103,50	31,05	107,4
K004	LD-PE	0,30	-80,89	-24,267	94,4	108,10	32,43	107,1
K005	LD-PE	0,53	-77,19	-40,911	94,5	97,96	51,9188	107,5
K006	LD-PE	0,51	-76,94	-39,239	94,0	97,05	49,4955	107,7
K007	LD-PE	0,76	-81,90	-62,244	94,5	101,60	77,216	107,3
K008	LD-PE	0,78	-81,06	-63,227	94,4	114,30	89,154	107,7
K009	LD-PE	1,02	-71,67	-73,103	94,0	91,88	93,7176	108,3
K010	LD-PE	1,02	-78,43	-79,999	94,4	105,80	107,916	107,6
K011	UHMW-PE	0,05	-129,40	-6,470	111,5	180,30	9,015	124,1
K012	UHMW-PE	0,05	-215,40	-10,770	111,8	291,00	14,55	124,5
K013	UHMW-PE	0,28	-130,70	-36,596	111,6	192,40	53,872	125,3
K014	UHMW-PE	0,31	-125,10	-38,781	111,5	177,90	55,149	125,4
K015	UHMW-PE	0,54	-122,10	-65,934	111,3	170,50	92,07	127,2
K016	UHMW-PE	0,53	-120,20	-63,706	111,2	174,60	92,538	126,1
K017	UHMW-PE	0,75	-128,30	-96,225	112,2	196,40	147,3	127
K018	UHMW-PE	0,76	-126,40	-96,064	112,0	188,80	143,488	127,5
K019	UHMW-PE	1,00	-127,60	-127,600	112,4	192,20	192,200	127,4
K020	UHMW-PE	1,02	-127,60	-130,152	112,4	190,50	194,310	128,1
K021	PP	0,05	-158,70	-7,935	112,9	147,70	7,385	155,1
K022	PP	0,06	-115,70	-6,942	113,2	105,80	6,348	156,8
K023	PP	0,29	-97,71	-28,336	114,0	84,44	24,488	156,7
K024	PP	0,28	-98,33	-27,532	113,8	84,98	23,794	156,6
K025	PP	0,52	-97,13	-50,508	114,6	82,87	43,092	157,8
K026	PP	0,52	-101,70	-52,884	114,0	84,86	44,127	157,1
K027	PP	0,75	-94,18	-70,635	116,7	82,77	62,078	158,1
K028	PP	0,77	-97,76	-75,275	114,6	81,23	62,547	157,8
K029	PP	0,99	-93,90	-92,961	115,6	82,87	82,041	158,4
K030	PP	0,99	-85,88	-85,021	116,7	77,78	77,002	159,0
K031	PET	0,05	-3,15	-0,158	151,1	37,66	1,883	234,6
K032	PET	0,06	-9,38	-0,563	153,7	33,24	1,994	234,5
K033	PET	0,29	-13,56	-3,932	164,9	24,07	6,980	235,1
K034	PET	0,30	-8,73	-2,620	165,0	25,17	7,551	235,9
K035	PET	0,53	-18,63	-9,874	167,5	25,49	13,510	236,0

Lfd. Code	Polymer	m₀ [mg]	$\frac{dH_c}{\left[\frac{mJ}{mg}\right]}$	dh _c [mJ]	Т _с [°С]	$\frac{dH_m}{\left[\frac{mJ}{mg}\right]}$	dh _m [mJ]	<i>Т_т</i> [°С]
K036	PET	0,52	-16,18	-8,414	163,7	23,84	12,397	235,2
K037	PET	0,74	-21,97	-16,258	171,7	25,81	19,099	238,5
K038	PET	0,78	-24,91	-19,430	173,5	26,25	20,475	234,8
K039	PET	1,02	-24,11	-24,592	168,6	26,92	27,458	237,2
K040	PET	1,01	-26,35	-26,614	173,1	26,87	27,139	238,6
K061	LD-PE	0,12	-94,15	-11,298	94,3	116,20	13,944	107,8
K062	LD-PE	0,43	-76,33	-32,822	93,3	83,09	35,729	107,8
K063	LD-PE	0,19	-83,57	-15,878	94,2	92,89	17,649	107,5
K064	LD-PE	0,73	-72,36	-52,823	93,8	93,09	67,956	108,3
K065	LD-PE	0,93	-81,91	-76,176	94,3	97,79	90,945	107,8
K066	UHMW-PE	0,35	-127,60	-44,660	112,1	183,20	64,120	127,1
K067	UHMW-PE	0,14	-114,00	-15,960	114,9	170,20	23,828	125,3
K068	UHMW-PE	0,59	-127,20	-75,048	112,4	191,00	112,690	127,9
K069	UHMW-PE	0,06	-186,00	-11,160	114,6	266,00	15,960	126,5
K070	UHMW-PE	0,74	-129,30	-95,682	112,4	193,20	142,968	128,5
K071	PP	0,19	-105,30	-20,007	113,6	89,46	16,997	156,4
K072	PP	0,07	-149,30	-10,451	113,6	109,20	7,644	156,1
K073	PP	0,43	-99,66	-42,854	113,7	83,18	35,767	156,2
K074	PP	0,66	-92,66	-61,156	114,6	82,64	54,542	156,5
K075	PP	0,80	-98,31	-78,648	113,8	81,99	65,592	157,9
K076	PET	0,29	-18,92	-5,487	164,7	31,41	9,109	235,7
K077	PET	0,09	-4,97	-0,448	157,8	37,85	3,407	238,1
K078	PET	0,44	-14,89	-6,552	168,3	28,21	12,412	239,6
K079	PET	0,84	-23,70	-19,908	170,6	27,65	23,226	237,6
K080	PET	0,64	-21,99	-14,074	169,7	28,06	17,958	238,6

Legende: dH_c – spezifische Kristallisationsenthalpie; dh_c – Kristallisationsenthalpie; dH_m – spezifische Schmelzenthalpie; dh_m – Schmelzenthalpie; m_0 – Masse der Einwaage; T_c - Kristallisationstemperatur; T_m - Schmelztemperatur

Tabelle A 3: Rohdater	n der K-Reihe	für PS und	PVC
-----------------------	---------------	------------	-----

Lfd. Code	Polymer	m₀ [mg]	<i>Tg_c</i> [°C]	$\begin{bmatrix} dCp_c \\ mJ \\ mg * K \end{bmatrix}$	dcp_c $\left[rac{mJ}{K} ight]$	<i>Тд_т</i> [°С]	$\frac{dCp_m}{\left[\frac{mJ}{mg * K}\right]}$	$\frac{dcp_m}{\left[\frac{mJ}{K}\right]}$
K041	PS	0,11	92,5	0,649	0,07139	103,9	0,349	0,03839
K042	PS	0,10	92,6	0,867	0,08670	102,3	0,244	0,02440
K043	PS	0,32	95,2	0,402	0,12864	104,0	0,368	0,11776
K044	PS	0,33	95,2	0,574	0,18942	104,7	0,349	0,11517
K045	PS	0,57	92,6	0,397	0,22629	104,3	0,323	0,18411
K046	PS	0,55	92,5	0,374	0,20570	103,6	0,359	0,19745
K047	PS	0,76	92,6	0,272	0,20672	105,6	0,701	0,53276
K048	PS	0,77	92,6	0,264	0,20328	103,2	0,335	0,25795
K049	PS	0,99	92,5	0,264	0,26136	103,5	0,319	0,31581
K050	PS	1,01	92,5	0,260	0,26260	102,6	0,316	0,31916
K051	PVC	0,11	80,0	0,353	0,03883	80,0	0,371	0,04081
K052	PVC	0,10	90,0	0,542	0,05420	80,0	0,206	0,02060
K053	PVC	0,34	80,0	0,285	0,09690	69,7	0,109	0,03706
K054	PVC	0,33	79,9	0,323	0,10659	75,0	0,271	0,08943
K055	PVC	0,56	80,0	0,291	0,16296	78,7	0,282	0,15792
K056	PVC	0,54	80,0	0,287	0,15498	77,2	0,311	0,16794
K057	PVC	0,79	80,0	0,235	0,18565	79,8	0,298	0,23542
K058	PVC	0,80	80,0	0,275	0,22000	79,7	0,303	0,24240
K059	PVC	0,99	79,9	0,279	0,27621	79,6	0,301	0,29799
K060	PVC	1,00	80,0	0,267	0,26700	79,4	0,294	0,29400
K081	PS	0,05	93,9	0,279	0,01395	101,7	2,300	0,11500
K082	PS	0,11	92,5	0,335	0,03685	101,2	1,793	0,19723
K083	PS	0,57	93,8	0,301	0,17157	104,0	0,227	0,12939
K084	PS	0,89	92,5	0,188	0,16732	103,0	0,289	0,25721
K085	PS	1,08	92,5	0,205	0,22140	103,7	0,269	0,29052
K086	PVC	0,45	80,0	0,239	0,10755	79,9	0,361	0,16245
K087	PVC	0,18	81,1	0,212	0,03816	78,6	0,259	0,04662
K088	PVC	0,10	80,0	0,220	0,02200	75,3	0,544	0,05440
K089	PVC	0,92	79,9	0,232	0,21344	80,1	0,386	0,35512
K090	PVC	0,56	80,0	0,201	0,11256	79,4	0,461	0,25816

