
Verfahrenshandbuch

für oberflächennahe Erdwärmenutzung in Sachsen

Verfahrenshandbuch
für Vorhaben zum Bau und Betrieb
von Anlagen zur
Gewinnung von Erdwärme
gemäß § 11a Absatz 1 Nummer 2
des Wasserhaushaltsgesetzes in Sachsen

Vorwort

Sachsen ist traditionell eine Energie- und Industrieregion. Vor dem Hintergrund des Klimawandels und eines nachhaltigen Umgangs mit natürlichen Ressourcen kommt dem effizienten und innovativen Umgang mit Energie sowie der Umgestaltung unserer Energiesysteme und dem umfassenden Ausbau der erneuerbaren Energien eine hohe Bedeutung zu. Die heutigen technischen Möglichkeiten machen eine umweltschonende und nachhaltige Energiegewinnung und -nutzung möglich.

Erdwärme stellt eine umweltfreundliche, erneuerbare Alternative gegenüber konventionellen Systemen zum Heizen und gegebenenfalls Kühlen sowie zur Warmwasserbereitung von Gebäuden dar.

Vorteilhaft sind ein geringer Flächenverbrauch, minimale Emissionen, die Möglichkeit zum kombinierten Heizen und Kühlen sowie die Kompatibilität mit anderen erneuerbaren Energien.

In den letzten Jahren ist die Nutzung des Erdwärmepotenzials in Sachsen stark angestiegen. Wurden im Jahr 2005 noch 30 MW thermische Energie durch Erdwärme erzeugt, waren es zehn Jahre später rund 140 MW und im Jahr 2022 beträgt die installierte Gesamtleistung bereits knapp 210 MW. Dazu werden

mit Stand Oktober 2022 im Freistaat Sachsen etwa 18.540 Erdwärmeanlagen zur Nutzung oberflächennaher Geothermie betrieben. Zu den häufigsten Nutzungsformen gehören die mittels Erdwärmesonden betriebenen Anlagen, gefolgt von kollektorund brunnenbetriebenen Erdwärmeanlagen. Diese Anlagen und weitere Nutzungsmöglichkeiten werden in diesem Verfahrenshandbuch vorgestellt.

Die dargestellten Zahlen und der vorhandene Trend rechtfertigen es, den begonnenen Prozess der Erdwärmenutzung weiterhin zu unterstützen und abgestimmt mit der Nutzung anderer natürlicher Ressourcen dauerhaft zu gestalten.

Im Sinne des vorsorgenden und nachhaltigen Gewässerschutzes, der umweltfreundlichen Energienutzung sowie in Umsetzung der EU-Richtlinie zur Förderung der Nutzung von Energie aus erneuerbaren Quellen geben wir den Bürgern und Projektentwicklern von Erdwärme-Technologien dieses Verfahrenshandbuch zum leichteren Verstehen der Verfahren an die Hand. Mit den rechtlichen und planerischen Hinweisen und Handlungsempfehlungen werden die Voraussetzungen für die ordnungsgemäße Planung und Ausführung sowie langfristige und störungsfreie Nutzungsfähigkeit von Erdwärmeanlagen geschaffen.

4. Lichton

Norbert Eichkorn Präsident des Sächsischen Landesamtes für Umwelt, Landwirtschaft und Geologie

Inhaltsverzeichnis

Voi	wort	4
I	Einleitung	6
II	Technologie der Erdwärmenutzung	9
	II.1 Oberflächennahe Erdwärme	9
	II.2 Weitere Geothermienutzungen	12
Ш	Verfahrenshandbuch für Vorhaben zum Bau und Betrieb von	
	Anlagen zur Gewinnung von Erdwärmee	16
1	Verfahrenshandbuch zum Bau und Betrieb von Erdwärmesonden in Sachsen	17
	1.1 Bau und Funktionsweise von Erdwärmesonden	18
	1.2 Rechtsgrundlagen und Verfahren	20
	1.3 Anforderungen an Planung von Erdwärmesondenanlagen	25
	1.4 Anforderung an Bauausführung und Betrieb von Erdwärmesondenanlagen	27
2	Verfahrenshandbuch zum Bau und Betrieb von Erdwärmekollektoren in Sachsen	33
	2.1 Bau und Funktionsweise von Erdwärmekollektoren	34
	2.2 Rechtsgrundlagen und Verfahren	36
	2.3 Anforderungen an die Planung von Erdwärmekollektoranlagen	40
	2.4 Anforderungen an Bauausführung und Betrieb von Erdwärmekollektoranlagen	41
3	Verfahrenshandbuch zum Bau und Betrieb von Grundwasserwärmepumpen	
	in Sachsen	43
	3.1 Bau und Funktionsweise von Grundwasserwärmepumpen	44
	3.2 Rechtsgrundlagen und Verfahren	45
	3.3 Anforderungen an Planung, Bauausführung und Betrieb von	
	Grundwasserwärmepumpenanlagen	50
IV	Verzeichnisse	63

I Einleitung

Unter dem Begriff "Erdwärme" wird die in Form von Wärme gespeicherte Energie in der Erde verstanden. Bis in eine Tiefe von etwa 10 m bis 20 m unter der Erdoberfläche wird die Temperatur durch die Sonneneinstrahlung und klimatische Temperaturschwankungen beeinflusst. Unterhalb dieses Einflussbereichs beträgt die Temperatur in unseren Breiten im Mittel rund 10 °C. Sie nimmt in Abhängigkeit vom Aufbau und der Zusammensetzung der Erdkruste mit der Tiefe etwa um 3 Kelvin pro 100 m Tiefe zu. Dieser Zusammenhang ist in Abbildung 1 veranschaulicht.

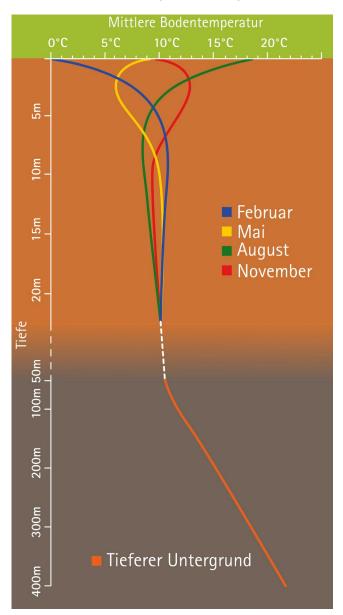


Abbildung 1: Temperaturverlauf in den oberen Bodenschichten

Erdwärme ist eine in menschlichen Zeitdimensionen unerschöpfliche Energieressource. Ihre Nutzung wirkt sich positiv auf die Umwelt aus, da sie zur Schonung fossiler Energiequellen und Verminderung der Kohlenstoffdioxid (CO₂)-Emission beiträgt. Erdwärme kann grundsätzlich für zwei Anwendungen genutzt werden: für die Stromgenerierung und zur Wärmegewinnung.

Folgende Vorteile hat eine Erdwärmenutzung:

- erneuerbare Energiequelle zum Heizen und Kühlen,
- Immer, überall verfügbar auf dem eigenen Grundstück,
- unabhängig von Tages- oder Jahreszeit beziehungsweise Wetter,
- umweltfreundlich, CO₂-sparend (Einsparung gegenüber fossilen Energieträgern (Öl, Gas) pro Jahr etwa 2,6 Tonnen),
- geringe Betriebskosten.

Erdwärme hat daher im zukünftigen Energiemix ein großes Potenzial für die Wärmeversorgung. Ihre Nutzung ist bei korrekter Planung unter Berücksichtigung aller genehmigungsrelevanten Randbedingungen sowie fachgerechtem Bau und Betrieb der Anlagen grundsätzlich unbedenklich für Boden und Grundwasser.

- Erdwärme ist ein Bodenschatz, der in großen Teilen Sachsens durch jedermann genutzt werden kann.
- Am weitesten verbreitet ist die Gewinnung von Erdwärme durch Installation von Sonden in 50 m bis 100 m tiefen Bohrungen.
- Die gesamten erforderlichen Arbeiten (Antragstellung, Anlageninstallation, Abnahme) werden von zahlreichen Fachfirmen (zum Beispiel Bohrunternehmen, Ingenieurbüros, Heizungsinstallateuren) angeboten.
- Das Verfahrenshandbuch gibt Hinweise, deren Beachtung für einen optimalen Bau und Betrieb von verschiedenen Nutzungstypen von Erdwärmeanlagen erforderlich ist
- Weitere Informationen zur Erdwärme: https://lsnq.de/erdwaerme

Am häufigsten wird Erdwärme in Sachsen zur Wärmeversorgung von einzelnen Gebäuden oder Gebäudekomplexen (Heizung und Warmwasser) genutzt. Erdwärme kann auch zur Kühlung von Gebäuden, zur Wärme- und Kältespeicherung im Untergrund sowie zur Schnee- und Eisfreihaltung von Straßen, Schienen, Brücken beziehungsweise von Start- und Landebahnen eingesetzt werden, um nur einige Möglichkeiten zu nennen. Zu therapeutischen Zwecken ist auch die Nutzung von Thermalwässern anwendbar.

Mittels tiefer Geothermie, in Bereichen um 5.000 m Tiefe kann ebenfalls Strom erzeugt werden.

Die geothermischen Nutzungsbereiche können wie in Abbildung 2 dargestellt ist, untergliedert werden.

Weitere Informationen sind beim Bundesverband Geothermie (https://www.geothermie.de) sowie bei der Sächsischen Agentur für Erneuerbare Energien SAENA (https://www.saena.de/) zu finden.

Viele Energieversorger zahlen Zuschüsse bei der Anschaffung dieser umweltfreundlichen Heiztechnik oder geben eine Förderung durch einen vergünstigten Strompreis für den Wärmepumpenantrieb.

Förderungen für Erdwärmeanlagen können beim Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAfA) beantragt werden. https://www.bafa.de/DE/Energie/energie_node.html

Umsetzung der RED II Richtlinie ergangene § 11a Absatz 3 Wasserhaushaltgesetz (WHG) sieht dabei vor, dass für Träger von Vorhaben zur Erzeugung von Energie aus erneuerbaren Quellen ein Verfahrenshandbuch bereitzustellen ist. Dieser Verpflichtung wird mit dem hier vorliegenden Verfahrenshandbuch für Anlagen zur Gewinnung von oberflächennaher Erdwärme Rechnung getragen. Das vorliegende Verfahrenshandbuch richtet sich an Bauherren, Architekten, Planer, Bohrfirmen und Installateure, Behörden sowie sonstige Interessenten. Es ist schwerpunktmäßig auf die Erfordernisse bei der Nutzung von oberflächennaher Erdwärme mittels Erdwärmesonden, Erdwärmekollektoren und Grundwasserwärmepumpen ausgerichtet und gibt zusätzlich einen informativen Überblick über weitere Möglichkeiten der Erdwärmenutzung.

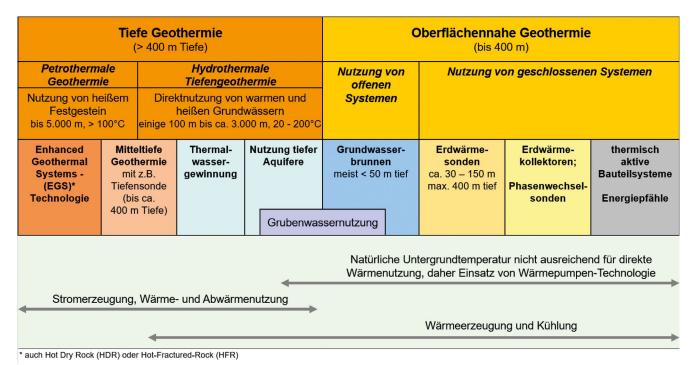


Abbildung 2: Übersicht Einteilung der Erdwärmenutzungen

Die Richtlinie (EU) 2018/2001 des Europäischen Parlaments und des Rates vom 11. Dezember 2018 zur Förderung der Nutzung von Energie aus erneuerbaren Quellen (Neufassung) (Amtsblatt der EU L 328 vom 21. Dezember 2018, Seite 82) (RED II Richtlinie) ist am 24. Dezember 2018 in Kraft getreten und bis 30. Juni 2021 umzusetzen. Die Richtlinie (EU) 2018/2001 enthält in ihren Artikeln 15 und 16 bestimmte Vorgaben für das Verwaltungsverfahren bei der Zulassung von Anlagen zur Produktion von Energie aus erneuerbaren Quellen. Mit dem Gesetz vom 18. August 2021 zur Umsetzung von Vorgaben der Richtlinie (EU) 2018/2001 des Europäischen Parlaments und des Rates vom 11. Dezember 2018 zur Förderung der Nutzung von Energie aus erneuerbaren Quellen (Neufassung) für Zulassungsverfahren nach dem Bundes-Immissionsschutzgesetz, dem Wasserhaushaltsgesetz und dem Bundeswasserstraßengesetz wurde die Richtlinie in nationales Recht umgesetzt. Der in

Da mit der Errichtung von Erdwärmeanlagen im Untergrund häufig auch in das Grundwasser eingegriffen wird, können damit auch Risiken hinsichtlich einer Grundwassergefährdung verbunden sein. Daher müssen im Hinblick auf den Grundwasserschutz geeignete wasserrechtliche Anforderungen gestellt werden, um diese Risiken zu vermeiden beziehungsweise erheblich zu minimieren. Im Einzelfall kann zum Schutz des Grundwassers die Errichtung der Anlage auch versagt oder eingeschränkt werden.

Diese werden in den Teilen 1 bis 3 dieses Verfahrenshandbuches näher beschrieben.

Tabelle 1: Übersicht der unteren Wasserbehörden

Stadtverwaltung Chemnitz Umweltamt Abteilung Untere Wasserbehörde http://www.chemnitz.de	Telefon: 0371 488-3620 Telefax: 0371 488-3698 umweltamt.wasser@stadt-chemnitz.de	Postadresse: Stadt Chemnitz, Umweltamt 09106 Chemnitz
Landratsamt Erzgebirgskreis Umwelt und Forst SG Siedlungswasserwirtschaft http://www.erzgebirgskreis.de	Telefon: 03735 601 614 Telefax: 03735 601 6196 siedlungswasserwirtschaft@kreis-erz.de	Postadresse: Paulus-Jenisius-Straße 24 09456 Annaberg-Buchholz
Landratsamt Mittelsachsen Abteilung Umwelt, Forst und Landwirtschaft Referat: Wasserbau, Gewässer- und Hochwasserschutz http://www.landkreis-mittelsachsen.de	Telefon: 03731 799 4007 Telefax: 03731 799 4087 umwelt.forst@landkreis-mittelsachsen.de	Postadresse: Frauensteiner Straße 43 09599 Freiberg
Landratsamt Vogtlandkreis Umweltamt SG Wasserwirtschaft/Wasserrecht http://www.vogtlandkreis.de	Telefon: 03741 300-2110 Telefax: 03741 300-4035 wasser@vogtlandkreis.de	Postadresse: Bahnhofstr. 42-48 08523 Plauen
Landratsamt Zwickau Umweltamt SG Wasser http://www.landkreis-zwickau.de	Telefon: 0375-4402 26 Telefax: 0375-4402 26 umweltamt@landkreis-zwickau.de	Postadresse: Postfach 100176 08067 Zwickau
Stadtverwaltung Dresden Umweltamt Wasser-, und Bodenschutzbehörde http://www.dresden.de	Telefon: 0351 488-6241 Telefax: 0351 488-996241 umwelt.recht1@dresden.de	Postadresse: Postfach 12 00 20 01001 Dresden
Landratsamt Bautzen Umwelt- und Forstamt SG Untere Wasserbehörde http://www.landkreis-bautzen.de	Telefon: 03591 5251-68534 Telefax: 03591 5250 68534 wasser@lra-bautzen.de	Postadresse: Macherstraße 55 01917 Kamenz
Landratsamt Görlitz Umweltamt SG Untere Wasserbehörde www.kreis-goerlitz.de	Telefon: 03581 663 3170 Telefax: 03581 663 63170 wasserbehoerde@kreis-gr.de	Postadresse: Postfach 30 01 52 02806 Görlitz
Landratsamt Meißen Kreisumweltamt SG Wasser, Untere Wasserbehörde http://www.kreis-meissen.org	Telefon: 03521 725 2361 Telefax: 03521 725 88024 kreisumweltamt@kreis-meissen.de	Postadresse: Postfach 10 01 52 01651 Meißen
Landratsamt Sächsische Schweiz-Osterzgebirge Umweltamt Referat Gewässerschutz https://www.landratsamt-pirna.de	Telefon: 03501 515-3410 gewaesserschutz@landratsamt-pirna.de	Postadresse: Postfach 10 02 53/54 01782 Pirna
Stadtverwaltung Leipzig Amt für Umweltschutz SG Wasserbehörde http://www.leipzig.de	Telefon: 0341 123–3866 Telefax: 0341 123–1695 umweltschutz@leipzig.de	Postadresse: Stadt Leipzig, OE 36 04092 Leipzig
Landratsamt Landkreis Leipzig Umweltamt SG Wasser/Abwasser (untere Wasserbehörde) http://www.landkreisleipzig.de	Telefon: 03437 984 1901 Telefax: 03437 984 7096 umweltamt@lk-l.de	Postadresse: Landratsamt Landkreis Leipzig 04550 Borna
Landratsamt Nordsachsen Umweltamt SG Untere Wasserbehörde http://www.landkreis-nordsachsen.de	Telefon: 03421 758 0 Telefax: 03421 758 4110 wasserbehoerde@lra-nordsachsen.de	Postadresse: Landratsamt Nordsachsen 04855 Torgau

II Technologie der Erdwärmenutzung

II.1 Oberflächennahe Erdwärme

Wärmequellenanlagen

Ein technisches System zur Nutzung oberflächennaher Erdwärme besteht in der Regel aus einer W ärmequellenanlage (zum Beispiel Erdwärmesonde), mit der die Energie dem Untergrund entzogen wird, sowie einer Wärmepumpe und einer daran angeschlossenen Wärmenutzungsanlage (zum Beispiel Fußbodenheizung).