Legende: dCp_c – spezifische Wärmekapazitätsänderung (kühlen); dcp_c – Wärmekapazitätsänderung (kühlen); dCp_m – spezifische Wärmekapazitätsänderung (heizen); dcp_m – Wärmekapazitätsänderung (heizen); m_0 – Masse Einwaage; Tg_c – Glasübergangstemperatur (kühlen); Tg_m – Glasübergangstemperatur (heizen)

Tabelle A 4: Rohdaten der E-Reihe

			St	art	En	de								
Lfd. Code	Probenbezeichnung	т ₀ [mg]	dh _m [°C]	dh _c [°C]	dh _m [℃]	<i>dh_c</i> [°C]	Т _т [°С]	dh _m [mJ]	<i>Т</i> _с [°С]	dh _c [mJ]	m _{PCL,Ka} [mg]	m _{PFR} [g]	m _{PCL,Sed.} [mg]	WFR [%]
E001		20,17	-	-	-	-	-	-	-	-	-	34,45	49,95	0,0
E002	Elbe+PCL-100 ma/ka	20,40	30,62	33,36	59,81	7,13	54,1	65,110	15,6	-67,130	0,98	34,45	49,95	3314,4
E003	(>250 µm)	20,08	45,25	30,78	60,18	11,16	55,3	4,158	25,5	-4,954	0,07	34,45	49,95	228,6
E004	Elbe+PCL-10 mg/kg	20,81	-	-	-	-	-	-	-	-	-	36,64	5,24	0,0
E005	(>250)	22,56	-	-	-	-	-	-	-	-	-	36,64	5,24	0,0
E006		22,20	-	-	-	-	-	-	-	-	-	36,64	5,24	0,0
E007		20,73	-	-	-	-	-	-	-	-	-	37,85	0,65	0,0
E008	Elbe+PCL-1 mg/kg	20,33	-	-	-	-	-	-	-	-	-	37,85	0,65	0,0
E009	(>250 µm)	20,21	-	-	-	-	-	-	-	-	-	37,85	0,65	0,0
E010	Elbe+PCL-100 mg/kg	22,12	48,22	32,69	57,91	17,93	54,2	1,292	28,4	-2,235	0,03	43,09	50,15	103,0
E011	(63-250 µm)	20,23	48,22	32,69	57,91	17,93	52,8	1,035	28,6	-1,758	0,02	43,09	50,15	83,1
E012		21,40	48,22	32,69	57,91	17,93	54,6	1,333	28,0	-2,136	0,03	43,09	50,15	100,8
E013		20,52	-	-	-	-	-	-	-	-	-	32,71	5,02	0,0
E014	Elbe+PCL-10 mg/kg	20,82	-	-	-	-	-	-	-	-	-	32,71	5,02	0,0
E015	(63-250 µm)	20,21	-	-	-	-	-	-	-	-	-	32,71	5,02	0,0
E016	Elbe+PCL-1 mg/kg	20,25	-	-	-	-	-	-	-	-	-	31,01	0,54	0,0
E017	(63-250 µm)	21,29	-	-	-	-	-	-	-	-	-	31,01	0,54	0,0
E018		21,21	-	-	-	-	-	-	-	-	-	31,01	0,54	0,0
E019		20,06	57,12	32,6	65,37	17,93	60,3	0,081	30,7	-0,356	0,00	25,22	50,02	0,0
E020	Elbe+PCL-100 ma/ka	23,38	57,12	32,6	65,37	22,47	61,4	0,109	30,2	-0,287	0,00	25,22	50,02	0,0
E021	(<63 µm)	20,68	57,12	32,6	65,37	17,93	61,4	7,900	25,3	-0,284	0,00	25,22	50,02	0,0
E022	Elbe+PCL-10 mg/kg	21,77	57,12	32,6	65,37	17,93	62,7	0,378	28,0	-0,420	0,00	18,01	4,98	0,0

			St	art	En	ide								
Lfd. Code	Probenbezeichnung	т ₀ [mg]	dh _m [℃]	dh _c [°C]	dh _m [℃]	dh _c [°C]	Т _т [°С]	dh _m [mJ]	<i>Т_с</i> [°С]	dh _c [mJ]	m _{PCL,Ka} [mg]	m _{PFR} [9]	m _{PCL,Sed.} [mg]	WFR [%]
E023	(<63 µm)	22,04	57,56	30,8	64,67	21,32	61,1	0,092	27,4	-0,165	0,00	18,01	4,98	0,0
E024		22,85	0,00	32,60	0,00	17,93	0,0	0,000	28,1	-0,493	-	18,01	4,98	0,0
E025		22,85	0,00	32,60	0,00	17,93	0,0	0,000	28,6	-0,303	-	12,55	0,84	0,0
E026	Elbe+PCL-1 mg/kg	22,75	57,12	32,60	63,01	17,93	59,4	0,101	27,4	-0,326	0,00	12,55	0,84	0,0
E027	(<63 µm)	23,23	57,12	32,60	66,59	17,93	64,5	0,203	28,2	-0,459	0,00	12,55	0,84	0,0
E028	Sand+PCL-100 mg/kg	16,33	45,10	32,70	59,80	7,90	54,8	10,590	28,2	-12,570	0,18	1,74	50,02	37,8
E029	(>250 µm)	17,22	45,10	33,26	59,80	12,02	52,8	1,901	29,1	-3,106	0,04	1,74	50,02	7,9
E030		16,10	45,10	32,70	59,80	7,90	54,6	11,630	28,3	-14,440	0,21	1,74	50,02	44,3
E031		17,72	-	-	-	-	-	-	-	-	-	2,27	6,83	0,0
E032	Sand+PCL-10 mg/kg	15,77	45,10	32,70	59,80	7,90	56,0	1,159	31,3	-0,936	0,01	2,27	6,83	0,0
E033	(>250 µm)	15,97	45,10	32,70	59,80	7,90	55,9	4,679	27,8	-6,544	0,09	2,27	6,83	186,5
E034	Sand+PCL-1 mg/kg	20,00	-	-	-	-	-	-	-	-	-	2,41	0,43	0,0
E035	(>250 µm)	18,22	-	-	-	-	-	-	-	-	-	2,41	0,43	0,0
E036		19,45	-	-	-	-	-	-	-	-	-	2,41	0,43	0,0
E037		19,19	42,70	33,90	63,00	12,60	55,9	32,870	27,7	-39,270	0,57	2,09	49,98	124,1
E038	Sand+PCL-100 mg/kg	15,38	42,70	33,90	63,00	12,60	55,6	18,680	28,0	-21,850	0,31	2,09	49,98	85,5
E039	(63-250 µm)	14,86	42,70	33,90	63,00	12,60	55,5	22,570	28,3	-26,410	0,38	2,09	49,98	107,3
E040	Sand+PCL-10 mg/kg	20,51	48,10	33,30	58,70	13,90	53,6	1,054	28,8	-2,824	0,03	2,17	5,06	73,1
E041	(63-250 µm)	20,26	48,10	33,30	58,70	13,90	54,8	1,023	29,7	-1,520	0,02	2,17	5,06	34,2
E042		15,33	48,10	33,30	58,70	13,90	53,9	1,289	29,3	-2,369	0,03	2,17	5,06	79,7
E043		17,43	48,10	34,30	58,70	15,00	52,6	0,321	29,2	-0,719	0,00	2,21	0,94	0,0
E044	Sand+PCL-1 mg/kg	16,27	48,10	34,30	58,70	15,00	52,9	0,193	24,9	-1,038	0,01	2,21	0,94	129,1
E045	(63-250 µm)	22,83	-	-	-	-	-	-	-	-	-	2,21	0,94	0,0