Grundsätzlich stehen folgende, in ihren Ausführungen zum Teil variierende Wärmequellenanlagen für die Erdwärmenutzung zur Verfügung:

Wasser

Grundwasser: Entnahme und Einleitbrunnen
Anlagen zur Grubenwassernutzung
(kann Übergangsbereich zur tiefen
Geothermie sein)
Oberirdische Gewässer
Kühl-, Brauch-, Abwasser

Erdreich
Erdwärmekollektoren
Erdwärmesonden

Neben den oberirdischen Standortgegebenheiten im Grundstück und am Gebäude sind der geologische Untergrund sowie die Grundwasserverhältnisse am Standort maßgebend für die Art und den Umfang einer Erdwärmenutzung. Geologie und Grundwasserverhältnisse bestimmen die Wahl einer bestimmten Anlagenvariante wie zum Beispiel Grundwasserwärmepumpe oder Erdwärmesonde sowie deren Effizienz durch eine spezifische Auslegung.

Die Wirtschaftlichkeitsgrenzen variieren bei den einzelnen Technologien und sind auch abhängig von den Betriebskosten und den mit zunehmender Tiefe ansteigenden Investitionskosten (Bohrungs- und Ausbaukosten).

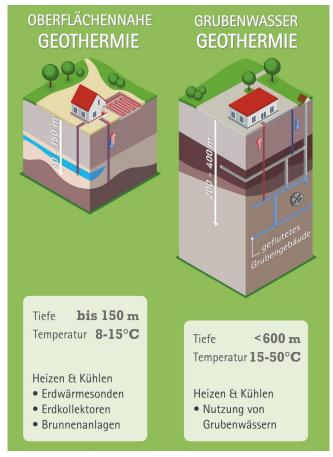


Abbildung 3: Übersicht Nutzungsformen oberflächennaher Erdwärme

Eine Wärmepumpe wird über ein Nutzungssystem an die Wärmequelle angeschlossen, um über die oberflächennahe Erdwärme in einem Temperaturbereich von rund 8 °C bis rund 15 °C ein für die Wärmeversorgung ausreichendes höheres Temperaturniveau zu erzielen. Für Zwecke der Kühlung im Temperaturbereich des Untergrundes wird das Wärmeträgermittel meist nur durch eine Umwälzpumpe bewegt (sogenannte passive Kühlung).

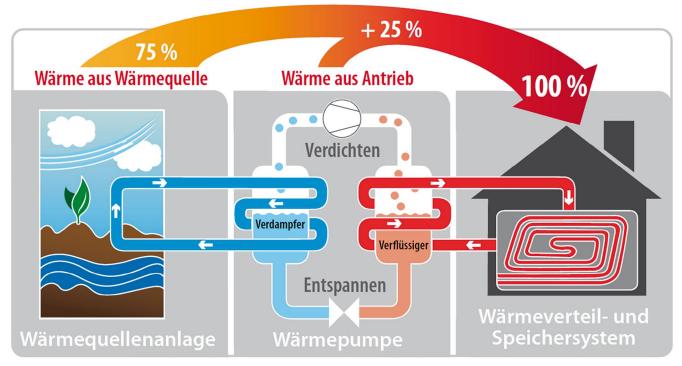


Abbildung 4: Funktion einer Wärmepumpe (© Bundesverband Wärmepumpe e. V.)

Wärmepumpe und Energieeffizienz

Die als Heizwärme verfügbare Gesamtenergie einer Wärmepumpe setwzt sich aus der Energie, die der Umwelt entzogen wird und der elektrischen Antriebsenergie des Verdichters zusammen.

Das in der Wärmepumpe zirkulierende Kältemittel wird durch die Erdwärme zum Verdampfen gebracht und im Kompressor verdichtet, wodurch es heißer wird. Im Verflüssiger wird der heiße Dampf kondensiert und gibt seine Wärme an den Heizkreislauf des Gebäudes ab. Das Kältemittel zirkuliert im Kreislauf von Neuem. In vielen Fällen wird zusätzlich ein Pufferspeicher vorgesehen.

Die Qualität einer Wärmepumpe wird durch die zu einem bestimmten Arbeitspunkt ermittelte Leistungszahl ϵ beschrieben. Für den Nutzer aussagekräftig hinsichtlich Qualität und Effizienz der gesamten Wärmepumpen-Heizanlage ist die im Betrieb ermittelte Jahresarbeitszahl β , welche die Antriebsenergie des Verdichters sowie alle Hilfsantriebe der Wärmepumpe (zum Beispiel Umwälzpumpe) im Betriebsjahr berücksichtigt.

$$\epsilon = \frac{\text{momentan abgegebene Wärmeleistung [kW}_{\text{term}}]}{\text{momentan aufgenommene Antriebsleistung [kW}_{\text{elektr}}]}$$

$$\beta = \frac{\text{jährlichabgegebene Wärme [kWh}_{\text{term}}]}{\text{jährlichaufgenommene Antriebsenergie [kWh}_{\text{elektr}}]}$$

In jedem Fall hängen die Kennwerte e und b von der Temperaturdifferenz ΔT zwischen Wärmequelle und Wärmeverbraucher ab: je geringer ΔT , desto wirtschaftlicher arbeitet die Wärmepumpe beziehungsweise Heizanlage (siehe Abbildung 5). In der Praxis bewirkt die Verringerung von ΔT um je 1 Kelvin (K) eine Stromersparnis bis zu 2,5 %.

Abbildung 5: Leistungszahl ϵ als Funktion der Temperaturdifferenz ΔT zwischen Verdampfer und Verflüssiger ($T_0=273,15$ K)

Im Interesse einer hohen Jahresarbeitszahl und damit einer hohen Primärenergieeinsparung ist die Erschließung einer Wärmequelle mit einem möglichst hohen und ganzjährig konstanten Temperaturniveau anzustreben. Diese Anforderungen erfüllen am besten durch Erdwärmesonden erschlossene tiefere Bodenschichten (ab etwa 20 m) sowie über eine Brunnenanlage erschlossenes Grundwasser.

Die möglichst gute Kenntnis der (hydro)geologischen Verhältnisse des Untergrundes und seiner thermischen Eigenschaften ist Grundvoraussetzung für einen ökonomisch und ökologisch gesicherten Anlagenbetrieb.

Bei optimal dimensionierten erdgekoppelten Wärmepumpen-Heizanlagen sollte die Jahresarbeitszahl β nicht unter 3,5 liegen. Die rechnerische Dimensionierung der Wärmepumpen-Kennzahlen ist im Auslegungskonzept der konkreten Anlage vom Planer zu berücksichtigen. Wärmepumpen-Heizanlagen sind damit sowohl hinsichtlich des Primärenergieverbrauches als auch hinsichtlich der Emission von CO2 konventionellen Brennstoff-Heizsystemen deutlich überlegen. Der Einsatz ozon- und klimaschädigender Wärmepumpen-Arbeitsmittel (= Kältemittel) wie Fluor-Chlor-Kohlenwasserstoffe (FCKW) ist gemäß der Chemikalienozonschichtverordnung (ChemOzonSchichtV) in Neuanlagen untersagt. Heute kommen als Kältemittel in den Wärmepumpenanlagen neuartige synthetische Gemische und vor allem natürliche Kältemittel überwiegend ohne jegliches Schädigungspotenzial für die Ozonschicht zum Einsatz. Die häufig eingesetzten modernen Kältemittel in den Wärmepumpen bestehen aus Kohlenwasserstoffen (R290 Propan, R134a Tetrafluorethan), Kohlenwasserstoffgemischen (R404A, R407C, R410A), Ammoniak (R717) oder Kohlenstoffdioxid (R744).

Zu beachten ist, dass die meisten Kältemittel als wassergefährdende Stoffe eingestuft werden und Maßnahmen zum Schutz von Boden und Grundwasser erfordern. Für die Anwendung bei Wärmepumpen wurden Sicherheitskältemittel aus Kohlenwasserstoffgemischen entwickelt, die weder brennbar noch toxisch sind.

Natürliche Kältemittel, die bei der Direktverdampfung Einsatz finden, haben folgende Eigenschaften: Ammoniak ist brennbar und giftig und wird der Wassergefährdungsklasse (WGK) 2 zugeordnet. Propan ist brennbar, aber nicht giftig. Propan ist als nicht wassergefährdend eingestuft. Die Verwendung der Direktverdampfer-Arbeitsmittel (Propan, ${\rm CO_2}$ und so weiter) erfolgt unter relativ hohen Betriebsdrücken.

Neben den elektrisch betriebenen Wärmepumpen existieren auch durch Wärmekraftmaschinen angetriebene Wärmepumpen, die bei größeren Anlagen relevant werden. Die Entscheidung für eine Antriebstechnologie und die Art der Wärmepumpe hängt unter anderem von den Standortbedingungen, der Größe der Heizleistung und dem Gebäudezustand ab.

Wärmenutzung im Gebäude

Das Heizsystem im Gebäude bildet die Wärmenutzungsanlage – mit Einrichtungen zum Transport des Heiz(Kühl)wassers von der Wärmepumpe bis zur Wärmenutzung (Pumpen, Armaturen, Heizleitungen, Heizflächen, Warmwasserversorgung, eventuell Pufferspeicher). Die Wärmenutzungsanlage hat einen großen Einfluss auf die Effizienz der Erdwärmeanlage, vorteilhaft sind Niedertemperatur-Heizsysteme (wie Fußboden-, Wand- oder Deckenheizungen). Aber auch konventionelle Radiatoren können unter bestimmten Bedingungen weiter genutzt werden. Die Warmwasserbereitung kann durch die Wärmepumpe als zusätzliche Funktion oder extern durch weitere Wärmeerzeuger (wie zweite Wärmepumpe, Solarthermieanlage, Durchlauferhitzer) erfolgen.

Der Wärmeschutz am Gebäude sollte so gut wie möglich sein, um den Wärmebedarf zu minimieren und die Heizanlage wirtschaftlich zu betreiben.

Kühlung von Gebäuden

Geothermische Wärmepumpenanlagen können auch zur Kühlung von Gebäuden verwendet werden. Die im Vergleich zur Innentemperatur des Gebäudes im Sommer geringere Temperatur des Untergrundes kann durch den grundsätzlich umkehrbaren Wärmepumpenbetrieb auch zur Gebäudekühlung genutzt werden. Man unterscheidet dabei die passive Kühlung (Kühlung unter Nutzung der direkten Untergrundtemperatur ohne Einsatz von Kompressionsenergie) von der aktiven Kühlung (über den Einsatz von Kompressionsenergie werden an das Kühlsystem gegenüber der Untergrundtemperatur geringere Temperaturen übertragen – Kühlschrankprinzip).

Diese Kühlmöglichkeit hat das Potenzial, rein elektrisch betriebene Klimageräte zu ersetzen. Durch die Doppelnutzung der Wärmequellenanlage ist die Realisierung einer Wärmepumpenanlage besonders energieeffizient und kostengünstig.

II.2 Weitere Geothermienutzungen

Grubenwassergeothermie

In Sachsen hinterließ der jahrhundertelange untertägige Abbau von Erzen und Industriemineralen im Erzgebirge sowie Steinkohle in den Revieren Zwickau, Lugau-Oelsnitz und Freital eine Vielzahl von Hohlräumen, nach deren Flutung zum Teil beträchtliche unterirdische Wasserreservoire entstanden, die als geothermische Quelle genutzt werden können.

Wässer aus künstlich geschaffenen unterirdischen Hohlräumen (Schächte, Stollen) eignen sich grundsätzlich als Wärmeträgermittel. Limitiert werden die Möglichkeiten mitunter durch zu große Entfernungen der unter Wasser stehenden bergbaulichen Hohlräume zu den Siedlungen, durch hohe Erschließungskosten sowie durch ungünstige qualitative und quantitative Eigenschaften der Grubenwässer. Die Nutzbarmachung des thermischen Potenzials des Grubenwassers sowie vorhandener unterirdischer Infrastruktur von (ehemaligen) Bergwerken ist mit unterschiedlichen technischen Systemen möglich.

Es wird zwischen offenen und geschlossenen Systemen unterschieden. Bei den offenen Systemen wird das aus Tiefen von bis zu 1.000 m geförderte Grubenwasser direkt in einer obertägigen Energiezentrale mit integriertem Wärmetauscher genutzt (LANUV, 2018). Weiterhin besteht die Möglichkeit, über offene Brunnensysteme Grubenwasser zu energetischen Zwecken zu fördern und an anderer Stelle wieder in das Grubengebäude zurückzuführen (reinjizieren).

Mit geschlossenen Systemen kann das Grubenwasser indirekt mittels Wärmetauscher genutzt werden. Hierbei handelt es sich in der Regel um Rohrwärmetauscher aus Metall oder Kunststoff, welche die Wärme aus dem Grubenwasser beziehungsweise dem Grubenbauwerk aufnehmen. Bei geschlossenen Systemen sind im Heizfall nachgeschaltete Wärmepumpen zur Temperaturerhöhung notwendig. Darüber hinaus können ein Grubengebäude und das dort vorhandene Grubenwasser auch als Energiespeicher genutzt werden, wobei Wärme im Sommer in den Untergrund eingespeist und im Winter wieder entnommen wird (LANUV, 2018).

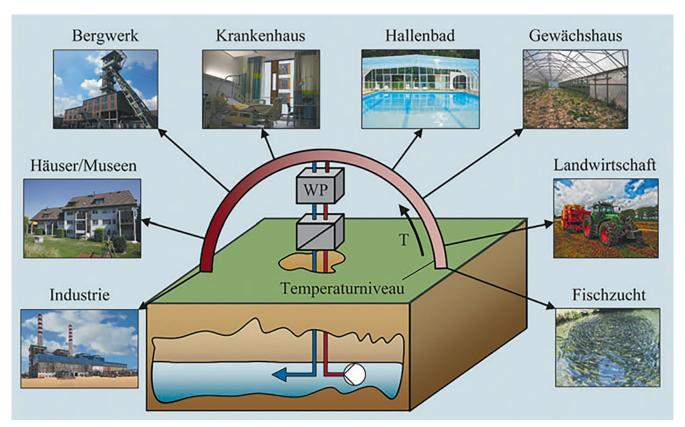


Abbildung 6: Mögliche Anwendungen von Grubenwassergeothermieanlagen (Grab et al., 2018)

Die Temperatur eines Grubenwassers hängt hauptsächlich von der Tiefe des Bergwerkes, dem geothermischen Temperaturgradienten, der hydraulischen Zirkulation und der Größe des Reservoirs ab. Wird Wärme und/oder Grubenwasser entzogen, entsteht ein Ungleichgewicht (zum Beispiel Temperaturabsenkung), was zur Verringerung der Nutzungsdauer führen kann (Grab et al., 2018).

Damit sollen für die genannten und gegebenenfalls für weitere günstige Grubenwasserstandorte Machbarkeitsstudien angeregt beziehungsweise weitere Projekte initiiert werden.

Entsprechende Untersuchungen und Projekte wurden beziehungsweise werden unter anderem in Ehrenfriedersdorf (siehe Abbildung 7), Schneeberg, Schlema-Alberoda, Freiberg, Marienberg, Oelsnitz/Erzgebirge durchgeführt.

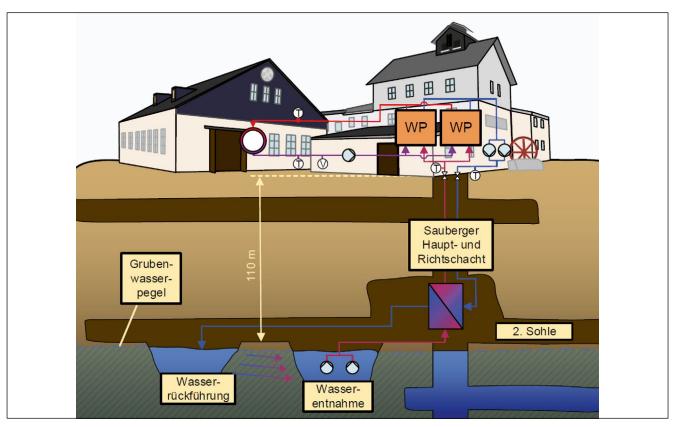


Abbildung 7: Schema Grubenwassernutzung des Besucherbergwerks Ehrenfriedersdorf (TUBA Freiberg, Institut für technische Thermodynamik)

Im Auftrag des LfULG wurde im Jahr 2001 eine Studie zur "Bewertung des Grubenwasserpotenzials Sachsens" durchgeführt, in der für geothermisch günstige Grubenwasserstandorte spezielle Recherchen erhoben wurden. So zum Beispiel für

- Bei Grubenwasseranlagen wird die zuständige Genehmigungsbehörde immer im Einzelfall über die notwendigen Schritte entscheiden, sodass hier kein standardisiertes Verfahren in Sachsen vorliegt.
- das Freiberger Erzrevier mit Rothschönberger Stolln,
- I den Steinkohlenbergbau Zwickau,
- den Steinkohlenbergbau Oelsnitz/Erzgebirge,
- den Erzbergbau Niederschlema-Alberoda,
- den Erz-/Spatbergbau Lauta-Marienberg,
- den Spatbergbau Schönbrunn,
- eine ehemalige Erzgrube bei Schwarzenberg.

Mitteltiefe Erdwärmesonden

Mitteltiefe geothermische Systeme – Erdwärmesonden in einer Tiefe von 200 m bis 400 m – dienen wie oberflächennahe Erdwärmesonden der Bereitstellung von Wärme (und gegebenenfalls Kälte) für Gebäude. Vorteilhaft sind ihr geringer Platzbedarf und die mögliche Bereitstellung vergleichsweise hoher Heiz- und Kühlleistungen, nachteilig die höheren Bohrkosten. Bedingt durch die höheren Bohrtiefen und die entsprechend auftretenden größeren Drücke und Temperaturen, bestehen an Planung, Bauausführung und Material höhere Ansprüche.

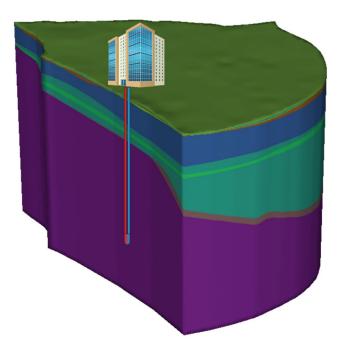


Abbildung 8: Schema einer mitteltiefen Erdwärmesonde (LfULG 2020)

Im Auftrag des LfULG wurde im Jahr 2020 eine Studie zu "Mitteltiefen geothermischen Anlagen in Sachsen" durchgeführt, in der die Einsatzpotenziale mitteltiefer Erdwärmesondensysteme für die sächsischen Ballungsgebiete Leipzig, Dresden und Chemnitz detailliert untersucht, Investitions- und Betriebskostenvergleiche durchgeführt und Handlungsempfehlungen hinsichtlich Planung, baulicher Umsetzung und Überwachung für potenzielle Projekte abgeleitet wurden https://publikationen.sachsen.de/bdb/artikel/36425.

Bisher existieren in Sachsen noch keine mitteltiefen Erdwärmesonden.

Tiefe Geothermie

Die zur Grundlast fähige Erdwärme ist eine geeignete Komponente für die erneuerbare Energie- und Wärmeversorgung. Insbesondere die Tiefengeothermie – also Systeme, bei denen die geothermische Energie über Tiefbohrungen erschlossen wird und deren Energie direkt (das heißt ohne Niveauanhebung) genutzt werden kann – bietet ein erhebliches Potenzial sowohl für die großräumige Wärmeversorgung über Wärmenetze als auch für eine nachhaltige Stromerzeugung. Tiefe Geothermie (bis in 5.000 m Tiefe) gliedert sich in:

- hydrothermale Geothermie, die warme Grundwässer aus Aquiferen direkt nutzt und
- petrothermale Geothermie, die dem Gestein Wärme über einen künstlichen Wasserkreislauf entzieht.

Als klimaschonende Art der Energiegewinnung ist die Erdwärmenutzung nur mit einer geringen Flächeninanspruchnahme verbunden und stellt keinen wesentlichen Eingriff in das Landschaftsbild dar.

Tiefengeothermie wird bereits an zahlreichen Standorten, insbesondere in Süddeutschland, vereinzelt aber auch im Nordosten Deutschlands erfolgreich genutzt. Während Techniken zur Nutzung tiefer heißer Grundwässer (hydrothermale Geothermie) bereits ein hohes Entwicklungsstadium aufweisen, stellt die petrothermale Tiefengeothermie, welche die Wärmenutzung aus dichten quasi-trockenen Gesteinskomplexen beinhaltet, immer noch eine erhebliche wissenschaftliche Herausforderung dar.

Das bisher einzige auf petrothermaler Basis arbeitende Geothermie-Kraftwerk Europas, Soultz-sous-Forêts, ging zum Beispiel erst nach 20-jährigem Forschungsvorlauf in Betrieb (Gérard et al., 2006).

Da aufgrund der geologischen Verhältnisse in Sachsen keine nennenswerten Potenziale für hydrothermale Geothermie-Anwendungen bestehen (Lange et al., 2005), beschränken sich die Nutzungsperspektiven im Grundgebirge Sachsens auf petrothermale Systeme, besonders in Verbindung mit bruchtektonisch vorgeprägten Störungszonen. Dieser Ausgangssituation geschuldet, sind auch Prozesse und Handlungsabläufe noch nicht fest etabliert.

geeigneten Gesteinskomplexen zu schaffen. Im unterirdischen Reservoir wird das über eine Tiefbohrung zugeführte Wasser auf über 130 °C aufgeheizt und mittels einer Förderbohrung einer Kraftwerksanlage zur Stromgenerierung und/oder einer Wärmenutzung zugeführt.

Im Auftrag des LfULG wurde im Jahr 2010 eine Studie zur "Geowissenschaftlichen Modellierung von drei Vorzugsgebieten

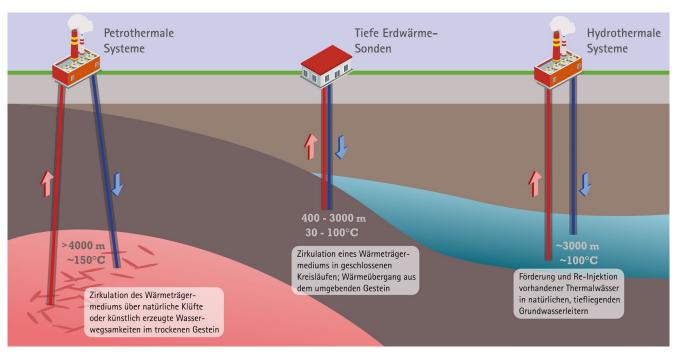
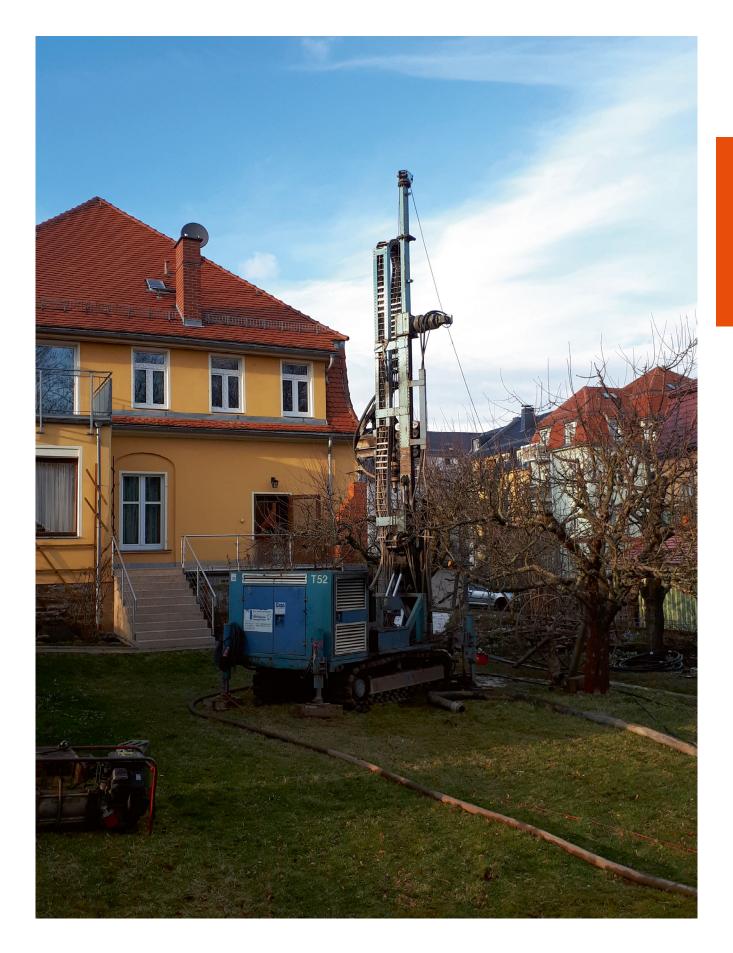


Abbildung 9: Nutzungsmöglichkeiten tiefer Geothermie


In Sachsen treten für hydrothermale Geothermie geeignete tiefliegende wasserführende Sedimentschichten nur in Tiefen bis 2.000 m auf. Das dort angetroffene Wasser besitzt mit rund 60 °C eine relativ geringe Austrittstemperatur und kommt für eine Stromerzeugung nicht infrage.

Eine Stromgenerierung im sächsischen Grundgebirge ist nur über petrothermale Systeme denkbar. Diese Systeme sind in größeren Tiefenbereichen durch die Erschließung von natürlichen Kluftsystemen oder als stimulierte geothermische Reservoire in zur Errichtung eines petrothermalen Geothermie-kraftwerkes in Sachsen" durchgeführt, in der für die Vorzugsgebiete Elbezone, Freiberg und Aue/Schneeberg die vorhandenen geologischen, petrophysikalischen und thermischen Daten recherchiert, komplex ausge-wertet und in 3D-Modellen visualisiert wurden https://www.geologie.sachsen.de/tiefe-geothermie-27219.html.

Derzeit erfolgt in Sachsen keine Nutzung der tiefen Geothermie zur Strom- oder Wärmeerzeugung.

III Verfahrenshandbuch für Vorhaben zum Bau und Betrieb von Anlagen zur Gewinnung von Erdwärme

1 Verfahrenshandbuch zum Bau und Betrieb von Erdwärmesonden in Sachsen

1.1 Bau und Funktionsweise von Erdwärmesonden

In Sachsen erfolgt die Erdwärmenutzung vorrangig mittels Erdwärmesonden. Die Erdwärmesonde, bestehend aus einem oder zwei U-Rohr(en) oder auch einem Koaxial-Rohr (üblicherweise aus Kunststoff), wird in ein meist vertikales, seltener auch schräges Bohrloch eingebaut (siehe Abbildung 1-1). Mit einer solchen Sonde kann dann dem Gestein über ein Wärmeträgermittel (Sole) Wärme entzogen werden.

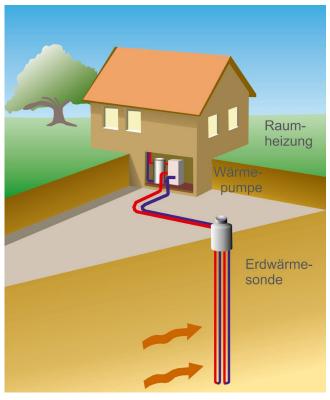


Abbildung 1-1: Schema Erdwärmesonde

Um den Wärmetransport vom Gestein zu den Sonden zu gewährleisten, muss die Bohrung mit möglichst gut wärmeleitfähigen, abdichtenden Materialien verfüllt werden. Die Verfüllung des Bohrlochs dient zudem der Unterbindung von Schadstoffeinträgen und der Abdichtung eventuell durchbohrter Grundwasserleiter gegeneinander. Den Energietransport zur Wärmepumpe (meist Sole/Wasser-Wärmepumpe) übernimmt die in den Sonden zirkulierende Sole (üblicherweise Wasser-Frostschutzmittel-Gemisch der WGK 1 = Wärmeträgermittel).

Die Sonde erschließt die im Erdinneren gespeicherte Wärmeenergie und arbeitet dabei unter weitgehend konstanten Temperaturbedingungen. Die entzogene Wärmeenergie regeneriert sich bei fachgerechter Anlagenplanung allmählich durch nachströmende Wärme aus den umgebenden Bodenschichten, im kombinierten Heiz-/Kühlbetrieb wauch durch übertägig anfallende Abwärme. Diese Technologie ist zum Heizen, Kühlen und Speichern einsetzbar.

Den genannten Vorteilen wie geringer Flächenbedarf, Überbaubarkeit, hohe Zuverlässigkeit und langer Lebensdauer stehen ein Mehraufwand in Auslegung und Einbau sowie die höheren Anschaffungskosten im Vergleich zu konventionellen Heizungen gegenüber. Unter den heutigen Randbedingungen hat sich die Erdwärmeanlage aufgrund der geringeren jährlichen Betriebskosten nach etwa acht bis zehn Jahren amortisiert.

(Hydro)geologische, technische und wirtschaftliche Gründe sind ausschlaggebend für die jeweils abzuteufenden Bohrlochtiefen. Hierbei können durchaus Tiefen von über 100 m notwendig werden, wobei in manchen Fällen einzelne sehr tiefe Bohrungen durch mehrere weniger tiefe Bohrungen kompensiert werden können. In der Regel liegen die Bohrstrecken zwischen 50 m und 100 m Tiefe.

Die Anzahl der Erdwärmesonden liegt, je nach Wärmebedarf des Gebäudes beziehungsweise bereitzustellender jährlicher Heizarbeit, oft zwischen einer bis drei Sonde(n) zur Wärmeversorgung von Einfamilienhäusern und reicht bis hin zu Multisondensystemen (Sondenfeldern) zur Wärme- und Kälteversorgung von Groß-, Gewerbe- und Industriebauten oder Eigenheimsiedlungen.

Die für den benötigten Wärmebedarf erforderliche Anzahl und Tiefe der Erdwärmesonden ist standortkonkret anhand der (hydro)geologischen Gegebenheiten und Platzverhältnisse abzuwägen. Dabei sollte immer eine standortbezogene Prüfung dieser Gegebenheiten bei einer fachgerechten Planung von einer auf dem Gebiet der Geothermie sachkundigen Fachfirma erfolgen.

Die geologischen Verhältnisse sind in Sachsen nicht überall gleich. Hierzu können im LfULG Beratungsmöglichkeiten und die digitalen Kartendienste genutzt werden. https://www.geologie.sachsen.de/

In den meisten Fällen, wie zum Beispiel in der Eigenheimnutzung, beschränkt sich die Anwendungshäufigkeit von Erdwärmesonden mit Sole/Wasser-Wärmepumpen auf Heizleistungen bis 30 kW und Tiefen bis rund 150 m. Dafür werden im Normalfall senkrechte Bohrungen mit Durchmessern von etwa 152 mm beim Einsatz von Doppel-U-Sonden hergestellt.

Die Sonden bestehen in der Regel aus paarweise gebündelten U-förmigen Kunststoffschleifen aus Polyethylen (PE) – U-Rohr oder Doppel-U-Rohr. Daneben gibt es auch noch sogenannte Koaxial-Sonden, bei denen zwei Rohre ineinander in das Bohrloch eingelassen sind. Die Sonden werden nahe der Erdoberfläche zusammengeführt (zum Beispiel in einem Verteilerschacht) und über Sammelleitungen an eine Wärmepumpe angeschlossen. In der gängigen Praxis betragen die äußeren Rohrdurchmesser zwischen 32 mm und 40 mm. Äußere Rohrdurchmesser von 25 mm finden für sehr flache Sondenanlagen (maximal 30 m) und ansonsten als Verfüllschläuche Verwendung.

Der Hohlraum zwischen Bohrlochwand und Sonde wird verfüllt. Wichtig ist eine Verfüllung von unten nach oben (zum Beispiel im Kontraktorverfahren), um Lufteinschlüsse zu vermeiden, die eine erforderliche sichere Abdichtung des Bohrloches gefährden könnten. Das heißt, das Bohrloch muss in der Vertikalen hydraulisch so abgedichtet sein, dass keine Schadstoffe von der Oberfläche eindringen können, eine gegenseitige Beeinflussung von Grundwasserleitern grundsätzlich ausgeschlossen werden kann sowie Bodensetzungen im bohrlochnahen Bereich verhindert werden.

Die Wärmeübertragung untertage erfolgt über eine in dem geschlossenen Sondenkreislauf zirkulierende Sole. Die von der Sole aufgenommene Wärme wird im Verdampfer der Wärmepumpe über den Kältemittelkreislauf an das Heizsystem abgegeben (siehe Abbildung 4).

Eine fachgerechte und ausreichende, durch den Planer vorzunehmende Dimensionierung der Erdwärmesondenanlage vermeidet eine Über- oder Unterdimensionierung der gesamten Anlage. Eine Überlastung führt gegebenenfalls zu verminderter Effizienz oder auch zum Einfrieren der Anlage – bedingt durch einen zu hohen Wärmeentzug.

Sondernutzungen

Eine Sonderform ist die Direktverdampfer-Technologie oder **Phasenwechselsonde**, bei der natürliche Kältemittel wie CO₂, Propan oder Ammoniak zum Einsatz kommen. Dieses Verfahren kann als Sondenform oder als Kollektor genutzt werden. Der Bau von Phasenwechselsonden weicht vom Bau herkömmlicher Erdwärmesonden ab. Das Kältemittel der Anlage sinkt im flüssigen Zustand an der Wand der kunststoffummantelten Metallrohr-Kollektoren nach unten. Durch den Kontakt mit dem "wärmeren" Untergrund wird das absinkende, noch flüssige Kältemittel soweit erwärmt, dass es verdampft. Das jetzt dampfförmige Kältemittel steigt aus eigenem Antrieb wieder nach oben.

Zum Vorteil dieser Wärmegewinnungstechnologie wird keine Umwälzpumpe benötigt. Hinzu kommt, dass der Wärmeübergang von der Sole (Wärmeträgermittel in der Erdsonde) auf das Kältemittel (Wärmeträgermittel in der Wärmepumpe selbst) entfällt, das heißt Erdsonden- und Wärmepumpenkreislauf sind nicht getrennt. Die Feineinstellung von Verdampfertemperatur und Druck ist wegen des größeren Verdampfervolumens (gesamte Sonden-/Kollektorlänge) und damit verbundenen längeren Durchlaufzeiten schwierig und sollte nur von ausgewiesenem Fachpersonal vorgenommen werden.