			St	art	En	de								
Lfd. Code	Probenbezeichnung	<i>m</i> ₀ [mg]	dh _m [°C]	dh _c [°C]	dh _m [℃]	dh _c [°C]	Τ _m [°C]	dh _m [mJ]	<i>Т_с</i> [°С]	dh _c [mJ]	m _{PCL,Ka} [mg]	m _{PFR} [g]	m _{PCL,Sed.} [mg]	WFR [%]
E046	Sand+PCL-100 mg/kg	21,51	39,00	36,30	60,00	23,30	54,7	24,310	30,3	-24,200	0,35	1,75	49,87	56,9
E047	(<63 µm)	21,36	39,00	36,30	65,00	23,30	53,0	20,600	30,4	-23,790	0,34	1,75	49,87	56,2
E048		21,37	39,00	36,30	60,00	23,30	54,6	22,820	30,3	-23,530	0,34	1,75	49,87	55,6
E049		19,46	48,00	36,30	58,50	23,30	55,0	1,548	31,3	-1,774	0,02	2,01	5,02	41,0
E050	Sand+PCL-10 mg/kg	22,86	48,00	36,30	58,50	23,30	54,5	1,551	30,3	-2,090	0,02	2,01	5,02	42,9
E051	(<63 µm)	19,78	48,00	36,30	58,50	23,30	53,1	0,849	30,4	-1,883	0,02	2,01	5,02	43,1
E052	Sand+PCL-1 mg/kg	21,28	-	-	-	-	-	-	-	-	-	2,27	0,57	0,0
E053	(<63 µm)	22,53	-	-	-	-	-	-	-	-	-	2,27	0,57	0,0
E054		24,25	-	-	-	-	-	-	-	-	-	2,27	0,57	0,0
E055		0,04	38,40	34,40	56,52	14,80	52,4	5,937	27,3	-4,598	0,06	-	-	-
E056	Kali 0,05	0,05	38,40	34,40	56,66	16,60	52,0	4,609	28,1	-4,772	0,06	-	-	-
E057		0,30	38,40	35,23	57,80	16,00	51,6	15,950	28,1	-19,090	0,27	-	-	-
E058	Kali 0,25	0,24	38,40	35,83	57,55	14,50	53,4	19,810	26,8	-19,250	0,28	-	-	-
E059		0,55	38,40	35,82	58,01	15,39	53,5	34,460	27,0	-33,400	0,49	-	-	-
E060	Kali 0,50	0,53	38,40	36,12	58,02	15,28	53,6	38,700	26,8	-35,990	0,52	-	-	-
E061		0,76	38,40	36,00	57,59	16,00	53,3	56,210	27,4	-51,980	0,76	-	-	-
E062	Kali 0,75	0,79	38,40	35,18	57,80	16,23	53,3	59,630	27,5	-55,090	0,81	-	-	-
E063	Kali 1,00	1,00	38,40	41,60	57,80	15,33	53,4	76,390	27,0	-72,940	1,07	-	-	-
E064		1,00	38,40	35,95	57,38	15,45	52,9	70,440	27,8	-64,440	0,94	-	-	-

Legende: dh_c – Kristallisationsenthalpie; dh_m – Schmelzenthalpie; m₀ – Masse der Einwaage; m₀ – Masse Einwaage; m_{PCL,Kali} – Masse PCL für Kalibrierung; m_{PFR} – Masse polymerreiche Fraktion; m_{PCL,Sed} – Masse PCL im Sediment; T_c - Kristallisationstemperatur; T_m - Schmelztemperatur; WFR - Wiederfindungsrate

Kalibrierung PP

Tabelle A 5: Daten der Validierung von PP

Messung / Codierung	Masse [mg] (Einwaage)	Masse [mg] (aus Kalibriergerade)
1 / K071	0,19	0,19
2 / K072	0,07	0,07
3 / K073	0,43	0,42
4 / K074	0,66	0,67
5 / K075	0,8	0,80

Abbildung 38: Residuen aus der Validierung der PP Kalibrierung

Messung von PP	Mittlerer Schmelzpeak [°C]	σ [°C]	Mittlerer Kristallisationspeak [°C]	σ [°C]
Kalibrierung	157,3	1,1	114,6	1,3
Validierung	156,6	0,7	113,9	0,4

Tabelle A 6: Qualitative Auswertung von PP

Kalibrierung PS

Messung / Codierung	Masse [mg] (Einwaage)	Masse [mg] (aus Kalibriergerade)
1 / K081	0,05	-0,10
2 / K082	0,11	0,04
3 / K083	0,57	0,45
4 / K084	0,89	0,53
5 / K085	1,08	0,74

Tabelle A 7: Daten der Validierung von PS

Abbildung 39: Residuen aus der Validierung der PS Kalibrierung

Tabelle A	8: Qualitative	Auswertung	von PS
-----------	----------------	------------	--------

Messung von PS	Mittlerer Schmelzpeak [°C]	σ [°C]	Mittlerer Kristallisationspeak [°C]	σ [°C]
Kalibrierung	103,8	1	93,1	1,1
Validierung	102,7	1,2	93,0	0,7

Kalibrierung PVC

Tabelle	A 9: Daten	der	Validierung	von PVC
Tasono	A V. Duton	401	Tanalorang	

Messung / Codierung	Masse [mg] Einwaage)	Masse [mg] (aus Kalibriergerade)
1 / K086	0,45	0,43
2 / K087	0,18	0,12
3 / K088	0,1	0,09
4 / K089	0,92	0,92
5 / K090	0,56	0,55

Abbildung 40: Residuen aus der Validierung der PVC Kalibrierung

Tabelle A	10:	Qualitative	Auswertuna	von	PVC
		Quantativo	Adonoitung	1011	

Messung	Mittlerer Schmelzpeak [°C]	σ [°C]	Mittlerer Kristallisationspeak [°C]	σ [°C]
Kalibrierung	77,9	3,3	81	3,2
Validierung	78,7	2	80,2	0,5

Kalibrierung PET

Messung / Codierung	Masse [mg] (Einwaage)	Masse [mg] (aus Kalibriergerade)
1 / K076	0,29	0,36
2 / K077	0,09	0,14
3 / K078	0,44	0,51
4 / K079	0,84	0,89
5 / K080	0,64	0,70

Tabelle A 11: Daten der Validierung von PET

Abbildung 41: Residuen aus der Validierung der PET Kalibrierung

|--|

Messung	Mittlerer Schmelzpeak [°C]	σ [°C]	Mittlerer Kristallisationspeak [°C]	σ [°C]
Kalibrierung	236	1,5	165,3	7,6
Validierung	237,9	1,4	166,2	5,2