Je nach Baugrundverhältnissen sind zur Gründung oder Erstellung von Großbauwerken zum Teil tief in den Untergrund reichende Betonkonstruktionen, wie zum Beispiel Gründungspfähle, Schlitz- oder Pfahlwände, Bodenplatten notwendig. Da Beton eine gute Wärmeleitfähigkeit besitzt, eignen sich diese Bauteile hervorragend zur Gewinnung und Speicherung von Energie in Form von Wärme und Kälte.

Diese **thermisch aktiven Bauteile** werden in Analogie zur Erdwärmesonde bereits bei der Herstellung der Betonkonstruktionen Kunststoffrohre als potenzielle Wärmeübertragersysteme in die Armierungskörbe eingebunden (siehe Abbildung 1-2).

Abbildung 1-2: Schema erdberührte Betonbauteile

Der wirtschaftliche Vorteil ergibt sich neben dem ökologischen aus der Tatsache, dass die statisch ohnehin erforderlichen Bauteile zur geothermischen Nutzung mit einem nur geringen Aufwand als Wärmeübertrager mitgenutzt werden. Vorhaben zu erdberührten Betonbauteilen unterliegen dem Baurecht, das im Einflussbereich von Grundwasser die wasserrechtlichen Belange berücksichtigt.

1.2 Rechtsgrundlagen und Verfahren

Die rechtlichen Grundlagen für die Errichtung und den Betrieb von Erdwärmesondenanlagen in Sachsen sind maßgeblich im Wasserhaushaltsgesetz (WHG), Sächsischen Wassergesetz (SächsWG), Bundesberggesetz (BBergG) sowie im Gesetz zur staatlichen geologischen Landesaufnahme sowie zur Übermittlung, Sicherung und öffentlichen Bereitstellung geologischer Daten und zur Zurverfügungstellung geologischer Daten zur Erfüllung öffentlicher Aufgaben (Geologiedatengesetz – (GeolDG)) enthalten.

Wasserrecht

Vor Baubeginn beachten:

Der immer mit dem Bau von Erdwärmesonden verbundene Erdaufschluss (Bohrung) ist nach § 49 Absatz 1 Satz 1 WHG anzeigepflichtig, da die Bohrung sich unmittelbar oder mittelbar auf die Bewegung, die Höhe oder die Beschaffenheit des Grundwassers auswirken kann. Die Anzeige ist bei der unteren Wasserbehörde des Landratsamtes/der Kreisfreien Stadt (Anschriften siehe Teil I, Tabelle 1) mit den entsprechenden Unterlagen spätestens einen Monat vor Bohrbeginn, vorzugsweise unter Nutzung des elektronischen Bohranzeigeverfahrens ELBA.Sax (www.bohranzeige.sachsen.de) abzugeben.

Mit dem Vorhaben darf nach Ablauf einer Frist von einem Monat begonnen werden, sofern die untere Wasserbehörde keine anderweitige Entscheidung getroffen hat (§ 41 Absatz 1 Satz 3 SächsWG).

Der Bau und Betrieb einer Erdwärmesonde kann auch eine Gewässerbenutzung darstellen und bedarf möglicherweise einer behördlichen Erlaubnis (§ 8 WHG).

Nach Eingang der Anzeige prüft daher die zuständige untere Wasserbehörde, ob eine erlaubnispflichtige Benutzung gemäß § 49 Absatz 1 Satz 2 WHG oder § 9 Absatz 2 Nummer 2 WHG bei dem geplanten Bau der Erdwärmesondenanlage vorliegt. Soweit der Bauherr nicht bereits im Rahmen der Anzeige der Bohrung sein Einverständnis für die Durchführung eines kostenpflichtigen Erlaubnisverfahrens erteilt hat, wird der Bauherr durch die untere Wasserbehörde auf die gegebenenfalls bestehende Notwendigkeit der Beantragung einer wasserrechtlichen Erlaubnis hingewiesen. Eine wasserrechtliche Erlaubnis kann zum Schutz des Grundwassers besondere Anforderungen sowohl für Bau als auch Betrieb und Stilllegung der Anlage enthalten.

Kurz und knapp

- Es besteht immer eine wasserrechtliche Anzeigepflicht gegenüber der unteren Wasserbehörde.
- In der Regel wird ein wasserrechtliches Erlaubnisverfahren bei der unteren Wasserbehörde durchgeführt.
- Für alle Bohrungen gilt stets die Anzeigepflicht nach dem GeolGD gegenüber dem LfULG.
- Für Bohrungen tiefer als 100 m gilt die bergrechtliche Anzeigepflicht gegenüber dem Sächsischem Oberbergamt (SOBA).

Die Voraussetzungen für die Erteilung einer wasserrechtlichen Erlaubnis ergeben sich aus § 12 Absatz 1 WHG. Wegen des alleinigen Wärmeentzuges liegt aufgrund der Unerheblichkeit der entstehenden Veränderungen bei Einhaltung der Abstandsregelungen bei kleinen geschlossenen Erdwärmeanlagen im Einfamilienhausbereich meist kein Benutzungstatbestand vor. Dennoch kann das Vorhaben in Abhängigkeit von den nachfolgend dargestellten Gegebenheiten häufig einer Erlaubnis bedürfen.

Stoffbezogene Prüfung

Werden bei den Arbeiten zur Errichtung der Erdwärmesonde Stoffe in das Grundwasser eingebracht, ist eine Erlaubnis erforderlich, wenn sich das Einbringen nachteilig auf die Grundwasserbeschaffenheit auswirken kann (§ 49 Absatz 1 Satz 2 WHG). Aus der stoffbezogenen Prüfung können sich Auflagen für die beim Bohren und beim Ausbau der Bohrung einzusetzenden Materialien ergeben. Eine Produktzulassung der verwendeten Stoffe beeinflusst nicht die Erlaubnispflicht, sondern die Erlaubnisfähigkeit, das heißt, wurde bei der Produktzulassung das Umweltrecht berücksichtigt, so ist die fachliche Prüfung vorweggenommen und die diesbezügliche Erlaubnis kann grundsätzlich ohne weitere Prüfung erteilt werden.

Standortbezogene Prüfung

Im Regelfall wird außerhalb der unten aufgeführten, besonders sensiblen Gebiete, bei fachgerechtem Bau und Betrieb einer Anlage davon auszugehen sein, dass eine Erlaubnisfähigkeit vorliegt.

Im Rahmen der standortbezogenen Prüfung wird die untere Wasserbehörde sowohl die wasserwirtschaftliche als auch, unter Beteiligung des LfULG, die örtliche hydrogeologische Situation berücksichtigen. Im Ergebnis können sich insbesondere in sensiblen Gebieten spezielle Anforderungen an die Errichtung von Erdwärmesonden und auch Nutzungseinschränkungen ergeben.

Hydrogeologisch sensible Gebiete sind solche, an denen die über dem Grundwasser befindlichen schützenden Schichten besonders gefährdet sind – beispielsweise durch die Beseitigung der schützenden Deckschichten, das Durchteufen von stockwerkstrennenden Schichten sowie das Erbohren artesisch gespannter Grundwässer (Zustand, bei dem gespanntes Grundwasser selbstständig ausfließt). Bei unsachgemäßem Ausbau beziehungsweise unzureichender Verwahrung von Bohrlöchern sind durch hydraulische Kurzschlüsse negative Auswirkungen auf die Grundwasserqualität geschützter Grundwasserleiter zu erwarten. Hydrogeologisch sensible Gebiete bestehen darüber hinaus in Kluft-, Karst- und Porengrundwasserleitern, wenn die Errichtung von Erdwärmesonden eine Reduzierung beziehungsweise Unterbindung von Wasserwegsamkeiten und damit hydraulische Veränderungen im örtlichen Grundwasserströmungsbild zur Folge hat.

Hydrogeologisch sensible Gebiete:

- Gebiete mit Deckschichten, die wirtschaftlich bedeutsame Grundwasservorkommen schützen,
- gespannte und insbesondere artesisch gespannte Grundwasserleiter,
- tiefe Grundwasserleiter (zum Beispiel Buntsandstein der Bornaer Mulde),
- Grundwasserleiter im ausgeprägten Stockwerksbau (wenn oberster Grundwasserleiter durchbohrt wird),
- Gebiete, in denen mit bohr- und ausbautechnischen Schwierigkeiten zu rechnen ist (zum Beispiel Karstgebiete, Subrosionsbildungen, Hohlraumgebiete und
- Hohlraumverdachtsgebiete (Altbergbau), hydraulisch wirksame Störungs- und Bruchzonen),
- Gebiete mit einer hohen Wasserdurchlässigkeit der Gesteine,
- Gebiete mit quellfähigen oder löslichen Gesteinen, in denen durch die Bohrung Grundwasserleiter mit unterschiedlichen Druckniveaus und/oder unterschiedlicher Grundwasserbeschaffenheit miteinander verbunden werden können.

Ergänzend zur Beurteilung der hydrogeologischen Situation stellt die zuständige untere Wasserbehörde in wasserwirtschaftlich sensiblen Gebieten spezielle Anforderungen an den Bau von Erdwärmesonden beziehungsweise kann deren Errichtung gegebenenfalls auch ablehnen.

Wasserwirtschaftlich sensible Gebiete:

- Wasserschutzgebiete
- Gebiete mit gehäuften, herausragenden beziehungsweise sensiblen Gewässerbenutzungen
- Gebiete mit Boden- oder Grundwasserverunreinigungen
- Bergbau-/Altbergbaugebiete
- Gewässerrandstreifen, Überschwemmungsgebiete und überschwemmungsgefährdete Gebiete

Lage in Wasserschutzgebieten: Die Errichtung einer Erdwärmesondenanlage im Trinkwasserschutzgebiet beziehungsweise Arbeiten im Zusammenhang mit ihrer Errichtung können entsprechend der Trinkwasserschutzgebietsverordnung ausgeschlossen oder nur eingeschränkt zulässig sein. Befreiungen von den Anforderungen der Trinkwasserschutzgebietsverordnung sind gemäß § 52 Absatz 1 Satz 2 WHG im Einzelfall möglich, wenn der Schutzzweck der Wasserschutzgebietsverordnung nicht gefährdet wird oder überwiegende Gründe des Wohls der Allgemeinheit dies erfordern. In Heilquellenschutzgebieten gelten die Ausführungen zu den Trinkwasserschutzgebieten entsprechend.

Lage in Gebieten mit gehäuften, herausragenden beziehungsweise sensiblen Gewässerbenutzungen (zum Beispiel Mineraloder Thermalwassergewinnung, Trinkwassergewinnung zur Lebensmittelherstellung, Grundwasserentnahmestellen nach Wassersicherstellungsgesetz, hohe Hausbrunnendichte): Gegebenenfalls wird im wasserrechtlichen Verfahren entschieden, ob betroffene Dritte einbezogen werden.

Lage in Gebieten mit bestehenden Boden und/oder Grund-wasserverunreinigungen: Innerhalb des kontaminierten Bereiches einer Altlast, einer schädlichen Boden- oder einer Grund-wasserverunreinigung hängt die Zulässigkeit der Errichtung von Erdwärmesondenanlagen von den Umständen des Einzelfalles ab, da hier die Gefahr der Verschleppung von Kontaminationen in tiefe Boden- und Grundwasserbereiche besteht.

Standorte mit aktivem Bergbau/Altbergbau: Da hier Probleme beim Bohren beziehungsweise Verfüllen der Bohrung auftreten können, hängt auch hier die Zulässigkeit der Errichtung von den Umständen des Einzelfalles ab.

Lage innerhalb eines Gewässerrandstreifens: Die Errichtung von Erdwärmesondenanlagen innerhalb eines Gewässerrandstreifens ist verboten (§ 38 Absatz 4 Satz 2 Nummer 3 WHG, § 24 Absatz 3 Nummer 2 SächsWG). Von dem Verbot kann eine Befreiung erteilt werden, wenn überwiegende Gründe des Wohls der Allgemeinheit die Maßnahme erfordern oder das Verbot im Einzelfall zu einer unbilligen Härte führt.

Lage in Überschwemmungsgebieten: In festgesetzten Überschwemmungsgebieten sowie in Überschwemmungsgebieten kraft Gesetzes (§ 72 Absatz 2 SächsWG) oder vorläufig gesicherten Überschwemmungsgebieten (§ 76 Absatz 3 WHG) ist gemäß § 78 Absatz 4 Satz 1 WHG die Errichtung von (Wohn-)Gebäuden mit Erdwärmesondenanlagen untersagt. Gemäß § 78 Absatz 5 Satz 1 WHG kann unter den dort genannten Voraussetzungen im Einzelfall hierfür eine Genehmigung erteilt werden.

Lage in überschwemmungsgefährdeten Gebieten: Erdwärmesondenanlagen sind entsprechend § 75 Absatz 5 Satz 2 SächsWG so zu errichten, dass der Eintrag wassergefährdender Stoffe bei Überschwemmungen verhindert wird.

Soweit es sich um Erdwärmesonden im Bereich der gewerblichen Wirtschaft und im Bereich öffentlicher Einrichtungen handelt, gelten ergänzend die besonderen Anforderungen der Verordnung zum Umgang mit wassergefährdenden Stoffen (AwSV).

Die Erteilung der wasserrechtlichen Erlaubnis beziehungsweise die Gewährung eventuell notwendiger Ausnahmen von Verboten stehen im pflichtgemäßen Ermessen der zuständigen Wasserbehörde.

Bei gegebenenfalls notwendigen Schutzgüterabwägungen und der Ermessensausübung ist der neue § 2 Satz 1 und 2 Erneuerbare-Energie-Gesetz (EEG, 2023) zu berücksichtigen. Danach "liegen die Errichtung und der Betrieb von Anlagen sowie den dazugehörigen Nebenanlagen im überragenden öffentlichen Interesse und dienen der öffentlichen Sicherheit. Bis die Stromerzeugung im Bundesgebiet nahezu treibhausgasneutral ist, sollen die erneuerbaren Energien als vorrangiger Belang in die jeweils durchzuführenden Schutzgüterabwägungen eingebracht werden." Ergänzend wird hierzu in der Gesetzesbegründung (BT-Drs. 20/1630) ausgeführt, dass die erneuerbaren Energien nur im Ausnahmefall überwunden werden können und für den Fall des planungsrechtlichen Außenbereichs, wenn keine Ausschlussplanung erfolgt ist, andere öffentliche Interessen den erneuerbaren Energien als wesentlicher Teil des Klimaschutzgebotes dann entgegenstehen, wenn sie mit einem dem Artikel 20a Grundgesetz (GG) vergleichbaren verfassungsrechtlichen Rang gesetzlich verankert beziehungsweise gesetzlich geschützt sind oder einen gleichwertigen Rang besitzen. Hier ist beispielsweise die gesicherte Wasserversorgung als besonders wichtiges auch mit Verfassungsrang ausgestattetes Gemeinwohlbelang zu berücksichtigen.

Das Vorhandensein von Trinkwasser in ausreichender Quantität und Qualität ist für die nach Artikel 2 Absatz 2 GG geschützten Güter des menschlichen Lebens und der menschlichen Gesundheit (körperliche Unversehrtheit) von maßgeblicher Bedeutung. So wird dem Schutz des Grundwassers zum Zwecke der Trinkwasserversorgung gemäß § 39 Absatz 2 Satz 2 SächsWG Priorität vor allen anderen Nutzungsarten eingeräumt.

Soweit konkrete Anhaltspunkte für eine Gefährdung der Trinkwasserversorgung bestehen, kann daher der im § 2 EEG (2023) verankerte Vorrang der erneuerbaren Energien nicht mehr greifen.

Hinsichtlich der Einzelheiten zum Verfahren ist die örtlich zuständige untere Wasserbehörde Ansprechpartner.

- → Geothermische Informationen (Abteilung Geologie des LfULG) Geothermieatlas: https://lsng.de/erdwaerme
- → (Hydro)Geologie: Information der Abteilung Geologie des LfULG https://www.geologie.sachsen.de/
- → Trinkwasser- und Heilquellenschutzgebiete: Information bei unterer Wasserbehörde sowie Verzeichnis und interaktive Karte Wasserschutzgebiete des LfULG https://www.wasser.sachsen.de/wasserschutzgebiete-12591.html
- → Einzugsgebiete von wirtschaftlich bedeutsamen Grundwasserentnahmen, beispielsweise Mineralwassergewinnungen (Information bei unterer Wasserbehörde)
- → Überschwemmungsgebiete: Information bei unterer Wasserbehörde; Verzeichnis und interaktive Karte Überschwemmungsgebiete des LfULG unter https://luis.sachsen.de/fachbereich-wasser.html
- → Bestehende Gewässerbenutzungen (Information bei unterer Wasserbehörde; Digitales Wasserbuch
- → Boden- und Grundwasserverunreinigungen: Information bei unterer Abfall-/Altlasten-/Bodenschutzbehörde
- → Grubenwasservorkommen: Information beim SOBA sowie beim LfULG
- → Altbergbau: Information beim SOBA; Übersichtskarte unterirdische Hohlräume https://www.oba.sachsen.de/hohlraumkarte-4918.html

Fristen für die Entscheidung über die Erlaubnis:

Die zuständige Behörde entscheidet gemäß § 11a Absatz 5 Satz 1 Nummer 1b oder 2b WHG über die Erteilung der Erlaubnis:

- innerhalb eines Jahres bei Bau und Betrieb einer Erdwärmesonde, wenn das Vorhaben der Erzeugung von Strom mit einer Kapazität < 150 kW dient,
- 2. innerhalb von zwei Jahren bei Bau und Betrieb einer Erdwärmesonde, wenn das Vorhaben der Erzeugung von Strom in einem Kraftwerk dient.