Anhang 1.3 Klassifizierung der Sedimente 2020

Proben-	Boden-							Hellig-
bezeichung	gruppe	HKF	Eckigkeit	Form	OFS	Farbton	Sättigung	keit
MiPl 1, < 5 mm	Feinkörnig	Schluff	-	-	-	braun	rötlich	hell
MiPl 1, > 5 mm	Grobkörnig	Kies	kantig	kubisch	glatt	grau	rötlich	dunkel
MiPl 2, < 5 mm	Grobkörnig	Mittelkies	angerundet	kubisch	glatt	grau	gelblich	hell
MiPl 2, > 5 mm	Grobkörnig	Grobkies	gerundet	kubisch	glatt	gelb	gräulich	hell
MiPl 3, < 5 mm	Grobkörnig	Feinkies	gut gerundet	kubisch	glatt	rosa	gräulich	hell
MiPl 3, > 5 mm	Grobkörnig	Grobkies	gut gerundet	kubisch	glatt	rosa	gräulich	hell
MiPl 4, < 5 mm	Grobkörnig	Mittelsand	-	-	-	grau	gelblich	hell
MiPl 4, > 5 mm	Grobkörnig	Grobkies	gerundet	kubisch	glatt	grau	blassrosa	hell
MiPl 5, < 5 mm	Feinkörnig	Schluff	-	-	-	braun	rötlich	dunkel
MiPl 5, > 5 mm	Grobkörnig	Mittelkies	kantig	länglich	rau	braun	rötlich	dunkel
MiPl 6, < 5 mm	Grobkörnig	Feinkies	kantengerundet	kubisch	glatt	braun	blassorange	hell
MiPl 6, > 5 mm	Grobkörnig	Feinkies	angerundet	kubisch	glatt	braun	blassorange	hell
MiPl 7, < 5 mm	Grobkörnig	Feinkies	angerundet	kubisch	glatt	gelb	grünlich	hell
MiPl 7, > 5 mm	Grobkörnig	Mittelkies	angerundet	kubisch	glatt	creme	gräulich	hell
MiPl 8, < 5 mm	Grobkörnig	Feinkies	kantengerundet	länglich	glatt	grau	gräulich	dunkel
MiPl 8, > 5 mm	Grobkörnig	Grobkies	kantig	länglich	rau	grau	gräulich	dunkel
MiPl 9, < 5 mm	Grobkörnig	Feinsand	-	-	-	schwarz	gräulich	hell
MiPl 9, > 5 mm	Grobkörnig	Mittelkies	gut gerundet	kubisch	glatt	grau	rötlich	dunkel
MiPl 10, < 5 mm	Feinkörnig	Schluff	-	-	-	grau	gräulich	dunkel
MiPl 10, > 5 mm	Grobkörnig	Mittelkies	gut gerundet	kubisch	glatt	grau	bläulich	dunkel
MiPl 11, < 5 mm	Feinkörnig	Schluff	-	-	-	braun	gräulich	hell
MiPl 11, > 5 mm	Grobkörnig	Mittelkies	gerundet	kubisch	glatt	creme	blassrosa	hell
MiPl 12, < 5 mm	Grobkörnig	Feinkies	kantengerundet	kubisch	glatt	grau	bräunlich	hell
MiPl 12, > 5 mm	Grobkörnig	Grobkies	kantengerundet	kubisch	glatt	grau	bräunlich	hell
MiPl 13, < 5 mm	Grobkörnig	Feinkies	gerundet	länglich	glatt	grau	gräulich	hell
MiPl 13, > 5 mm	Grobkörnig	Grobkies	gerundet	kubisch	glatt	grau	gräulich	hell
MiPl 14, < 5 mm	Grobkörnig	Grobsand	-	-	-	braun	gräulich	hell
MiPl 14, > 5 mm	Grobkörnig	Mittelkies	angerundet	flach	glatt	grau	bräunlich	dunkel
MiPl 15, < 5 mm	Feinkörnig	Schluff	-	-	-	grau	bräunlich	hell
MiPl 15, > 5 mm	Grobkörnig	Grobkies	gerundet	kubisch	glatt	blau	gräulich	hell
MiPl 16, < 5 mm	Grobkörnig	Feinsand		-	-	grau	rötlich	hell
MiPl 16, > 5 mm	Grobkörnig	Mittelkies	kantig	flach	rau	creme	gräulich	hell
MiPl 17, < 5 mm	Grobkörnig	Feinkies	kantig	kubisch	rau	orange	bräunlich	hell
MiPl 17, > 5 mm	Grobkörnig	Mittelkies	kantig	kubisch	rau	rosa	bräunlich	hell
MiPl 18, < 5 mm	Grobkörnig	Grobsand	kantengerundet	kubisch	glatt	gelb	bräunlich	hell
MiPl 18, > 5 mm	Grobkörnig	Mittelkies	angerundet	kubisch	glatt	gelb	bräunlich	hell
MiPl 19, < 5 mm	Grobkörnig	Mittelsand	-	-	-	braun	gleblich	hell
MiPl 19, > 5 mm	Grobkörnig	Feinkies	kantengerundet	flach	glatt	rot	rötlich	hell
MiPl 20, < 5 mm	Grobkörnig	Mittelsand		-	-	braun	gräulich	hell
MiPl 20, > 5 mm	Grobkörnig	Mittelkies	gut gerundet	kubisch	glatt	grau	bräunlich	hell

Tabelle A 13: Visuelle Klassifizierung der Flusssedimente 2020

Legende: HKF – Hauptkornfraktion

Anhang 1.4 Separation der Sedimente 2020

Proben- bez.	ТМ [g]	m _{RF} [g]	m _{MF} [g]	m _{PRF} [g]	AG [%]	Walze [%]	Vibration [%]	T [°C]	rH [%]
MiPI 1	1033,4	946,6	5,8	68,6000	93,36	44	11	22,2	62
MiPI 2	397,6	381,4	1,4	11,7989	97,03	61	11		
MiPI 3	668,7	614,9	3,1	4,4605	99,33	52	11		
MiPI 4	1016,0	973,1	12,3	25,5597	97,48	44	11	23,1	55
MiPI 5	1000,3	896,9	9,4	81,1715	91,89	55	11		
MiPI 6	1379,6	1321,7	2,1	8,0893	99,41	46	11		
MiPl 7	1055,3	1009,1	17,6	26,6165	97,48	51	11		
MiPl 8	866,9	790,2	7,9	58,1059	93,30	44	11	21,4	58
MiPl 9	1097,6	404,5	50,7	633,8316	42,25	44	11	22,3	61
MiPI 10	879,0	631,8	218,4	11,6644	98,67	44	11	21,8	57
MiPI 11	1026,4	742,5	47,8	218,9325	78,67	47	12		
MiPI 12	1430,2	1199,6	61,9	240,0239	83,22	44	11	22,2	50
MiPI 13	1070,6	1029,3	5,0	30,8597	97,12	44	11	22,0	48
MiPI 14	1236,6	889,1	70,7	271,3390	78,06	44	11	21,7	46
MiPI 15	919,0	224,0	71,0	285,0719	32,10	61	13		
MiPI 16	1171,1	670,8	51,8	437,7830	62,62	44	11	21,7	44
MiPI 17	1316,6	1299,1	4,3	10,7050	99,19	44	11	22,1	50
MiPI 18	1140,8	1092,2	10,3	34,1166	97,01	44	13	20,7	52
MiPI 19	1600,9	1467,3	34,8	94,1308	94,12	44	11	20,8	50
MiPI 20	1409,8	1034,9	71,6	302,1575	78,57	44	9	21,4	47

Tabelle A 14: Übersicht zur Separation der 20 Umweltproben

Legende: AG – Abscheidegrad; m_{MF} – Masse Mischfraktion; m_{PRF} – Masse polymerreiche Fraktion; m_{RF} – Masse Restfraktion; rH – relative Luftfeuchtigkeit; TM - Trockenmasse
Anhang 1.5 Mehrfachseparation

Proben- bezeichung	m₀ [g]	m _{PRF} [g]	m _{RF} [g]	Abscheide- grad [%]	Verlust [%]	Dauer [min]	Temp. [°C]	rH [%]
MiPl 8, D1	866,9	58,1	798,1	93,3	1,2	117	21,4	58
MiPl 8, D2	58,1	53,6	1,9	7,7	4,4	24	20,1	27
MiPl 8, D3	53,6	49,8	1,3	7,2	4,7	12	21,1	26
MiPl 8, D4	49,8	48,6	0,9	2,4	0,6	12	20,9	29
MiPl 8, D5	48,6	46,3	1,6	4,8	1,5	10	21,1	29
MiPl 9, D1	1097,6	633,8	455,0	42,3	0,8	43	21,7	46
MiPl 9, D2	633,8	618,1	9,2	2,5	1,0	12	21,4	29
MiPl 9, D3	618,1	609,6	5,8	1,4	0,4	11	21,3	29
MiPl 9, D4	609,6	601,9	5,0	1,3	0,5	9	21,4	29
MiPl 9, D5	601,9	591,4	7,7	1,7	0,5	9	21,6	30
MiPI 14, D1	1236,6	271,3	959,8	78,1	0,4	201	22,3	61
MiPl 14, D2	271,3	261,2	7,7	3,7	0,9	26	21,8	27
MiPI 14, D3	261,2	249,8	9,5	4,4	0,8	20	21,6	29
MiPl 14, D4	249,8	226,0	21,3	9,5	1,0	16	21,8	27
MiPI 14, D5	226,0	207,9	15,0	8,0	1,4	14	21,4	27

 Tabelle A 15: Messdaten Mehrfachseparation

Legende: D – Durchlauf, m₀ – Masse Ausgangsprobe; m_{PRF} – Masse polymerreiche Fraktion; m_{RF} – Masse Restfraktion; rH – relative Luftfeuchtigkeit

Anhang 1.6 Verbesserte Separation

Proben- bezeichnung	m₀ [g]	m _{PRF} [g]	m _{RF} [g]	Abscheide- grad [%]	Verlust [%]	Dauer [min]	Temp. [°C]	rH [%]
MiPl 9	619,2	416,3	199,6	32,8	0,5	112	21,9	28
MiPI 10	218,4	193,9	15,9	11,2	3,9	110	23,6	24
MiPI 14	261,4	131,0	123,3	49,9	2,7	55	19,8	32
MiPl 16	437,9	384,9	44,1	12,1	2,0	68	24,1	24
MiPI 21	1000,2	167,2	822,2	83,3	1,1	100	22,0	49
MiPI 22	1000,3	2,8	989,8	99,7	0,8	122	18,3	27
MiPI 23	1000,4	3,1	992,4	99,7	0,5	156	24,5	35
MiPI 24	1000,4	222,9	772,4	77,7	0,5	93	23,9	34
MiPI 25	1000,2	9,6	978,8	99,0	1,2	98	20,4	39
MiPI 27	1000,3	256,2	738,5	74,4	0,6	53	22,3	36
MiPI 28	1000,3	108,2	890,2	89,2	0,2	75	20,3	35
MiPI 29	1000,2	44,1	948,4	95,6	0,8	87	23,8	34
MiPI 30	1000,3	64,5	932,2	93,6	0,4	71	23,8	25