Die untere Wasserbehörde kann die jeweilige Frist nach Satz 1 einmalig um bis zu 18 und längstens um 24 Monate verlängern, soweit die Prüfung von Anforderungen nach umweltrechtlichen Vorschriften, die der Umsetzung entsprechender Vorgaben der Europäischen Gemeinschaften oder der Europäischen Union dienen, insbesondere die Prüfung der Einhaltung der Bewirtschaftungsziele, mit einem erhöhten Zeitaufwand verbunden ist. Im Übrigen kann die untere Wasserbehörde die jeweilige Frist nach Satz 1 um bis zu einem Jahr verlängern, wenn außergewöhnliche Umstände vorliegen. Sie teilt die Fristverlängerung dem Träger des Vorhabens mit. Die Frist beginnt mit Eingang der vollständigen Antragsunterlagen.

Befristet für den Geltungszeitraum der Verordnung (EU) 2022/2577 des Rates vom 22. Dezember 2022 zur Festlegung eines Rahmens für einen beschleunigten Ausbau der Nutzung erneuerbarer Energien (ABI. L 335 vom 29.12.2022, S. 36) – derzeit bis 30. Juni 2024 – wird die nationale Frist des 11a Absatz 5 WHG gemäß Artikel 7 Absatz 1 der genannten Verordnung auf 3 Monate verkürzt, um den Ausbau der erneuerbaren Energien (EE) zusätzlich zu beschleunigen und um das Ausmaß der aktuellen Energiekrise sowie ihrer potenziellen sozialen, wirtschaftlichen und finanziellen Auswirkungen zumindest zum Teil abzufedern.

Während des Einbaus der Erdwärmesonde beachten:

Nach Sondeneinbau und Bohrlochringraum-Verfüllung sowie vor Inbetriebnahme der Erdwärmeanlage sind Druckprüfungen durchzuführen und das nach VDI 4640 Blatt 2 entsprechend ausgefüllte Prüfzeugnis der unteren Wasserbehörde zu übergeben. Die untere Wasserbehörde wird hierauf entweder im Anzeigeverfahren oder im Rahmen der wasserrechtlichen Erlaubnis hinweisen.

Nach dem Bau der Erdwärmesondenanlage veranlassen:

Spätestens vier Wochen nach Abschluss der Aufschlussarbeiten sind die für die Gewässeraufsicht bedeutsamen Angaben (zum Beispiel zu Bodenschichten, Grundwasserstand) sowie die vollständige Anlagendokumentation der unteren Wasserbehörde zuzuleiten. Die Anlagendokumentation sollte folgende Unterlagen enthalten: maßstabsgetreuer Lageplan mit Kennzeichnung

der Bohrpunkte/Sondenstandorte, Ausbauplan der Erdwärmesondenanlage, eingebrachtes Volumen der Ringraumabdichtung, Leitungsführung, eingebrachtes Volumen des Wärmeträgermittels sowie dessen Mischungsverhältnis, optische Überprüfung der U-Rohr-Schweißverbindungen, Durchflussprüfung und Druckprüfung. Die untere Wasserbehörde wird hierauf entweder im Anzeigeverfahren oder im Rahmen der wasserrechtlichen Erlaubnis hinweisen.

Bergrecht

Nach § 3 Abs. 2 Satz 2 Nummer 2 b) BBergG gilt Erdwärme als bergfreier Bodenschatz, der grundsätzlich dem Anwendungsbereich des bergrechtlichen Regimes unterliegt. Das Bundesberggesetz nimmt jedoch in § 4 Abs. 2 Nummer 1 BBergG die Gewinnung von Bodenschätzen und damit auch von Erdwärme in einem Grundstück im Zusammenhang mit dessen baulicher Nutzung vom Anwendungsbereich des Bergrechts aus. Gleiches gilt für die Aufbereitung von Erdwärme nach § 4 Abs. 3 Satz 2 Halbsatz 2 BBergG. Diese Ausnahmen enthalten keine bezifferte Tiefenbegrenzung. In § 127 BBergG wird lediglich eine Grenze von 100 Metern für die technische Überwachungsvorschrift festgelegt, die für Bohrungen generell gilt.

Die Gewinnung von Erdwärme in einem Grundstück im Zusammenhang mit dessen baulicher Nutzung mit den üblichen Bohrtechniken fällt grundsätzlich nicht in den Anwendungsbereich des Bundesberggesetzes, sondern unterliegt ab 100 Metern lediglich der technischen Überwachungsvorschrift des § 127 BBergG. In der Praxis genügt dann das Anzeigeverfahren. Eine bergrechtliche Erlaubnis oder Bewilligung dieser oberflächennahen Erdwärmenutzung ist nicht erforderlich.

Erdwärme im Sinne des Bundesberggesetzes und damit bergrechtlich relevant ist folglich nur die Geothermie, die aus tiefen, geologischen Reservoiren gewonnen wird und die unmittelbar oder nach Umwandlung in elektrische Energie zur Versorgung des Marktes, also einer Vielzahl von Abnehmern zur Verfügung gestellt werden kann und damit von volkswirtschaftlicher Relevanz ist (so auch von Hammerstein in Boldt/Weller, Bundesberggesetz, 2. Aufl., 2015, § 3 Rdnr. 47 ff). Indizien für eine solche Einstufung liegen vor, wenn die Gewinnungsanlage eine maximale Heizleistung von 0,2 MW überschreitet oder bei einer Tiefe des Erdwärmehorizontes von mehr als 400 m.

Die bergrechtliche Anzeigepflicht gilt unabhängig von der wasserrechtlichen Anzeigepflicht und dem damit gegebenenfalls verbundenen wasserrechtlichen Erlaubnisverfahren.

Da in weiten Teilen Sachsens mit Altbergbau gerechnet werden muss, wird allen Bauherren empfohlen, vor Beginn der Bohrarbeiten eine Mitteilung über unterirdische Hohlräume gemäß § 7 Sächsische Hohlraumverordnung bei der Bergbehörde einzuholen.

Geologiedatengesetz

Nach § 8 Absatz 1 GeolDG sind alle Bohrungen (unabhängig von ihrer geplanten Tiefe) durch den Bohrunternehmer spätestens zwei Wochen vor Beginn der Arbeiten beim LfULG anzuzeigen.

Nach Abschluss der Bohrung (spätestens sechs Monate nach dem Niederbringen der Bohrung) sind dem LfULG die Bohrergebnisse in Form der(s) Schichtenverzeichnisse(s) und zugehörige Untersuchungsergebnisse (Pumpversuche, Korngrößenanalysen, geophysikalische Untersuchungen und so weiter) mitzuteilen. Diese Unterlagen können digital als PDF/A-Dateien beziehungsweise über das Elektronische Bohranzeigeverfahren ELBA.Sax übergeben werden.

Die Bohrproben und sonstiges Beobachtungsmaterial sind vom Bohrunternehmen aufzubewahren, zu sichern und dem LfULG auf Verlangen zur Verfügung zu stellen (siehe §§ 8 ff. in Verbindung mit § 14 GeolDG). Sie dürfen erst nach Absprache und nur mit Erlaubnis des LfULG vernichtet werden.

Weitere Rechtsvorschriften

Darüber hinaus sind noch andere Rechtsvorschriften (wie das Gesetz zur Suche und Auswahl eines Standortes für ein Endlager für hochradioaktive Abfälle (Standortauswahlgesetz – (StandAG) und Abgabenordnung (AO) zu beachten:

Am 28. September 2020 sind die Teilgebiete veröffentlicht worden, die günstige geologische Voraussetzungen für die sichere Endlagerung radioaktiver Abfälle erwarten lassen. Die dabei identifizierten Gebiete sind vor Veränderungen zu schützen, damit ihre Eignung als Endlagerstandort nicht beeinträchtigt wird. § 21 StandAG regelt daher Sicherungsvorschriften, wobei für Bohrungen in identifizierten Gebieten mit mehr als 100 m Tiefe definierte Ausnahmetatbestände erfüllt sein müssen. Diese Prüfung nehmen die Behörden ohne zusätzliche Antragstellung von sich aus vor.

Geht die Errichtung einer Erdwärmeanlage mit der Eröffnung eines gewerblichen Betriebes oder einer Betriebsstätte, jeweils im steuerlichen Sinn, einher, ist dies nach § 138 Absatz 1 AO anzuzeigen.

Im Fall einer Betriebseröffnung besteht nach § 138 Absatz 1b und 4 AO ferner die Verpflichtung, dem zuständigen Finanzamt innerhalb eines Monats nach Eröffnung weitere Auskünfte über die für die Besteuerung erheblichen rechtlichen und tatsächlichen Verhältnisse nach amtlich vorgeschriebenem Datensatz zu erteilen (Fragebogen zur steuerlichen Erfassung). Für die elektronische Übermittlung steht das Internetportal "Mein ELSTER" zur Verfügung. In diesem Zusammenhang hat der Anlagenbetreiber auch die Höhe der voraussichtlich zu erzielenden Umsätze anzugeben und kann verschiedene Wahlrechte hinsichtlich des umsatzsteuerlichen Besteuerungsverfahrens ausüben.

ELBA.Sax

Mit ELBA.Sax (Elektronische Bohranzeige Sachsen) wird für die Anzeigeverfahren nach dem WHG in Verbindung mit dem SächsWG, BBergG und GeolDG internetbasiert ein gebündelter Zugang zum Einreichen der Bohranzeige bei den zuständigen Behörden (untere Wasserbehörden der Landkreise/Kreisfreien Städte, SOBA und LfULG) zur Verfügung gestellt (www.bohranzeige.sachsen.de).

Wird für die Anzeige ELBA.Sax genutzt, müssen für ein Bohrvorhaben in Sachsen nicht mehr mehrere Anzeigen erfolgen, sondern es ist nur noch eine einzige Anzeige notwendig. Alle für ein Bohrvorhaben zuständigen Behörden erhalten die Anzeige und werden beteiligt.

Einheitliche Stelle

Auf Antrag des Trägers des Vorhabens kann das gegebenenfalls notwendige Erlaubnisverfahren sowie alle sonstigen Zulassungsverfahren und Anzeigen, die für die Errichtung der Erdwärmesondenanlage nach Bundes- oder Landesrecht erforderlich sind, über eine einheitliche Stelle abgewickelt werden (§ 11a Absatz 2 WHG). Die Inanspruchnahme der einheitlichen Stelle ist freiwillig. Die einheitliche Stelle dient als Kontaktpunkt und kann für den Vorhabensträger zur Verfahrensvereinfachung und Beschleunigung Serviceleistungen wahrnehmen. So berät und unterstützt die einheitliche Stelle während des Erlaubnisverfahrens den Antragsteller. Dies betrifft den Zeitpunkt ab Antragseingang bis zur Mitteilung des Ergebnisses. Die einheitliche Stelle führt auf Wunsch des Antragstellers diesen durch das Erlaubnisverfahren, stellt ihm alle erforderlichen Informationen zur Verfügung und bezieht gegebenenfalls andere Verwaltungsbehörden ein.

Die Befugnisse der jeweils für die sachliche Prüfung und Entscheidung zuständigen Behörde bleiben jedoch unberührt – die einheitliche Stelle hat nur koordinierende Aufgaben zur Unterstützung des Antragstellers.

Einheitliche Stelle für die Errichtung einer Erdwärmesondenanlage ist in Sachsen die jeweils örtlich zuständige untere Wasserbehörde (siehe Tabelle 1), sofern kein Verfahren nach dem BBergG zu führen ist.

Abbildung 1-3 vermittelt einen Überblick zu den Anzeige- und Genehmigungsverfahren in Sachsen.

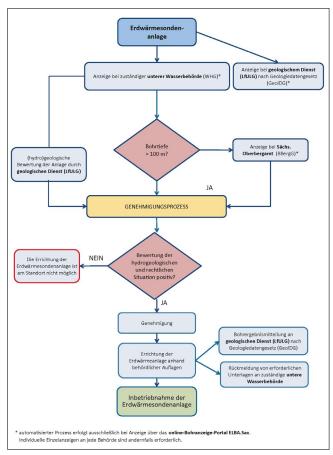


Abbildung 1-3: Schema Verfahrensablauf Genehmigungsprozess einer Erdwärmesondenanlage

1.3 Anforderungen an Planung von Erdwärmesondenanlagen

Neben der Planung, dem fachgerechten Bau und dem Errichten der Erdwärmesonden, sollte die fachgerechte Installation und regelmäßige Überprüfung der Wärmepumpe sowie die Systemanbindung sichergestellt werden.

Eine moderne Wärmepumpe kann nur dann effizient genutzt werden, wenn die Wärmequellenanlage, zum Beispiel die Erdwärmesonde, korrekt ausgelegt und installiert ist. Es empfiehlt sich daher, Fachunternehmen mit der Ausführung der Bohr- und Ausbauarbeiten zu beauftragen, die über einen Nachweis ihrer besonderen Fachkunde auf diesem Gebiet verfügen.

Informationen zu den (hydro)geologischen Verhältnissen können unter anderem aus den Kartendiensten des LfULG und deren Erläuterungen entnommen werden. Abhängig von den (hydro) geologischen Verhältnissen am Standort und den damit verbundenen geothermischen Gegebenheiten kann die benötigte Sondenlänge variieren.

Um zu verhindern, dass sich die Auswirkungen mehrerer Anlagen aufsummieren und damit zu schädlichen Auswirkungen führen können, wird empfohlen einen Abstand zur Grundstücksgrenze von mindestens 3 m einzuhalten.

Erdwärmesonden sollen fachgerecht und ausreichend dimensioniert sein. Andernfalls können im Wärmeträgermittel, in der Ringraumverfüllung sowie im umgebenden Gestein Temperaturen im Frostbereich auftreten, die Schäden an den Sonden und dem Verfüllbaustoff sowie Veränderungen am umgebenden Gestein verursachen und in der Folge nachteilige Auswirkungen auf die Grundwasserbeschaffenheit bewirken können.

Bei der Auslegung der Erdwärmesondenanlage ist ein Betriebszeitraum von 50 Jahren zu betrachten. Der zugrunde gelegte Wärmentzug beruht auf einer mittleren minimalen Wärmeträgertemperatur aus Vor- und Rücklauf der Erdwärmesonde(n) von -1,5 °C. Wird gleichzeitig während des Betriebes im Rücklauf von der Wärmepumpe in die Erdwärmesonde(n) eine minimale Temperatur von -3 °C nicht unterschritten, kann von einem quasi-frostfreien Betrieb der Erdwärmesondenanlage ausgegangen werden.

Kleinere Anlagen bis 30 kW Heizleistung

(zum Beispiel bei Einfamilienhäusern) sollten fachgerecht zum Beispiel nach VDI 4640 Blatt 2 oder den im sächsischen Geothermieatlas zur Verfügung stehenden Daten geplant und dimensioniert werden.

Die zur Auslegung der Erdwärmeanlage relevanten Kennwerte sind die spezifische Wärmeleitfähigkeit des Gesteins, die Untergrundtemperaturen und die spezifische Entzugsleistung. Daten zur **spezifischen Gesteinswärmeleitfähigkeit** sind zum Beispiel in der VDI 4640 Blatt 1 zu finden.

Die spezifische Entzugsleistung ist kein reiner gesteinsphysikalischer Wert und hängt neben den Untergrundeigenschaften von einer Vielzahl anderer Faktoren, wie zum Beispiel der Heizleistung, Jahresarbeitszahl und den Jahresbetriebsstunden der eingesetzten Wärmepumpe ab. Sie wird für Erdwärmesonden in Watt pro Meter Sondenlänge (W/m) angegeben. Die spezifische Entzugsleistung ist eine Funktion der Wärmeleitfähigkeit des Untergrundes und variiert somit je nach Untergrundbeschaffenheit, Wassergehalt und technischen Randbedingungen. Die spezifische Wärmeentzugsleistung kann zur Erstabschätzung eines Erdwärmevorhabens und zur Auslegung von kleineren Erdwärmesondenanlagen im Einfamilienhausbereich herangezogen werden. Die Werte schwanken je nach vorhandenen Gesteinsschichten und Betriebsweise der Wärmepumpe und sind nur für kleinere Anlagen mit einer Heizleistung < 30 kW sowie ohne Kühlung als Erstabschätzung verwendbar.

Der Sächsische Geothermieatlas bietet Erstinformationen für eine Erdwärmeanlagenplanung. Der Geothermieatlas besteht aus dem Geothermischen Kartenwerk im Maßstab 1:50.000, welches speziell für den in Sachsen verbreiteten Typ der Erdwärmesondenanlagen entwickelt wurde. Er wird fortlaufend durch das LfULG erarbeitet und im Internet interaktiv zur Verfügung gestellt. https://www.geologie.sachsen.de/oberflaechennahe-geothermie-27222.html

Der Geothermieatlas gibt Bauherrn, Bohrfirmen und Planern einen ersten Überblick über die geothermischen Entzugsleistungen für eine Erdwärmenutzung auf einem Grundstück und dient damit einer planerischen Unterstützung von Erdwärmesondenvorhaben im Einfamilienhausbereich (< 30 kW Heizleistung).

Erdwärme in Sachsen
Heizen und Kühlen - nachhaltig und effizient!

Die interaktiven Karten ermöglichen, die verfügbaren spezifischen Entzugsleistungen in Watt pro Meter Sondenlänge (W/m) für vier verschiedene Tiefenstufen (40 m, 70 m, 100 m, 130 m) und zwei verschiedene Jahresbetriebsstunden (1800 h, 2400 h) abzulesen – bezogen auf ein Standard-Einfamilienhaus in Sachsen mit 10 kW Heizleistung. Die Bedienung der interaktiven Karte, Rechenbeispiele sowie Informationen zur Entstehung der Karten sind im dazugehörigen Erläuterungstext aufgeführt.