Tabelle A 16: Messdaten verbesserte Separation

Legende: m₀ – Masse Ausgangsprobe; m_{PRF} – Masse polymerreiche Fraktion; m_{RF} – Masse Restfraktion; rH – relative Luftfeuchtigkeit

Tabelle A 17: PCL	Messdaten	verbesserte	Separation
-------------------	-----------	-------------	------------

Proben- bezeichnung	m _{PCL_0} [g]	m₀ [g]	m _{PRF} [g]	w _{PCL_Soll} [mg/kg]	BG _{AF} [mg/kg]	WFR [%]
MiPl 9	0,12	619,2	416,3	297,6	2145,08	0 ± 0
MiPI 10	0,04	218,4	193,9	225,6	2320,69	0 ± 0
MiPI 14	0,05	261,4	131,0	405,4	775,55	0 ± 0
MiPl 16	0,09	437,9	384,9	227,8	2112,78	0 ± 0
MiPI 21	0,20	1000,2	167,2	1197,7	1067,95	44 ± 21
MiPl 22	0,20	1000,3	2,8	72807,2	16,04	62 ± 17
MiPI 23	0,20	1000,4	3,1	64757,3	20,06	69 ± 20
MiPI 24	0,20	1000,4	222,9	898,2	1349,22	0 ± 0
MiPl 25	0,20	1000,2	9,6	20880,4	51,11	56 ± 6
MiPl 27	0,20	1000,3	256,2	781,0	1241,65	0 ± 0
MiPl 28	0,20	1000,3	108,2	1848,7	498,40	105 ± 49
MiPl 29	0,20	1000,2	44,1	4536,1	149,56	61 ± 25
MiPl 30	0,20	1000,3	64,5	3106,0	410,20	44 ± 34

Legende: BG_{AF} – Bestimmungsgrenze nach Anreicherung; m₀ – Masse Ausgangsprobe; m_{PCL_0} – Masse Einwaage PCL; m_{PRF} – Masse polymerreiche Fraktion; WFR – Wiederfindungsrate

Anhang 1.7 Messdaten Dichteseparation

Proben- bezeichnung	m₀ [mg]	m _{PRF} [mg]	m _{RF} [mg]	AG _{DS} [%]	AG _{Gesamt} [%]
MiPl 2, S1	11798,9	16,7	11782,2	99,86	99,998
MiPI 2, S2	11798,9	6,0	11792,9	99,95	99,998
MiPI 3	4460,5	16,0	4444,5	99,64	99,998
MiPl 7, S1	26616,5	27,2	26589,3	99,90	99,997
MiPl 7, S2	26616,5	4,5	26610,0	99,98	99,997
MiPI 13	30859,7	372,2	30487,5	98,79	99,965
MiPI 17	10705,0	23,4	10681,6	99,78	99,998

Tabelle A 18: Messdaten Dichteseparation mit variierenden Parametern

Legende: m_{PRF} – Masse polymerreiche Fraktion; m_{RF} – Masse Restfraktion; S – Sieb

Tabelle A 19: PCL-Messdaten Dichteseparation mit variierenden Parametern

Proben- bezeichnung	Zugabe PCL	m _{PCL_0} [mg]	m₀ [mg]	m _{PRF} [mg]	w _{PCL_Soll} [mg/kg]	BG _{AF} [mg/kg]	WFR [%]
MiPI 2, S1	nach ES	2,4	11798,9	16,7	146107,8	43,3	47
MiPI 2, S2	nach ES	2,4	11798,9	6,0	393660,2	43,3	41
MiPl 3	nach ES	1,0	4460,5	16,0	60625,0	99,3	37 ± 5
MiPl 7, S1	nach ES	5,3	26616,5	27,2	195588,2	66,8	58 ± 26
MiPl 7, S2	nach ES	5,3	26616,5	4,5	1182222,2	66,8	3
MiPI 13	nach ES	6,2	30859,7	372,2	16765,2	247,9	127 ± 49
MiPI 17	nach ES	2,2	10705,0	23,4	95726,5	51,2	38 ± 7

Legende: BG_{AF} – Bestimmungsgrenze nach Anreicherung; ES – Elektroseparation; m_{PCL_0} – Masse Einwaage PCL; m_{PRF} – Masse polymerreiche Fraktion; WFR – Wiederfindungsrate; w_{PCL_Soll} – erwarteter Massenanteil PCL in angereicherter Probe

Tabelle A 20: Messdaten Dichteseparation

Proben- bezeichnung	m₀ [mg]	m _{PRF} [mg]	m _{RF} [mg]	AG _{⊳s} [%]	AG _{Gesamt} [%]
MiPl 4	25559,7	225,7	25334,0	99,12	99,98
MiPl 8	46250,0	1949,1	44300,9	95,79	99,78
MiPl 15	285071,9	5822,1	279249,8	97,96	99,37
MiPl 18	34116,6	186,0	33930,6	99,45	99,98
MiPl 22	1000050	122,3	999927,7	95,55	99,99
MiPl 24	1000230	596,0	999634,0	99,73	99,94
MiPI 25	1000020	145,0	999875,0	98,49	99,99
MiPI 27	1000070	5136,5	994933,5	98,90	99,49

Legende: AG_{DS} – Abscheidegrad nach Dichteseparation; AG_{Gesamt} – Gesamtabscheidegrad; m₀ – Masse Einwaage; m_{PRF} – Masse polymerreiche Fraktion; m_{RF} – Restfraktion

Tabelle A 21: PCL-Messdaten Dichteseparation

Proben- bezeichnung	Zugabe PCL	m _{PCL_0} [mg]	m₀ [mg]	m _{PRF} [mg]	W _{PCL_Soll} [mg/kg]	BG _{AF} [mg/kg]	WFR [%]
MiPI 4	nach ES	5,4	25559,7	225,7	24103,9	234,0	0 ± 0
MiPl 8	nach ES	10,4	46250,0	1949,1	5335,9	954,9	9±6
MiPI 15	nach ES	57,3	285071,9	5822,1	9836,7	668,9	26 ± 9
MiPI 18	nach ES	6,8	34116,6	186,0	36555,2	125,1	0 ± 0
MiPI 22	vor ES	200,3	1000050	122,3	1637642,1	1,6	53 ± 2
MiPI 24	vor ES	200,2	1000230	596,0	335889,1	6,7	70 ± 16
MiPI 25	vor ES	200,4	1000020	145,0	1381783,1	1,6	62 ± 5
MiPI 27	vor ES	200,1	1000070	5136,5	38956,7	43	192 ± 42

Legende: BG_{AF} – Bestimmungsgrenze nach Anreicherung; ES – Elektroseparation; m_{PCL_0} – Einwaage PCL; m_{PRF} – Masse polymerreiche Fraktion; WFR – Wiederfindungsrate; w_{PCL_Soll} – erwarteter Massenanteil PCL in angereicherter Probe