Die Eignung eines Standortes zur Erdwärmenutzung hängt von der (hydro)geologischen Beschaffenheit der unmittelbaren Sondenumgebung ab. Letztere beeinflusst zusammen mit der jährlichen Betriebsdauer maßgeblich die Effizienz der Erdwärmenlage. Für die praktische Planung einer Erdwärmesondenanlage stellt der Geothermieatlas eine erste Orientierungshilfe dar. Die Karten sind nicht als Planungsgrundlage für die konkrete Dimensionierung von Sondenlängen zu verwenden, da jede Abweichung der technischen Rahmenparameter vom zugrunde gelegten Standardtyp "Einfamilienhaus" zu einer Veränderung der Ergebnisse führen kann.

Die sorgfältige Planung und konkrete Wirtschaftlichkeitsberechnung von Einzelvorhaben soll damit unterstützt, jedoch keinesfalls ersetzt werden. Standortgenaue Aussagen bedürfen einer Beurteilung der Ausgangsbedingungen vor Ort (zum Beispiel durch ein geologisches Ingenieurbüro, Energieberater und Heiztechniker).

Für große Anlagen (≥ 30 kW) sind weitergehende (hydro)geologische Erkundungen erforderlich (zum Beispiel durch ein auf diesem Gebiet versiertes Ingenieurbüro). Bei größeren Erdwärmevorhaben mit einer Heizleistung ≥ 30 kW wird eine Bestimmung der gemittelten Wärmeleitfähigkeit sowie des Temperaturprofils über die Bohrtiefe an einer Erstbohrung notwendig. Die Bestimmung der Wärmeleitfähigkeit erfolgt mittels eines Thermal-Response-Testes nach den Bestimmungen der VDI 4640 Blatt 5. Mit den erhaltenen Ergebnissen muss dann eine fachgerechte nachvollziehbare Anlagendimensionierung den Vorgaben des wasserrechtlichen Bescheides sowie nach sowie nach VDI 4640 Blatt 2 erfolgen.

1.4 Anforderung an Bauausführung und Betrieb von Erdwärmesondenanlagen

Die Errichtung von Erdwärmesondenanlagen soll unter Beachtung der allgemein anerkannten Regeln der Technik erfolgen.

Grundsätzlich sind die maßgebenden DIN-Normen, VDI-Richtlinien und DVGW-Regelwerke zu beachten.

Die Herstellung von Erdwärmesonden ist eine Bauleistung. Es sollte daher hinsichtlich der Ausführung auf leistungsfähige/ erfahrene Fachunternehmen mit qualifiziertem Fachpersonal zurückgegriffen werden (zum Beispiel Brunnenbauerhandwerk, Bohrunternehmen). Die zu beauftragenden Fachfirmen müssen über die notwendige fachliche und technische Leistungsfähigkeit verfügen. Für die Bohr- und Ausbauarbeiten wird empfohlen, Fachunternehmen mit der Ausführung dieser Arbeiten zu beauftragen, die über einen Nachweis ihrer besonderen Fachkunde auf diesem Gebiet verfügen. Für den Bereich der Herstellung von Erdwärmesonden existieren derzeit verschiedene Zertifizierungsverfahren. Unter anderem anhand derer können die Fachunternehmen ihre besondere Fachkunde nachweisen, zum Beispiel DVGW W 120-2 (A).

Bauausführung

Folgende technische Anforderungen an Bauausführung, Dokumentation und Betrieb von Erdwärmesondenanlagen sollten von den Fachfirmen bei sämtlichen Bohr- und Ausbauarbeiten standardmäßig beherrscht werden.

- Das DVGW W 115 (A) und das DVGW W116 (A) sollen beim Niederbringen einer Bohrung beachtet werden.
- Die Wahl von Materialien, Bohrspülungszusätzen, Sonden, Verfüllmaterial, Wärmeträgermittel soll nach Empfehlungen der VDI 4640 erfolgen, der Wärmepumpeneinsatz nach DIN 8901. Die Errichtung der Erdwärmesondenanlage ist bezüglich auftretender Vorkommnisse oder Besonderheiten wie Spülungsverluste, Erbohren artesisch gespannten Grundwassers, Probleme bei der Ringraumverfüllung und Ähnlichem genauestens zu dokumentieren. Einzuleitende Maßnahmen sind mit der zuständigen unteren Wasserbehörde abzustimmen.
- Für den Schutz von Bäumen und Pflanzenbeständen sind die DIN 18920 "Schutz von Bäumen, Pflanzenbeständen und Vegetationsflächen bei Baumaßnahmen" in Verbindung mit der RAS-LP 4 "Richtlinie für die Anlage von Straßen, Teil Landschaftspflege, Abschnitt 4" sowie eventuelle kommunale Baumschutzsatzungen zu beachten und einzuhalten.

- Auf die prinzipielle Sorgfaltspflicht bei Maßnahmen, mit denen Einwirkungen auf ein Gewässer verbunden sein können und beim Umgang mit wassergefährdenden Stoffen gemäß § 5 Absatz 1 WHG und § 59 SächsWG wird verwiesen. Jegliche nachteilige Veränderung der Beschaffenheit des Grundwassers ist auszuschließen. Unfälle mit wassergefährdenden Stoffen sind der Wasserbehörde oder Polizei unverzüglich anzuzeigen, wenn diese nicht mit einfachen betrieblichen Mitteln beseitigt werden können. Der Verursacher muss in Eigenverantwortung Sofortmaßnahmen zur Schadensbehebung oder -minimierung ergreifen.
- Im Interesse des Grundwasserschutzes soll eine sorgfältige (hydro)geologische Dokumentation der durchgeführten Bohrarbeiten erfolgen. Dazu gehört die Dokumentation der angetroffenen Schichten mit detaillierter Schichtbeschreibung, der Wasseranschnitte, des Wasserandranges sowie speziell im Festgestein der festgestellten Kluft- und Störungszonen.
- Um die Bohrung sicher abzudichten und einer Beschädigung der Sondenschläuche vorzubeugen, ist der Bohrdurchmesser ausreichend groß zu wählen, sodass um das Sondenbündel ein Ringraum von 32 mindestens 30 mm verbleibt (Bohrdurchmesser ≥ Sondenbündel + 60 mm). Bei kleineren Bohrdurchmessern steht zu befürchten, dass die Bohrung nicht ordnungsgemäß verfüllt werden kann (zum Beispiel Lufteinschlüsse, Verbindung unterschiedlicher wasserführender Horizonte, Schadstoffeintrag ins Grundwasser), die Sondenschläuche beschädigt werden und Soleverluste auftreten können. Weiterhin ist die Sonde zentriert gleichzeitig mit dem Verfüllrohr mit geeigneten Einrichtungen einzubauen.
- Auf der Bohrstelle sind Materialien und Geräte für Sofortmaßnahmen im Störfall (zum Beispiel Brand, Ölunfall) sowie im Fall von unbekannten oder nicht abschätzbaren hydraulischen Verhältnissen (Anschneiden von artesischem Grundwasser) ständig vorzuhalten. Bohrgeräte und sonstige eingesetzte Maschinen sind gegen Tropfverluste oder Auslaufen von Kraftstoffen, Ölen und sonstigen wassergefährdenden Stoffen während des Betriebs, der Wartung, der Reparatur sowie der Befüllung zu sichern, damit diese Stoffe nicht in das Erdreich eindringen können.
- Es dürfen nur Spülungszusätze verwendet werden, die keine chemischen oder mikrobiologischen Veränderungen im Untergrund bewirken. Ein geschlossener Bohrspülungskreislauf ist sicherzustellen.
- Betragen die Spülungsverluste im Bohrloch mehr als 1 Liter pro Sekunde (I/s), sind sofort die Arbeiten einzustellen und die untere Wasserbehörde umgehend zu informieren. Dabei sind geeignete Maßnahmen vorzuschlagen und zu ergreifen, die das Eindringen größerer Mengen von Bohrspülung in den Grundwasserleiter verhindern oder begrenzen.

- Während der Bohrarbeiten aus der Bohrung austretendes Grundwasser ist schadlos abzuleiten. Bei geplanter Einleitung in ein Oberflächengewässer ist diese gleichzeitig mit der Anzeige/dem Antrag auf wasserrechtliche Erlaubnis zur Errichtung der Erdwärmesondenanlage bei der unteren Wasserbehörde zu beantragen (mit Angabe der Lagekoordinaten der Einleitstelle). Dazu sind Maßnahmen zur Rückhaltung von absetzbaren Stoffen vorzusehen. Bei geplanter Versickerung ist die Einleitstelle mit den Lagekoordinaten zu benennen. Bei geplanter Einleitung in einen Kanal ist die Zustimmung des Kanalbetreibers erforderlich.
- Grundsätzlich gelten die Anforderungen an Wärmepumpen mit Erdwärmesonden und -kollektoren der LAWA-Empfehlungen (LAWA, 2018). Diese geben unter anderem vor, dass einwandige Anlagen und Anlagenteile zur Nutzung von Erdwärme nur nicht wassergefährdende Stoffe oder wässrige Lösungen der WGK 1 enthalten dürfen. Diese Wärmeträgermittel müssen nachweislich für den Einsatz im Außenkreislauf einer Erdwärmesondenanlage geeignet sein. Im Interesse einer hohen Anlagensicherheit und Funktionalität sollten erhältliche vorgemischte Sole (zum Beispiel Wasser-Glykol-Gemisch) verwendet werden. Zulässige Wärmeträgermittel können aus der Positivliste der LAWA-Empfehlungen (LAWA, 2018) entnommen werden, die regelmäßig aktualisiert und im Internet veröffentlicht wird.
- Einwandige Anlagen oder Anlagenteile im Boden oder Grundwasser (hier: Erdwärmesondenanlagen) im Bereich der gewerblichen Wirtschaft und öffentlicher Einrichtungen dürfen als Wärmeträgermittel nur nicht wassergefährdende Stoffe oder Gemische der WGK 1, deren Hauptbestandteile Ethylenoder Propylenglycol sind, verwenden (AwSV).
- Erdwärmesonden und dazugehörige Teile müssen werkseitig entsprechend den Vorgaben der VDI 4640 Blatt 2 hergestellt sein. Der Sondenfuß und seine Anschlüsse an die Sondenrohre sind werkseitig herzustellen (Schweißverfahren nach zum Beispiel DVS-Richtlinie 2207 und 2208-1, Werkstoffe nach DIN 8074 und 8075). Die ordnungsgemäße Ausführung soll der unteren Wasserbehörde mit einem entsprechenden Zertifikat des Herstellers (werkseitiges Prüfprotokoll) nachgewiesen werden.
- Der Einbau der Erdwärmesonde erfolgt entsprechend den Vorgaben der VDI 4640 Blatt 2.
- Die ins Bohrloch eingesetzte Sonde ist vor der Verfüllung einer Druckprüfung durch eine Fachfirma zu unterziehen (VDI 4640 Blatt 2).
- Beim Fehlschlagen einer Bohrung vor Einbau der Sonde ist das Bohrloch bis zur Geländeoberkante dauerhaft wasserdicht zu verfüllen (DVGW W 135 (A)) und ebenfalls zu dokumentieren.

- Nach Einbringen der Erdwärmesonde ist nach VDI 4640 Blatt 2 das Bohrloch beziehungsweise der gesamte Bohrlochringraum zwischen den eingebauten Sonden und der Bohrlochwandung vollständig von der Sohle aus nach oben mit einer grundwasserunschädlichen, nach Erhärtung (insbesondere gegenüber Hydrogenkarbonat und Sulfat) dauerhaft wasserdichten und (frost-)beständigen Suspension zu verfüllen. Bei Sonden, die im Temperaturbereich des Frost-Tau-Wechsels arbeiten, ist nachzuweisen, dass das abgebundene Verfüllmaterial für diesen Temperaturbereich dauerhaft geeignet ist und durch ständiges Gefrieren und Tauen keine Rissbildungen auftreten (dauerhafte Dichtheit der Bohrung). Liegt dieser Nachweis nicht vor, sind beim Betrieb der Erdwärmesondenanlage Rücklauftemperaturen des Wärmeträgermittels unter dem Gefrierpunkt (< 0 °C) auszuschließen.
- Zur optimalen Ausnutzung der Wärmeübertragung vom Festgestein zur Sonde sollten nur hierfür ausdrücklich geeignete und sowohl den örtlichen Verhältnissen als auch in ihren thermischen Eigenschaften angepasste Bentonit-Hochofenzement-Wasser- oder Bentonit-Hochofenzement-Sand Wasser-Suspensionen eingebracht werden, die bereits als Fertigprodukte auf dem Markt angeboten werden. Anstelle von Bentonit können auch andere quellfähige Tone Verwendung finden, die zum Beispiel durch Sandanteile in Form von Quarzmehl oder Graphitbeimengungen deren Wärmeleitfähigkeit verbessern können.

Abbildung 1-4: Eingebaute Erdwärmesonde

- Vor dem Verfüllen sowie am Überlauf des Bohrlochs ist eine Dichte- beziehungsweise Viskositätsbestimmung der Suspension durchzuführen. Beim Anmischen des Verfüllmaterials ist auf die in den Herstellerangaben empfohlenen Mischungsverhältnisse zu achten. Der Verfüllvorgang ist so lange fortzuführen, bis die Dichte der aus dem Bohrloch austretenden Suspension der eingepressten Suspension entspricht. Die Menge und die Dichte des eingepressten Materials für die Ringraumverfüllung sind kontinuierlich zu messen und zu dokumentieren sowie die Dokumentation der unteren Wasserbehörde zu übergeben. Übersteigt der Bedarf an Verfüllmaterial das Zweifache des Ringraumvolumens, ist der Verfüllvorgang zu unterbrechen und die untere Wasserbehörde zu informieren. Dies ist erforderlich, da bei hochdurchlässigen Grundwasserleitern größere Mengen an Dichtungsmaterial in Klüfte oder Hohlräume gelangen können. Neben der Beeinträchtigung der Grundwasserqualität besteht die Gefahr, dass wasserwegsame Zonen abgedichtet werden. Zudem ist ein Nachweis zu bringen, dass bei einem hydrogeologischen Stockwerksbau eine zuverlässige Abdichtung der Grundwasserleiter gegeneinander erfolat ist.
- Nach Sondeneinbau und Bohrlochringraum-Verfüllung sowie vor Inbetriebnahme der Erdwärmesondenanlage sind die entsprechend der wasserrechtlichen Erlaubnis beziehungsweise dem GeolDG erforderlichen Nachweise zu erbringen und bei den jeweils zuständigen Behörden einzureichen.
- Die Ergebnisse der Bohr- und Ausbauarbeiten sind zu dokumentieren. Dies beinhaltet die detaillierten Schichtenverzeichnisse und Grundwasserinformationen, Angaben zu Besonderheiten während des Bohrvorganges sowie Ausbaupläne. Die Daten sind der Abteilung Geologie des LfULG gemäß §§ 8, 9 und 10 GeolDG spätestens sechs Monate nach Beendigung der Arbeiten zu übergeben.
- Lassen Bohrergebnisse oder Schachtarbeiten auf Altbergbau, nichtbergbauliche Hohlräume oder aufgelockerte Zonen (möglicherweise verfüllte Hohlräume) schließen, die in einer bergbaulichen Stellungnahme nicht mitgeteilt wurden, ist dies dem SOBA mit allen bedeutsamen Informationen über die Bohrungen zu melden.

Anlagenbetrieb

- Die in der wasserrechtlichen Erlaubnis erlassenen Nebenbestimmungen zum Betrieb der Erdwärmesondenanlage sind zu beachten.
- Die Dichtheit der Anlage soll nach VDI 4640 Blatt 2 durch eine Fachfirma überprüft und das nach den Anforderungen der VDI 4640 Blatt 2 entsprechend ausgefüllte Prüfprotokoll der unteren Wasserbehörde übergeben werden.
- Erdwärmesondenanlagen sind durch selbsttätige Leckageüberwachungseinrichtungen (baumustergeprüfte Druckwärter) zu sichern, da eventuelles Auslaufen des wassergefährdenden Wärmeträgermittels zu einer schädlichen Veränderung der

- Grundwasserbeschaffenheit führen kann. Im Falle einer Leckage der Erdwärmesonde muss die Umwälzpumpe sofort abgeschaltet und ein Störsignal abgegeben werden. Übergangsstücke und Sondenverteiler sind zugängig und kontrollfähig zu gestalten und in die visuellen Kontrollmaßnahmen zur Dichtheit zu integrieren.
- Die konventionelle Erdwärmesondenanlage ist ohne Gefahr der Vereisung des Untergrundes zu betreiben. Wird während des Betriebes im Rücklauf von der Wärmepumpe in die Erdwärmesonde(n) eine minimale Temperatur von -3 °C nicht unterschritten, kann von einem quasi-frostfreien Betrieb der Erdwärmesondenanlage ausgegangen werden.
- Wer die Erdwärmesondenanlage errichtet, haftet auch für den ordnungsgemäßen Bau der Anlage. Ebenso haftet der Anlagenbetreiber für Errichtung und ordnungsgemäßen Betrieb der Anlage.
- Die Rechte und Pflichten aufgrund wasserrechtlicher Entscheidungen gehen mit der Erdwärmesondenanlage auf den Rechtsnachfolger über, soweit bei der Entscheidung nichts anderes bestimmt ist 35 (§ 8 Absatz 1 SächsWG). Dies ist der unteren Wasserbehörde innerhalb von drei Monaten anzuzeigen, sofern im wasserrechtlichen Bescheid nichts anderes festgelegt ist (§ 8 Absatz 2 SächsWG).
- Vom Betreiber der Anlage ist regelmäßig zu prüfen, ob aus dem obertägig zugänglichen Anlageteil Wärmeträgermittel austritt. In diesem Fall ist die Anlage sofort außer Betrieb zu nehmen, das Wärmeträgermittel mit Trinkwasser aus den Sonden zu spülen und fachgerecht zu entsorgen. In beiden Fällen ist unverzüglich das Heizungsbau-/Installationsunternehmen beziehungsweise das mit der Planung befasste Ingenieurbüro mit der Klärung der Ursachen beziehungsweise Behebung des Schadens zu beauftragen. Sollte Wärmeträgermittel ins Erdreich eingedrungen sein, muss die untere Wasserbehörde und die untere Bodenschutzbehörde umgehend informiert werden.
- Es wird empfohlen, eine Monitoringmöglichkeit der Untergrundtemperaturen sowie der verbrauchten Wärmemengen zu realisieren. Damit ist die Möglichkeit gegeben, jederzeit Temperaturmessungen vorzunehmen, um die Auswirkungen der Anlage auf den Untergrund im Bedarfsfall zu überprüfen.
- Bei Außerbetriebnahme, vorübergehender Stilllegung und bei Nutzungsänderungen der Erdwärmesondenanlage (zum Beispiel die Änderung der Heizleistung, Austausch der Wärmepumpe beziehungsweise des Wärmeträgermittels) ist die untere Wasserbehörde zu informieren.
- Bei vorübergehender Stilllegung beziehungsweise dauerhafter Außerbetriebnahme ist gemäß VDI 4640 Blatt 2 zu verfahren. Bei Außerbetriebnahme der Erdwärmesondenanlage ist das Wärmeträgermittel mit Wasser (Trinkwasserqualität) aus der Sonde vollständig zu spülen und fachgerecht zu entsorgen. Die Vorgehensweise zur Stilllegung der Sonden ist mit der zuständigen unteren Wasserbehörde abzustimmen.