Anhang 2 Probenahmeprotokoll

Anhang 2.1 Probenahmestandorte 2020

 Tabelle A 22: Übersicht der Probenahmestandorte 2020

PN-Route und Datum	ID Karte	Gewässer	Bezeichnung der PN-Stelle	Messstellen- kennzahl	Koordinaten der PN-Stelle	Probenbezeichnung
4	1	Lausitzer Neiße	Lausitzer Neiße-3	OBF16800	50.870437, 14.823444	MiPl 7
29.01.20	2	Lausitzer Neiße	Lausitzer Neiße-10	OBF17700	51.581990, 14.729585	MiPI 6
20.01.20	3	Spree	Spree-4	OBF21400	51.523897, 14.399140	MiPI 5A, 5B
2	4	Schwarze Elster	Schwarze Elster-4	OBF26791	51.491284, 14.100740	MiPI 19
19.03.20	5	Große Röder	Große Röder-5	OBF30410	51.434271, 13.446510	MiPI 20
2	15	Weiße Elster	Weiße Elster-1	OBF49500	50.269368, 12.248502	MiPI 12
3 13 03 20	16	Weiße Elster	Weiße Elster-5	OBF50300	50.618580, 12.168855	MiPI 13
10.00.20	18	Göltzsch	Göltzsch-3	OBF52000	50.633732, 12.217075	MiPI 14
	7	Münzbach	Münzbach-2	OBF32900	50.957793, 13.329634	MiPI 18
4	9	Flöha	Flöha-2	OBF37300	50.861163, 13.070182	MiPI 15
17.03.20	11	Johgst. Schwarzwasser	Schwarzwasser-2	OBF41202	50.587781, 12.711987	MiPI 16
	12	Lungwitzbach	Lungwitzbach-2	OBF43000	50.833022, 12.551742	MiPI 17
	6	Freiberger Mulde	Freiberger Mulde-5	OBF32300	51.158114, 12.800183	MiPI 2
5	8	Zschopau	Zschopau-4	OBF35350	51.118005, 13.037913	MiPI 1
19.12.19	10	Zwickauer Mulde	Mulde-6	OBF40500	51.155511, 12.790897	MiPI 3
	13	Chemnitz	Chemnitz-2	OBF45000	50.974066, 12.792494	MiPI 4
	14	Vereinigte Mulde	Mulde-7	OBF47600	51.590612, 12.580071	MiPI 11
	17	Weiße Elster	Weiße Elster-11	OBF50800	51.388631, 12.214248	MiPI 10
6 10.03.20	19	Pleiße	Pleiße-4b	OBF53700	51.272709, 12.380936	Keine PN
10.00.20	19	Kleine Pleiße	Kleine Pleiße	OBF53701	51.279632, 12.388571	MiPl 8
	20	Parthe	Parthe-4	OBF55400	51.356690, 12.349134	MiPl 9

Legende: PN – Probenahme; ID Karte – Zuordnung Abbildung 13

Anhang 2.2 Probenahmestandorte 2021

PN-Route und Datum	ID Karte	Gewässer	Bezeichnung der PN-Stelle	Messstellen- kennzahl	Koordinaten der PN-Stelle	Proben- bezeichnung
7	21	Wesenitz	Wesenitz-1	OBF06515	51.113916, 14.144069	MiPI 21
/	7	Münzbach	Münzbach-2	OBF32900	50.957361, 13.329250	MiPI 22
10.00.21	22	Höckenbach	Höckenbach	OBF10410	50.940361, 13.586389	MiPl 23
	9	Flöha	Flöha-2	OBF37300	50.861056, 13.069556	MiPl 24
8	13	Chemnitz	Chemnitz-2	OBF45000	50.973694, 12.792833	MiPI 25
25.03.21	20	Parthe	Parthe-4	OBF55400	51.356639, 12.349389	MiPI 26
	19	Kleine Pleiße	Kleine Pleiße	OBF53701	51.279384, 12.388871	MiPI 27
	26	Göltzsch	Göltzsch-2	OBF51701	50.574400, 12.374267	MiPI 28
9	24	Sehma	Sehma	OBF35800	50.603733, 12.993333	MiPI 29
31.03.21	23	Zschopau	Zschopau-1	OBF34409	50.610483, 12.962950	MiPI 30
	25	Schwarzwasser	Schwarzwasser-2	OBF41202	50.587781, 12.711987	Keine PN

Tabelle A 23: Übersicht der Probenahmestandorte 2021

Legende: PN – Probenahme; ID Karte – Zuordnung Abbildung 13

Anhang 2.3 Dokumentation der Probenahmen 2020

29.01.2020

Anhang 2.3.1 Route 1

Lausitzer Neiße-3 – OBF16800

Datum: Anzahl Probenahmestellen: Lage Probenahmestellen: Sohlbeschaffenheit:

Wassertiefe: Probenbezeichnung: 6 über 10 m Länge, 2x mittig, 4x linksseitig; 0,5 – 2 m vom Ufer entfernt an der Seite des Gleithanfs linksseitig: Sand, Kies und Grobkies rechtsseitig große Steine Rand: 10 – 15 cm, Mitte: 30 cm MiPl 7

Abbildung 42: Probenahmestellen an der Lausitzer Neiße-3 mit Blick flussaufwärts (A), flussabwärts (B), auf die Sohle (C), sowie auf eine genommene Probe (D)

Lausitzer Neiße-10 – OBF17700

Datum:	29.01.2020
Anzahl Probenahmestellen:	6
Lage Probenahmestellen:	an der Stahltreppe über die komplette Breite, 4x linksseitig,
	2x rechtsseitig
Sohlbeschaffenheit:	Sand und Kies mit leichtem Algenüberzug
Wassertiefe:	50 – 70 cm
Probenbezeichnung:	MiPl 6

Abbildung 43: Probenahmestellen an der Lausitzer Neiße-10 mit Blick flussaufwärts (A), flussabwärts (B), auf die Sohle (C), sowie auf eine genommene Probe (D)

Spree-4 – OBF21400

Datum:	29.01.2020
Anzahl Probenahmestellen:	6
Lage Probenahmestellen:	linksseitig, stromaufwärts von der Brücke, über 6 m Länge,
	Uferabstand 0,5 – 1 m
Sohlbeschaffenheit:	Sand mit Eisenhydroxidschlammschicht
Wassertiefe:	Tiefe bis Schlamm: 15 – 25 cm, Tiefe bis Sohle: 40 – 45 cm
Probenbezeichnung:	MiPI 5A und MiPI 5B (verteilt auf 2 Eimer)

Abbildung 44: Probenahmestellen an der Spree-4 mit Blick flussaufwärts (A), flussabwärts (B), auf Eisenhydroxidablagerungen am Ufer (C) sowie auf eine genommene Probe (D)

Anhang 2.3.2 Route 2

Schwarze Elster-4 – OBF26791

Datum:	19.03.2020
Anzahl Probenahmestellen:	6
	über eine Länge von 20 Metern
Sohlbeschaffenheit:	Fein- /Mittelsand in der Mitte der Sohle sehr kompakte Lagerung
Wassertiefe:	Rand 20 cm, maximal 50 cm
Probenbezeichnung:	MiPI 19

Abbildung 45: Probenahmestellen an der Schwarzen Elster-4 mit Blick flussaufwärts (A), flussabwärts (B), auf rechtsseitig treibenden Plastikmüll (C), sowie auf eine entnommene Probe (D)

Große Röder-5 – OBF30410

Datum:	19.03.2020
Anzahl Probenahmestellen:	6
Lage Probenahmestellen:	Mittig rechts bis links, Uferabstand 1 m, da in Ufernähe viel Organik
Sohlbeschaffenheit:	Fein- und Mittelsand
Wassertiefe:	30 - 40 cm
Probenbezeichnung:	MiPI 20

Abbildung 46: Probenahmestellen an der Großen Röder-5 mit Blick flussaufwärts (A), flussabwärts (B), auf rechtsseitig treibenden Plastikmüll (C), sowie auf eine entnommene Probe (D)

Anhang 2.3.3 Route 3

Weiße Elster-1 – OBF49500

Datum:	13.03.2020
Anzahl Probenahmestellen:	7
Lage Probenahmestellen:	Sedimentationsstellen links- und rechts am Gleithang, über Länge von 10 m
Sohlbeschaffenheit:	Fein-/ Mittelkies, relativ hohe Fließgeschwindigkeit und turbulente Strömung
Wassertiefe:	20 - 30 cm
Probenbezeichnung:	MiPI 12

Abbildung 47: Probenahmestellen an der Weißen Elster-1 mit Blick flussaufwärts (A), flussabwärts (B), auf eine Sedimentationsstelle am Gleithang (C), sowie auf eine entnommene Probe (D)

Weiße Elster-5 – OBF50300

Datum:	13.03.2020
Anzahl Probenahmestellen:	6
Lage Probenahmestellen:	rechtsseitig, Flachwasserstellen vor Wehrschwelle
Sohlbeschaffenheit:	Mittelsand bis Grobkies
Wassertiefe:	ca. 15 cm
Probenbezeichnung:	MiPI 13

Abbildung 48: Probenahmestellen an der Weißen Elster-5 mit Blick flussaufwärts (A), flussabwärts (B) und auf die Sohle (C)

Göltzsch-3 – OBF52000

Datum:	13.03.2020
Anzahl Probenahmestellen:	6
Lage Probenahmestellen:	linksseitig, Sedimentationsstellen am Gleithang/ hinter Verkrautung
Sohlbeschaffenheit:	Mittelsand/Feinkies, hohe Fließgeschwindigkeit und turbulente
	Strömung
Wassertiefe:	30 - 40 cm
Probenbezeichnung:	MiPI 14