Anlage 1-1: Checkliste Erdwärmesondenanlagen für Bauherren

✓ Vorinformationen

- Welche Erdwärmenutzungen sind an meinem Standort möglich?
- Welche Standortgegebenheiten existieren? Gibt es Einschränkungen?
- Welche Fördermöglichkeiten bestehen?

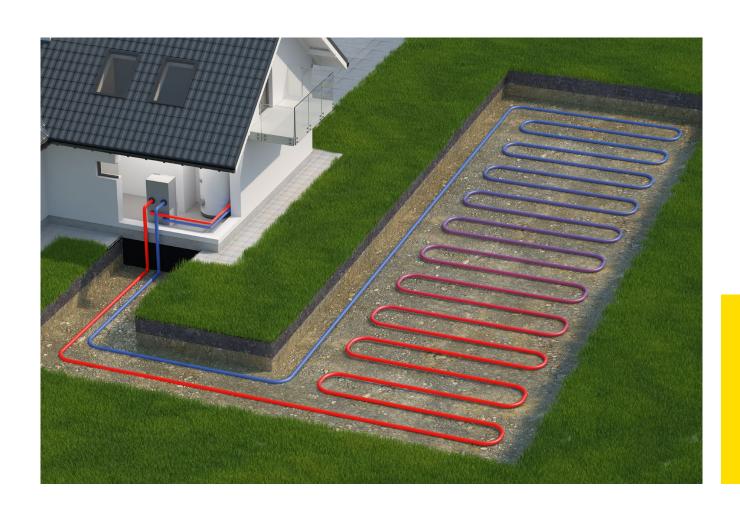
✓ Gebäudetechnische Informationen

- Information über Heiz- und/oder Kühlbedarf des Gebäudes pro Jahr (zum Beispiel Heizlastberechnung nach DIN EN 12831-1) und Warmwasserbereitung durch zum Beispiel Heizungsinstallateur oder Energieberater
- Berücksichtigung der Art des Heizsystems (Fußbodenheizung, Radiatoren)
- ✓ Berechnung und Dimensionierung der Erdwärmesondenanlage durch einen geothermischen Fachplaner nach VDI 4640 unter Berücksichtigung von monatlichen Heizlasten, Warmwasserbedarf, gegebenenfalls Kühllasten und geologischen Standortbedingungen
- ✓ Anzeige der Bohrarbeiten und Einholen der Genehmigungen über die elektronische Bohranzeige ELBA.Sax <u>www.bohranzeige.sachsen.de</u>
- ✓ Qualifizierte Bohrarbeiten durch eine zertifizierte Bohrfirma (zum Beispiel nach DVGW W 120 (A) beziehungsweise W 120–2 (A)) mit Referenznachweisen
 - Einhalten der Auflagen und Hinweise des wasserrechtlichen Bescheides; Dichtheitsprüfung und Zertifizierung der Erdwärmesonden
 - Verfüllung des Bohrlochs mit vorgemischten, hochwertigen Verfüllbaustoffen vollständig von unten nach oben
 - Druckprüfung (Dichtheit) der Erdwärmesonden nach dem Verfüllen
- ✓ Anschluss der Wärmepumpe durch den Heizungsinstallateur
 - Schachtarbeiten, Verlegen der Leitungen zur Wärmepumpe
 - Inbetriebnahme und Erklärung der Funktionsweise der Wärmepumpe
- ✓ Übergabe der Dokumentation aller ausgeführten Arbeiten und der Prüfzeugnisse nach Abschluss der Arbeiten an die Behörden
- √ Überprüfung der Wärmepumpe vom Heizungsinstallateur nach etwa einem Jahr, gegebenenfalls Monitoring

Anlage 1-2: Anzeige von Erdaufschlüssen gemäß § 41 SächsWG i. V. m. § 49 WHG und Antrag auf wasserrechtliche Erlaubnis zur Gewässerbenutzung nach § 8 Absatz 1 i. V. m. § 9 Absatz 2 Nummer 2 WHG für Erdwärmesonden

Hinweis: Die Bohranzeige und der Antrag auf wasserrechtliche Erlaubnis sollte bevorzugt elektronisch über ELBA.Sax <u>www.bohranzeige.sachsen.de</u> erfolgen.

1	÷	ΑI	lq	e	m	ei	in	e	Α	n	q	a	b	e	n


Antragsteller (Bauherr)	Name, Vorname:					
	PLZ, Ort:					
	Straße, Nr.:					
	Telefon-Nr.:	Telefax-Nr.:				
	E-Mail-Adresse:					
Standort der Anlage	Stadt/Landkreis:					
	Gemeinde/Ortsteil:					
	Gemarkung:					
	Flur:	Flurstück:				
	PLZ:	Straße, Nr.:				
	Hochwert:	Rechtswert:				
	(oder Eintragung in beigefügter Karte)					
	Geländehöhe (m über HN):					
	Messtischblatt Nummer TK25:	Name:				
Bohrunternehmen	Firma:					
Bomuntermennen	PLZ, Ort:					
	Straße, Nr.:					
	Telefon-Nr.: Telefax-Nr.:					
	E-Mail-Adresse:					
	Verantwortlicher Fachmann:					
	Telefon-Nr.:	Telefax-Nr.:				
Planendes Ingenieurbüro	Firma:					
(wenn zutreffend)	Ansprechpartner:					
,	PLZ, Ort:					
	Straße, Nr.:					
	Telefon-Nr.:	Telefax-Nr.:				
	E-Mail-Adresse:					
2. Angaben zur Berechnu	ung der Erdwärmesonden					
fachgerechte Anlagenberechr	nung (z. B. Vordimensionierung nach VDI 4640):	□ ja □ nein				
zur Berechnung verwendete spezifische Entzugsleistung des Untergrundes [W/m]: beziehungsweise Gesteinswärmeleitfähigkeit [W/m·K]:						
Für Erdwärmeanlagen ≥30 kW	Heizleistung (Großanlagen) auszufüllen:					
	est an einer Erstbohrung und eine sionierung mittels Fachsoftware geplant?	□ ja □ nein				
3. Angaben zur Durchführung der Bohrungen						
Beginn der Arbeiten: voraussichtliche Dauer:						
Anzahl: Bohrdurchmesser [mm]: geplante Bohrtiefe [m]:						
Bohrverfahren: Spülungsmittel (bei Spülbohrung):						
geplantes Verfüllmaterial:						
Art der Verfüllung (z. B. Kont	traktorverfahren):					
Angaben zur schadlosen Able	itung des möglicherweise während der Bohrarbeiten au:	sgepressten Grundwassers:				

4. Technische Daten Erdwärmesonden

F	dwärmesonden	Sondenart (z. R. II. D	onnel-II- Koavial-Sonde):					
Erdwarmesonden		Sondenart (z. B. U-, Doppel-U-, Koaxial-Sonde): Anzahl: Länge [m]:						
		minimaler Abstand untereinander [m]:						
		Abstand zur Grundstücksgrenze [m]:						
		Sondenmaterial:		Sondendurchmesser [mm]:				
		Durchmesser Sondenb	ündel mit Verfüllrohr [mm]:		-			
		herstellerseitige Druck		□ ja	□ nein			
_		1						
	/ärmeträgermittel in onde (Sole)	Name/Inhaltsstoffe:						
	muc (30ic)	Wassergefährdungskla	isse:	Gesamtmenge:				
	Technische Daten Wä							
_	ebäudespezifische ngaben	Heizlastberechnung na		□ ja □ nein				
A	ngaoen	Heizlast [kW] DIN EN	12831-1:	Kühllast [kW]:				
		Gebäudefläche [m²]:						
		Nutzung: Heizen	☐ Heizen+Warmwasserbereitung	☐ Kühlen:	Kühlmaniada [h].			
		Jahresbetriebsstunden	Heizperiode [n]:	Jahresbetriebsstunde	en Kuniperiode [n]:			
W	/ärmepumpe	Hersteller:		Тур:				
		Heizleistung [kW]:		Leistungszahl (COP):				
		Kühlleistung [kW]:	Leistungszahl (COP):					
		Standort:	□ außerhalb	□ innerhalb des Gebäudes				
		Kältemittel in der Wä	rmepumpe:					
Si	cherheitseinrichtungen	☐ automatische Druc ☐ andere	küberwachung im Wärmeträgerkreisla	auf				
6.	Beigefügte Unterlagei	n (□obligatorisch)						
	Katasterauszug oder Auszu pumpe, Grundstücksgrenze		arte mit Flurnummer, Gemarkung, La-ge	der Bohrpunkte, Rohrlei	tungsverlauf, Standort der Wärme-			
	Übersichtslageplan, möglic (M: 1:10.000 oder 1:25.000		lichen topografischen Karte (TK)					
	detaillierter Lageplan mit K Karte (TK) (M: 1:1.000)	(ennzeichnung der Sonder	nanzahl, Sondenanordnung, Abstand de	r Sonden, möglichst basi	erend auf der amtlichen topografischen			
	Prüfzertifikat des Sondenh	erstellers						
	Sicherheitsdatenblatt des V	Närmeträgermittels im Au	Benkreislauf					
	Beim Verfüllen der Sonden	mittels Fertigmischung: l	Jnbedenklichkeitserklärung des Produkt	es				
	Soweit bekannt, Angaben zu hydrogeologischen Verhältnissen, unter anderem von der Maßnahme voraussichtlich betroffene Grundwasserstockwerke/-leiter, voraussichtliches Bohrprofil (Angabe zur Informationsquelle; Auswertung geologischer Karten, Bohrarchive und so weiter)							
7.	Bestätigung und Unte	erschrift	-					
de	_	ısführung und Betrieb v	n zur Wärmenutzung entsprechend on Erdwärmesonden sowie der VDI	□ ja □ nein				
Ant	ragsteller:							
O-4	Datum		Hatawah 26 day Astronomillar					
υrτ,	Datum			Unterschrift des Antrag	2101017			

Im Allgemeinen sind die Unterlagen 3-fach bei der zuständigen unteren Wasserbehörde einzureichen.

2 Verfahrenshandbuch zum Bau und Betrieb von Erdwärmekollektoren in Sachsen

2.1 Bau und Funktionsweise von Erdwärmekollektoren

Erdwärmekollektoren nutzen vorrangig Sonnenenergie, die durch direkte solare Einstrahlung, Wärmeübertragung aus der Luft und durch Niederschlag im Erdreich oberflächennah gespeichert wird. Das System unterliegt somit jahreszeitlichen Temperatureinflüssen, weshalb die Wärmepumpe in den Zeiten des größten Wärmebedarfes (im Winter) mit etwas niedrigeren Wärmequellentemperaturen als bei Erdwärmesonden auskommen muss. Die allmähliche Regeneration der entzogenen Wärme durch nachströmende Wärme aus dem umgebenden Erdreich ist aufgrund der Jahreszyklen bei richtiger Dimensionierung der Wärmequellenanlage gegeben. Eine standortbezogene Prüfung anhand der bodenkundlichen und (hydro)geologischen Gegebenheiten und Platzverhältnisse sowie eine fachgerechte Anlagenplanung sollte von einer auf dem Gebiet der Erdwärme sachkundigen Fachfirma erfolgen.

Die geologischen und bodenkundlichen Verhältnisse sind in Sachsen nicht überall gleich. Hierzu können im LfULG Beratungsmöglichkeiten und die digitalen Kartendienste genutzt werden.

https://www.geologie.sachsen.de/ https://www.boden.sachsen.de/

Erdwärmekollektoren sind Wärmeübertrager, die üblicherweise aus Kunststoffrohren bestehen und horizontal (flächenhaft oder in flachen Gräben) in einer Tiefe von in der Regel 1,2 m bis maximal 1,5 m und mindestens 30 cm unter der Frosteindringtiefe in ein 20 cm mächtiges Sandbett verlegt werden, worüber wieder Erdreich aufgefüllt wird (VDI 4640 Blatt 2). Dabei verlaufen die meist 100 m bis 150 m langen Rohre im Abstand von 0,5 m bis 0,8 m parallel zueinander, sodass je 1 m² Wärmeentzugsfläche rund 1,3 m bis 3 m Rohr verlegt werden (siehe Abbildung 2-1). Im geschlossenen Kollektorkreislauf zirkuliert als Wärmeträgermittel eine Sole (üblicherweise ein Wasser-Frostschutzmittel-Gemisch der WGK 1 - zum Beispiel mit Glykol als Frostschutzmittel), die die Wärme aus dem Erdreich aufnimmt und im Verdampfer der Wärmepumpe über den Kältemittelkreislauf in das Heizsystem abgibt. In der Regel haben Erdwärmekollektoren tiefenbedingt keinen Kontakt zum Grundwasser.

Ebenso können Horizontalkollektoren mit dem Direktverdampferverfahren betrieben werden (Phasenwechselkollektoren), bei denen ein unter hohem Druck verflüssigtes Gas in den Kollektorrohren verdampft.

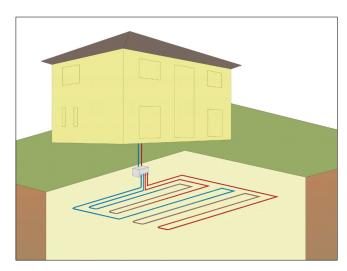


Abbildung 2-1: Schema Erdwärmekollektor

Das Gefährdungspotenzial von Erdwärmekollektoranlagen ist aus Sicht des Grundwasserschutzes in der Regel niedriger als bei Erdwärmesondenanlagen, da die Eingriffstiefe bauartbedingt deutlich geringer ist (in der Regel \leq 5 m) und sie nicht überbaut werden dürfen, so dass im Falle eines potenziellen Austrittes von Wärmeträgermittel leichter auf den Erdwärmekollektor zugegriffen werden kann. Auch besteht keine Gefahr bezüglich einer Verbindung unterschiedlicher Grundwasserstockwerke.

Erdwärmekollektoren zeichnen sich durch vergleichsweise geringe Investitionskosten, durch einen wenig aufwändigen Einbau und eine hohe Lebensdauer aus. Andererseits benötigen sie eine unbebaute und unversiegelte Freifläche von in der Regel 1,5- bis 3-facher Größe der zu beheizenden Wohnfläche (je nach Untergrundverhältnissen).

Zur Flächeneinsparung können Kompaktkollektoren, wie der sogenannte Grabenkollektor, der Spiralkollektor und der Erdwärmekorb, zum Einsatz kommen, die auch bis rund 5 m tief in das Erdreich verlegt werden. Grundsätzlich eignen sich am besten feuchte, wasserspeichernde, dicht gelagerte, sandreiche Böden.

Mit einem Drittel der Fläche kommen zum Beispiel Erdwärmekollektoren aus, deren Elemente in 1,5 m Tiefe vertikal mit 0,7 m Abstand angeordnet werden. Steht noch weniger Fläche zur Verfügung, können die Kollektoren auch in zwei Ebenen eingebaut werden.

Kompakte Erdwärmekollektoren müssen zu Gebäuden, Fundamenten und Ähnlichem einen Abstand von mindestens 2 m einhalten (VDI 4640 Blatt 2).

Erdwärmekollektoren sind als ökologisch unbedenklich anzusehen. Bei Pflanzen kann es unter Umständen zu geringen Wachstumsverzögerungen kommen, die aber durch gärtnerische Maßnahmen minimiert werden können. Es wird empfohlen, keine Tiefwurzler über der Kollektorfläche anzupflanzen. Eine fachgerechte und ausreichende, durch den Planer vorzunehmende Dimensionierung der Erdwärmekollektoranlage vermeidet eine Über- oder Unterdimensionierung der gesamten Anlage. Eine Überlastung führt gegebenenfalls zu verminderter Effizienz oder auch zum Einfrieren der Anlage – bedingt durch einen zu hohen Wärmeentzug.