Abbildung 49: Probenahmestellen an der Göltzsch-3 mit Blick flussaufwärts (A), flussabwärts (B) und auf Sedimentationsstelle hinter Verkrautung (C)

Anhang 2.3.4 Route 4

Münzbach-2 – OBF32900

Datum:	17.03.2020
Anzahl Probenahmestellen:	8
Lage Probenahmestellen:	Am Ufer und über gesamte Breite, Sedimentationsstellen hinter Steinen und am Ufer
Sohlbeschaffenheit:	Fein-/ Grobkies mit Steinen, hohe Fließgeschwindigkeit und turbulente Strömung
Wassertiefe:	ca. 15 cm
Probenbezeichnung:	MiPI 18

Abbildung 50: Probenahmestellen am Münzbach-2 mit Blick flussaufwärts (A), flussabwärts (B) und auf Sedimentationsstelle am linken Ufer (C)

Flöha-2 – OBF37300

Datum:	17.03.2020
Anzahl Probenahmestellen:	6
Lage Probenahmestellen:	linksseitig
Sohlbeschaffenheit:	Mittel-/ Grobkies am Ufer verkrautete Sedimentationsstellen mit
	Mittelsand
Wassertiefe:	25 - 30 cm
Probenbezeichnung:	MiPI 15

Abbildung 51: Probenahmestellen an der Flöha-2 mit Blick flussaufwärts (A), flussabwärts (B), auf verkrautete Sohle am Ufer mit Sedimentablagerungen (C), sowie auf eine entnommene Probe (D)

Schwarzwasser-2 – OBF41202

Datum:	17.03.2020
Anzahl Probenahmestellen:	8
Lage Probenahmestellen:	rechtsseitig, Sedimentationsstellen ohne direkte Durchströmung und
	zwischen Steinblöcken
Sohlbeschaffenheit:	Steine, Sedimentationsstellen mit Mittelsand
Wassertiefe:	5 - 20 cm
Probenbezeichnung:	MiPI 16

Abbildung 52: Probenahmestellen am Schwarzwasser-2 mit Blick flussaufwärts (A), flussabwärts (B), auf die Sohle am rechten Ufer mit Sediment- und Müllablagerung (C und D)

Lungwitzbach-2 – OBF43000

Datum:	17.03.2020
Anzahl Probenahmestellen:	6
Lage Probenahmestellen:	über gesamte Breite
Sohlbeschaffenheit:	Fein-/ Mittelkies (rötliche Färbung)
Wassertiefe:	ca. 40 cm
Probenbezeichnung:	MiPI 17

Abbildung 53: Probenahmestellen am Lungwitzbach-2 mit Blick flussaufwärts (A), flussabwärts (B) und auf die Sohle (C)

Anhang 2.3.5 Route 5

Freiberger Mulde-5 – OBF32900

Datum:	19.12.2019
Anzahl Probenahmestellen	: 6
Lage Probenahmestellen:	linksseitig bis 2/3 der Breite
Sohlbeschaffenheit:	handgroße Steine, vereinzelt Sedimentationsstellen mit Fein- / Mittelkies
	Wassertiefe: ca. 30 cm
Probenbezeichnung:	MiPI 2

Abbildung 54: Probenahmestellen an der Mulde-5 mit Blick flussaufwärts (A), flussabwärts (B) und auf die Sohle (C und D)

Zschopau-4 – OBF35350

Datum:	19.12.2019
Anzahl Probenahmestellen:	6
Lage Probenahmestellen:	rechtsseitig, bis zur Flussmitte
Sohlbeschaffenheit:	Sohlbefestigung mit handgroßen Steine, vereinzelt Fein- / Mittelkies in
	Zwischenräumen
Wassertiefe:	30 - 40 cm
Probenbezeichnung:	MiPI 1

Abbildung 55: Probenahmestellen an der Zschopau-4 mit Blick flussabwärts (A), in eine Bucht mit geringer Strömung (B) und auf die Sohle (C und D)

Mulde-6 – OBF40500

Datum:	19.12.2019
Anzahl Probenahmestellen:	6
Lage Probenahmestellen:	rechts- & linksseitig, nahe am Ufer da in der Mitte starke Strömung
Sohlbeschaffenheit:	handgroße Steine, in Ufernähe Sedimentationsstellen mit Fein- bis
	Grobkies
Wassertiefe:	ca. 20 cm
Probenbezeichnung:	MiPI 3

Abbildung 56: Probenahmestellen an der Mulde-6 mit Blick flussaufwärts (A), flussabwärts (B), zum gegenüberliegenden Ufer (C) und auf die Sohle (D)

Chemnitz-2 – OBF45000

Datum:	19.12.2019
Anzahl Probenahmestellen:	8
Lage Probenahmestellen:	über gesamte Breite und Länge von 20 m
Sohlbeschaffenheit:	handgroße Steine mit viel Feinsediment dazwischen, relativ hohe
	Strömungsgeschwindigkeit
Wassertiefe:	ca. 15 cm
Probenbezeichnung:	MiPI 4

Abbildung 57: Probenahmestellen an der Chemnitz-2 mit Blick flussaufwärts (A), flussabwärts (B) und auf die Sohle (C)

Anhang 2.3.6 Route 6

Mulde-7 – OBF47600

Datum:	10.03.2020
Anzahl Probenahmestellen:	6
Lage Probenahmestellen:	linksseitig, unter der Brücke
Sohlbeschaffenheit:	Feinsand, Grobkies, große Steine
Wassertiefe:	10 - 30 cm in Ufernähe, mittig sehr tief
Probenbezeichnung:	MiPI 11

Abbildung 58: Probenahmestellen an der Mulde-7 mit Blick flussaufwärts (A), flussabwärts (B), auf die Sohle (C) sowie auf eine entnommene Probe (D)

Weiße Elster-11 – OBF50800

Datum:	10.03.2020
Anzahl Probenahmestellen:	6
Lage Probenahmestellen:	rechtsseitig, vor allem linksseitig unter der Brücke, Ufernähe
Sohlbeschaffenheit:	Steine, Schluff und organischer Schlamm
Wassertiefe:	10 - 30 cm linksseitig, 10 - 20 cm rechtsseitig
Probenbezeichnung:	MiPI 10

Abbildung 59: Probenahmestellen an der Weißen Elster-11 mit Blick flussaufwärts (A), flussabwärts (B), auf die Sohle (C) sowie auf Treibgut (D)

Pleiße-4b – OBF53700

Datum:	10.03.2020
Anzahl Probenahmestellen:	-
Lage Probenahmestellen:	-
Sohlbeschaffenheit:	steile Uferkante, große Steine, schlammig bewachsen nahe Ufer
Wassertiefe:	> 70 cm
Probenbezeichnung:	-
Bemerkung:	Alternative: kleine Pleiße OBF53701

Abbildung 60: Geplante Probenahmestellen an der Pleiße-4b mit Blick flussaufwärts (A), flussabwärts (B), auf die Wassertiefenmessung (C) sowie auf die Uferkante (D)

Kleine Pleiße-11 – OBF53701 (Alternative)

Datum:	10.03.2020
Anzahl Probenahmestellen:	7
Lage Probenahmestellen:	linksseitig, mittig und rechtsseitig, Bach mit einer Breite von 2 m
Sohlbeschaffenheit:	Grobkies, wenige Steine, Altlaub
Wassertiefe:	20 - 30 cm
Probenbezeichnung:	MiPI 8

Abbildung 61: Probenahmestellen an der Kleinen Pleiße Markkleeberg mit Blick flussaufwärts (A), flussabwärts (B), auf Abfall im Bach (C) sowie auf eine entnommene Probe (D)

Parthe-4 – OBF55100

Datum:	10.03.2020
Anzahl Probenahmestellen:	6
Lage Probenahmestellen:	rechtsseitig bis mittig, ab Brücke 20 m flussabwärts
Sohlbeschaffenheit:	Mittelsand - Grobkies, große Steine, Laub, Müll
Wassertiefe:	20 - 40 cm
Probenbezeichnung:	MiPI 9

Abbildung 62: Probenahmestellen an der Parthe-4 mit Blick flussaufwärts (A), flussabwärts (B), auf ein Kunststoffnetz aus einer Probe (C) sowie auf eine entnommene Probe (D)

Anhang 2.4 Dokumentation der Probenahmen 2021

Anhang 2.4.1 Route 7

Wesenitz-2 – OBF06515

Datum:	22.03.2021
Anzahl Probenahmestellen:	6
Probenahmeart:	Van-Veen-Bodengreifer
Lage Probenahmestellen:	über 10 m Länge, 3x mittig, 3x linksseitig
Sohlbeschaffenheit:	Sand, Feinkies, mittelgroße Steine
Wassertiefe:	50 - 80 cm
Probenbezeichnung:	MiPI 21

Abbildung 63: Probenahmestellen an der Wesenitz-2 mit Blick flussaufwärts (A), flussabwärts (B), auf die Sohle (C) sowie auf eine entnommene Probe (D)

Münzbach-2 – OBF32900

22.03.2021
6
4x Van-Veen-Bodengreifer & 2x händisch
über 20 m Länge, 2x rechtsseitig, 2x mittig, 2x linksseitig
Feinkies bis große Steine
30 - 50 cm
MiPI 22

Abbildung 64: Probenahmestellen am Münzbach-2 mit Blick flussaufwärts (A), flussabwärts (B), auf die Sohle (C) sowie auf eine entnommene Probe (D)

Höckenbach – OBF10410

22.03.2021
4
3x Van-Veen-Bodengreifer & 1x händisch
über 5 m Länge
Sand, Feinkies und große Steine, sowie Müll
20 - 40 cm
MiPI 23

Abbildung 65: Probenahmestellen am Höckenbach mit Blick flussaufwärts (A), flussabwärts (B), auf die Sohle (C) sowie auf eine entnommene Probe (D)

Anhang 2.4.2 Route 8

Flöha-2 – OBF37300

Datum:	25.03.2021
Anzahl Probenahmestellen:	6
Probenahmeart:	Van-Veen-Bodengreifer
Lage Probenahmestellen:	Sandbank, linksseitig
Sohlbeschaffenheit:	Sand bis Grobkies
Wassertiefe:	50 - 80 cm
Probenbezeichnung:	MiPI 24

Abbildung 66: Probenahmestellen an der Flöha-2 mit Blick flussaufwärts (A), flussabwärts (B), auf einen blauen Partikel (C) sowie auf eine entnommene Probe (D)

Chemnitz-2 – OBF45000

Datum:	25.03.2021
Anzahl Probenahmestellen:	4
Probenahmeart:	händisch
Lage Probenahmestellen:	über 20 m Länge, 4x rechtsseitig
Sohlbeschaffenheit:	Kies und große Steine
Wassertiefe:	20 - 40 cm
Probenbezeichnung:	MiPI 25

Abbildung 67: Probenahmestellen an der Chemnitz-2 mit Blick flussaufwärts (A), flussabwärts (B), sowie auf eine entnommene Probe (C)

Parthe-4 – OBF55400

Datum:	25.03.2021
Anzahl Probenahmestellen:	6
Probenahmeart:	händisch
Lage Probenahmestellen:	über 20 m Länge,3x rechtsseitig, 3x mittig
Sohlbeschaffenheit:	organischer Schlamm, Laub, Müll
Wassertiefe:	50 - 60 cm
Probenbezeichnung:	MiPI 26

Abbildung 68: Probenahmestellen an der Parthe-4 mit Blick flussaufwärts (A), flussabwärts (B) sowie auf die Sohle (C)

Kleine Pleiße – OBF53701

25.03.2021
6
4x Van-Veen-Bodengreifer & 2x händisch
über 30 m Länge, 2x rechtsseitig, 2x mittig, 2x linksseitig
organischer Schlamm, Laub, Müll
10 - 20 cm
MiPI 27

Abbildung 69: Probenahmestellen an der kleinen Pleiße Markkleeberg mit Blick flussaufwärts (A), flussabwärts (B), auf die Sohle (C) sowie auf eine entnommene Probe (D)

Anhang 2.4.3 Route 9

Göltzsch-2 – OBF51701

Datum:	31.03.2021
Anzahl Probenahmestellen:	6
Probenahmeart:	händisch
Lage Probenahmestellen:	über 5 m Länge, 3x mittig, 3x linksseitig
Sohlbeschaffenheit:	Feinkies bis große Steine, organischer Schlamm
Wassertiefe:	10 - 30 cm
Probenbezeichnung:	MiPI 28

Abbildung 70: Probenahmestellen an der Göltzsch-2 mit Blick flussaufwärts (A), flussabwärts (B), auf die Sohle (C) sowie auf eine entnommene Probe (D)

Sehma – OBF35800

Datum:	31.03.2021
Anzahl Probenahmestellen:	4
Probenahmeart:	händisch
Lage Probenahmestellen:	über 5 m Länge, 4x rechtsseitig
Sohlbeschaffenheit:	Kies bis mittlere Steine
Wassertiefe:	10 - 30 cm
Probenbezeichnung:	MiPI 29

Abbildung 71: Probenahmestellen an der Sehma mit Blick flussaufwärts (A), flussabwärts (B), auf die Sohle (C) sowie auf eine entnommene Probe (D)
Zschopau-1 – OBF34409

Datum:	31.03.2021
Anzahl Probenahmestellen:	6
Probenahmeart:	4x Van-Veen-Bodengreifer & 2x händisch
Lage Probenahmestellen:	über 10 m Länge, 3x mittig, 3x linksseitig
Sohlbeschaffenheit:	Feinkies bis mittlere Steine
Wassertiefe:	30 - 50 cm
Probenbezeichnung:	MiPI 30

Abbildung 72: Probenahmestellen an der Zschopau-1 mit Blick flussaufwärts (A), flussabwärts (B), auf die Sohle (C) sowie auf eine entnommene Probe (D)

Schwarzwasser-2 – OBF41202

Datum:	31.03.2021
Anzahl Probenahmestellen:	-
Probenahmeart:	-
Lage Probenahmestellen:	-
Sohlbeschaffenheit:	große Steine
Wassertiefe:	-
Probenbezeichnung:	-
Bemerkung:	keine Probenahme möglich durch Bebauung und zu starke Strömung

Abbildung 73: Geplante Probenahmestellen am Schwarzwasser-2 mit Blick flussaufwärts (A), flussabwärts (B)

Herausgeber:

Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie (LfULG) Pillnitzer Platz 3, 01326 Dresden Telefon: +49 351 2612-0 Telefax: +49 351 2612-1099 E- Mail: Ifulg@smekul.sachsen.de www.lfulg.sachsen.de

In Zusammenarbeit mit: Hochschule für Technik und Wirtschaft Dresden Friedrich-List-Platz 1 01069 Dresden www.htw-dresden.de

Autoren:

Julia Harzdorf LfULG, Abteilung 4 – Wasser, Boden, Wertstoffe / Referat 44 – Oberflächenwasser, Wasserrahmenrichtlinie (bis 31.12.2020)

Julia Harzdorf, Richard Zeumer, Sven Schirrmeister, Yasmin Adomat, Lucas Kurzweg, Sven Faist, Fabian Musche, Prof. Dr. Thomas Grischek, Prof. Dr. Kathrin Harre Hochschule für Technik und Wirtschaft Dresden Friedrich-List-Platz 1 01069 Dresden

Redaktion:

Sylvia Rohde LfULG, Abteilung 4 – Wasser, Boden, Wertstoffe / Referat 44 – Oberflächenwasser, Wasserrahmenrichtlinie Zur Wetterwarte 11, 01109 Dresden Telefon: +49 351 8928 4401 Telefax: +49 351 8928 4429 E-Mail: sylvia.rohde@smekul.sachsen.de

Fotos:

Julia Harzdorf, LfULG Richard Zeumer, Sven Schirrmeister, Yasmin Adomat, Fabian Musche, Lucas Kurzweg, HTW Dresden

Redaktionsschluss:

30.09.2021

ISSN:

1867-2868

Hinweis:

Die Broschüre steht nicht als Printmedium zur Verfügung, kann aber als PDF-Datei unter https://publikationen.sachsen.de heruntergeladen werden.

Verteilerhinweis

Diese Informationsschrift wird von der Sächsischen Staatsregierung im Rahmen ihrer verfassungsmäßigen Verpflichtung zur Information der Öffentlichkeit herausgegeben.

Sie darf weder von Parteien noch von deren Kandidaten oder Helfern zum Zwecke der Wahlwerbung verwendet werden. Dies gilt für alle Wahlen. Missbräuchlich ist insbesondere die Verteilung auf Wahlveranstaltungen, an Informationsständen der Parteien sowie das Einlegen, Aufdrucken oder Aufkleben parteipolitischer Informationen oder Werbemittel. Untersagt ist auch die Weitergabe an Dritte zur Verwendung bei der Wahlwerbung.

Täglich für ein jūtes Leben.

www.lfulg.sachsen.de