Flächenkollektoren

Ähnlich wie beim Errichten eines unterkellerten Gebäudes wird beim Flächenkollektor das gesamte Erdreich bis auf die gewünschte Einbautiefe von 1,2 m bis 1,5 m (VDI 4640 Blatt 2) abgeschoben und die Polyethylen (PE)-Rohrschlingen beziehungsweise bei Kompaktabsorber die vorgefertigten polymervernetzten Kapillarrohrmatten (mit kleinerem Rohrdurchmesser und geringerem Abstand) auf den entsprechend präparierten Untergrund horizontal ausgelegt und fixiert - vergleichbar mit einer Fußbodenheizung. Die einzelnen in der Regel parallel nebeneinander angeordneten und möglichst gleich langen Rohrschlingen sollen eine Länge von etwa 100 m nicht überschreiten, um eine größere Umwälzpumpe (höhere Leistungsaufnahme) zu vermeiden. Die Rohrenden werden im Sammelschacht, getrennt als Vor- und Rücklaufleitungen mit speziellen Armaturen zusammengefasst. Anschließend werden die Rohrschlingen wieder mit Erdreich überdeckt (BW 2008, LLUR SH 2011).

Um eine vollständige Regeneration des Bodens durch Sonneneinstrahlung zu ermöglichen, dürfen Flächenkollektoren nur bis 1,5 m eingebaut und weder überbaut noch mit Bäumen bepflanzt werden. Zur Regeneration des Bodens können auch Sonnenkollektoren in das Erdwärmekollektor-Anlagensystem mit eingebunden werden. Ebenso kann zum Ausgleich der entzogenen Energiemenge zusätzlich Wärme aus dem Sickerwasser – durch Versickerung von Niederschlagswasser einige Dezimeter über den Rohrkreisen – zugeführt werden, was unter Umständen den Flächenbedarf verringern kann.

Grabenkollektoren

Für den Grabenkollektor als eine Variante des Flächenkollektors wird ein Graben (gerade, in L- oder U-Form) mit schrägen Wänden bis in eine Tiefe von 3 m und tiefer ausgehoben (bei notwendiger Begehbarkeit des Grabens sind die entsprechenden Sicherheitsmaßnahmen nach DIN 4124 einzuhalten) und die PE-Rohrkreise an den Grabenwänden im engen Abstand horizontal verlegt. Werden die Grabenwände zum Beispiel mit vorgefertigten Kollektormatten (an der Grabenwand von oben eingebracht) belegt, braucht der Graben nicht betreten werden (VDI 4640 Blatt 2).

Die Rohrenden der einzelnen Rohrschlingen werden in einem Sammelanschluss zusammengeführt und mit einer Vor-/Rücklaufleitung zum Gebäude/Heizsystem geführt. Anschließend wird der Graben wieder mit dem Bodenaushub verfüllt, wenn das Bodenmaterial zum Verdichten und Erfüllen der an die zukünftige Nutzung gestellten Untergrundanforderungen geeignet ist.

Spiralkollektoren

Spiralkollektoren sind für flächigen und grabenförmigen Einbau geeignet. Der Unterschied besteht nur in der Form der Kollektorleitung – die Leitungen verlaufen in horizontalen Spiralen. Dies wird dadurch erreicht, dass die gewickelte Kollektorleitung senkrecht auf dem präparierten Untergrund aufsetzt und seitlich (senkrecht zur Wickelachse) die Spirale so auseinanderzieht, dass sich die Windungen jeweils überlappen. Zur Gewährleistung eines möglichst geringen Druckverlustes des Gesamtsystems sollten die Spiralkollektoren in parallel geschalteten Kreisen zum Verteiler geführt werden.

Erdwärmekörbe

Erdwärmekörbe haben eine kompakte Bauweise, benötigen deshalb deutlich weniger Platz und können einen größeren Tiefenbereich nutzen. Bei Erdwärmekörben gibt es zwei typische Bauformen – der PE-Rohrkreis wird zu einem Kegelstumpf/Korb (konische Bauform) oder Zylinder/Spirale (zylindrische Bauform) gewickelt. Die Höhe der Körbe beträgt in der Regel zwischen 1 m und 3 m, der Durchmesser zwischen 0,5 m und rund 2 m. Je nach Korbgröße variiert die Rohrlänge zwischen 100 m und 300 m. Die Körbe können einzeln oder in gleichgroßen Gruppen zusammengefasst werden (VDI 4640, Blatt 2, BW 2008). Zylindrische Körbe mit zum Beispiel 0,5 m Durchmesser können auch liegend eingebaut werden.

Zum Einbau der Körbe wird ein ausreichend dimensioniertes Loch ausgehoben, der Korb darin eingebracht und anschließend das Loch wieder verfüllt. Um Hebungs- und Setzungserscheinungen nach dem Einbau zu reduzieren, sollten die Erdwärmekörbe mit sandigen oder selbstverdichtenden Materialien verfüllt werden. Durch Einschlämmen des Materials/Bodens mit Wasser wird eine optimale Anbindung der PE-Rohre mit dem wiederverfüllten Erdreich erreicht. Durch die besonderen Einbaubedingungen reagieren Erdwärmekörbe schnell auf sich verändernden Bedarf und sich verändernde Lastenanforderungen und frieren gegenüber Erdwärmekollektoren schneller ein. Zwischen zwei Erdwärmekörben wird ein Mindestabstand von 4 m empfohlen, um eine gegenseitige unerwünschte Beeinflussung zu minimieren (LLUR SH, 2011).

Kollektoren mit Phasenwechselprinzip

Erdgekoppelte Wärmepumpen nach dem Phasenwechselprinzip – unter Einsatz von natürlichen Kältemitteln wie CO₂, Propan oder Ammoniak - werden meist in Erdwärmekollektoranlagen eingesetzt. Alle kältetechnischen Arbeiten sollten durch spezialisierte Fachhandwerker ausgeführt werden (Zertifizierung). Für Erdwärmeanlagen mit Phasenwechseltechnologie gilt die DIN 8901. Aufgrund der niedrigen Temperaturen am Rohr soll der Rohrabstand zueinander 40 cm nicht unterschreiten, damit sich im Winter keine durchgehende Eisschicht bildet (VDI 4640, Blatt 2). Die verwendeten Materialien müssen der chemischen, thermischen und mechanischen Beanspruchung standhalten und korrosionsbeständig sein. Zum Beispiel sollen die Verdampferrohre aus Kupfer in Kältequalität mit einem 1 mm starken nahtlosen Schutzmantel (PE, Polypropylen (PP)) bestehen. Ihre Verlegung muss vollständig über dem Grundwasserspiegel (Empfehlung: Abstand mindestens 1 m zum höchsten aus vorhandenen Daten zu erwartenden Grundwasserstand) erfolgen (VDI 4640 Blatt 2). Weitere besondere Forderungen an Material, Verlegen, Verteilen, Sicherheitsmaßnahmen, Befüllen und Inbetriebnahme werden ebenfalls in VDI 4640 Blatt 2 beschrieben.

2.2 Rechtsgrundlagen und Verfahren

Die rechtlichen Grundlagen für die Errichtung und den Betrieb von Erdwärmekollektoren in Sachsen sind maßgeblich im Wasserhaushaltsgesetz (WHG) und Sächsischen Wassergesetz (SächsWG) enthalten.

Kurz und knapp:

Es kann im Einzelfall eine wasserrechtliche Anzeigepflicht gegenüber der unteren Wasserbehörde bestehen. Abhängig von den konkreten Gegebenheiten vor Ort kann im Einzelfall ein wasserrechtliches Erlaubnisverfahren bei der unteren Wasserbehörde durchzuführen sein.

Im Fall einer Anzeigepflicht von Erdwärmekollektoranlagen sollten nachfolgende Mindestangaben der unteren Wasserbehörde des Landratsamtes/der Kreisfreien Stadt (Anschriften siehe Teil I, Tabelle 1) übermittelt werden:

- Angabe der Informationen (Name, Anschrift) zum Anlagenbetreiber, gegebenenfalls planendes Ingenieurbüro und ausführende Firma,
- Angabe zur Lage der Erdwärmekollektoranlage (Adresse, Flurstück, Koordinaten),
- Art der Erdkollektoranlage (zum Beispiel Erdwärmekorb, Flächenkollektor, Erdwärmekorb),
- Verlegetiefe der Erdwärmekollektoren,
- Anzahl der Erdwärmekollektorkreise,
- Bezeichnung des verwendeten Wärmeträgermittels inkl. Sicherheitsdatenblatt,
- Kollektorrohrmaterial (Herstellername, Typ),
- Einbaumaterial (zum Beispiel Sandeinbettung),
- Abstände der Kollektoren (zum Beispiel Körbe oder einzelne Schlaufen) zueinander,
- Heizlast (gegebenenfalls Kühllast) des Gebäudes,
- Typ der Wärmepumpe, Heizleistung (gegebenenfalls Kühlleistung) der Wärmepumpe,
- Kältemittel in der Wärmepumpe,
- Standort der Wärmepumpe,
- Abstände zu Gebäuden und Nachbargrundstücksgrenze,
- Sicherheitseinrichtungen im Wärmeträgermittelkreislauf.

Wasserrecht

Vor Baubeginn beachten:

Wenn nachweislich kein Grundwasser betroffen ist, besteht keine Anzeigepflicht. Der mit dem Bau von Erdwärmekollektoren verbundene Erdaufschluss kann im Einzelfall nach § 49 Absatz 1 Satz 1 WHG jedoch anzeigepflichtig sein, wenn dieser sich unmittelbar oder mittelbar auf die Bewegung, die Höhe oder die Beschaffenheit des Grundwassers auswirken kann. Dies ist zum Beispiel der Fall, wenn die Schutzfunktion der Grundwasserüberdeckung verringert wird oder die Erdwärmekollektoren in Gebieten mit Altlasten oder Altablagerungen beziehungsweise in Schutzgebieten oder direkt im Grundwasser errichtet werden sollen. Erdwärmekollektoren erreichen aufgrund ihrer geringen Einbautiefe häufig nicht das Grundwasser – Ausnahmen bilden geringe Grundwasserflurabstände zum Beispiel in Niederungsbereichen von Flussauen, wo vorsorgender Grundwasserschutz und Trinkwassernutzung zu berücksichtigen sind. Die Anzeige ist bei der unteren Wasserbehörde des Landratsamtes/der Kreisfreien Stadt mit den entsprechenden Unterlagen spätestens einen Monat vor dem Erdaufschluss einzureichen. Mit dem Vorhaben darf nach Ablauf einer Frist von einem Monat begonnen werden, sofern die untere Wasserbehörde keine anderweitige Entscheidung getroffen hat (§ 41 Absatz 1 Satz 3 SächsWG). Auskunft darüber, ob in dem jeweiligen Einzelfall eine Anzeigepflicht besteht, gibt die untere Wasserbehörde. Der Bau und Betrieb von Erdwärmekollektoren, die sich im unmittelbaren Einflussbereich eines Grundwasserleiters befinden, kann im Einzelfall eine Gewässerbenutzung darstellen, zum Beispiel wenn wassergefährdende Wärmeträgermittel verwendet werden und bedarf dann möglicherweise einer behördlichen Erlaubnis (§ 8 WHG). Nach Eingang einer Anzeige prüft daher die zuständige Wasserbehörde, ob eine erlaubnispflichtige Benutzung gemäß § 49 Absatz 1 Satz 2 WHG oder § 9 Absatz 2 Nummer 2 WHG bei dem geplanten Bau der Erdwärmekollektoren vorliegt. Soweit der Bauherr nicht bereits im Rahmen der Anzeige des Erdaufschlusses sein Einverständnis für die Durchführung eines kostenpflichtigen Erlaubnisverfahrens erteilt hat, wird der Bauherr durch die untere Wasserbehörde auf die gegebenenfalls bestehende Notwendigkeit der Beantragung einer wasserrechtlichen Erlaubnis hingewiesen. Eine wasserrechtliche Erlaubnis kann zum Schutz des Grundwassers besondere Anforderungen sowohl für den Bau als auch den Betrieb und die Stilllegung der Erdwärmekollektoren enthalten.

Die Voraussetzungen für die Erteilung einer wasserrechtlichen Erlaubnis ergeben sich aus § 12 Absatz 1 WHG. Wegen des alleinigen Wärmeentzuges liegt aufgrund der Unerheblichkeit der entstehenden Veränderungen bei Einhaltung der Abstandsregelungen bei kleinen, geschlossenen Erdwärmekollektoranlagen im Einfamilienhausbereich in der Regel kein Benutzungstatbestand vor. Dennoch kann das Vorhaben in Abhängigkeit von den nachfolgend dargestellten Gegebenheiten einer Erlaubnis bedürfen:

Stoffbezogene Prüfung

Werden bei den Arbeiten zur Errichtung der Erdwärmekollektoren Stoffe in das Grundwasser eingebracht beziehungsweise wird ein wassergefährdendes Wärmeträgermittel verwendet, ist eine Erlaubnis erforderlich, wenn sich das Einbringen nachteilig auf die Grundwasserbeschaffenheit auswirken kann (§ 49 Absatz 1 Satz 2, WHG). Aus der stoffbezogenen Prüfung können sich Auflagen für die beim Erdaufschluss einzusetzenden Materialien ergeben. Eine Produktzulassung der verwendeten Stoffe beeinflusst nicht die Erlaubnispflicht sondern die Erlaubnisfähigkeit, das heißt, wurde bei der Produktzulassung das Umweltrecht berücksichtigt, so ist die fachliche Prüfung vorweggenommen und die diesbezügliche Erlaubnis kann ohne weitere Prüfung erteilt werden.

Standortbezogene Prüfung

Im Regelfall wird außerhalb der unten aufgeführten, besonders sensiblen Gebiete, bei fachgerechtem Bau und Betrieb einer Erdwärmekollektoranlage davon auszugehen sein, dass eine Erlaubnisfähigkeit vorliegt.

In den nachfolgend aufgeführten wasserwirtschaftlich sensiblen Gebieten können besondere Anforderungen an den Bau von Erdwärmekollektoren gestellt werden beziehungsweise deren Bau gegebenenfalls auch abgelehnt werden:

Lage in Wasserschutzgebieten: Die Errichtung einer Erdwärme-kollektoranlage im Trinkwasserschutzgebiet beziehungsweise Arbeiten im Zusammenhang mit ihrer Errichtung können entsprechend der Trinkwasserschutzgebietsverordnung ausgeschlossen oder nur eingeschränkt zulässig sein. Befreiungen von den Anforderungen der Trinkwasserschutzgebietsverordnung sind gemäß § 52 Absatz 1 Satz 2 WHG im Einzelfall möglich, wenn der Schutzzweck der Wasserschutzgebietsverordnung nicht gefährdet wird oder überwiegende Gründe des Wohls der Allgemeinheit dies erfordern. In Heilquellenschutzgebieten gelten die Ausführungen zu den Trinkwasserschutzgebieten entsprechend.

Lage in Gebieten mit gehäuften, herausragenden beziehungsweise sensiblen Gewässerbenutzungen (zum Beispiel Mineral-, Thermalwassergewinnung, Trinkwassergewinnung zur Lebensmittelherstellung, Grundwasserentnahmestellen nach Wassersicherstellungsgesetz, hohe Hausbrunnendichte): Gegebenenfalls wird im wasserrechtlichen Verfahren entschieden, ob betroffene Dritte einzubeziehen sind.

Lage in Gebieten mit bestehenden Boden- und/oder Grundwasserverunreinigungen: Innerhalb des kontaminierten Bereiches einer Altlast, einer schädlichen Boden- oder Grundwasserverunreinigung hängt die Zulässigkeit der Errichtung von Erdwärmekollektoranlagen von den Umständen des Einzelfalles ab, da hier die Gefahr der Verschleppung von Kontaminationen in tiefe Boden-und Grundwasserbereiche besteht.

Standorte mit aktivem Bergbau/Altbergbau: Da hier Probleme beim Erdaufschluss auftreten können, hängt auch hier die Zulässigkeit der Errichtung von den Umständen des Einzelfalles ab.

Lage innerhalb eines Gewässerrandstreifens: Die Errichtung von Erdwärmekollektoranlagen innerhalb eines Gewässerrandstreifens ist verboten (§ 38 Absatz 4 Satz 2 Nummer 3 WHG, § 24 Absatz 3 Nummer 2 SächsWG). Von dem Verbot kann eine Befreiung erteilt werden, wenn überwiegende Gründe des Wohls der Allgemeinheit die Maßnahme erfordern oder das Verbot im Einzelfall zu einer unbilligen Härte führt.

Lage in Überschwemmungsgebieten: In festgesetzten Überschwemmungsgebieten sowie in Überschwemmungsgebieten kraft Gesetzes (§ 72 Absatz 2 SächsWG) oder vorläufig gesicherten Überschwemmungsgebieten (§ 76 Absatz 3 WHG) ist gemäß § 78 Absatz 4 Satz 1 WHG die Errichtung von (Wohn-)Gebäuden mit Erdwärmekollektoren untersagt. Gemäß § 78 Absatz 5 Satz 1 WHG kann unter den dort genannten Voraussetzungen im Einzelfall hierfür eine Genehmigung erteilt werden.

Lage in überschwemmungsgefährdeten Gebieten: Erdwärmekollektoranlagen sind entsprechend § 75 Absatz 5 Satz 2 SächsWG so zu errichten, dass der Eintrag wassergefährdender Stoffe bei Überschwemmungen verhindert wird.

Soweit es sich um Erdwärmekollektoranlagen im Bereich der gewerblichen Wirtschaft und im Bereich öffentlicher Einrichtungen handelt, gelten ergänzend die besonderen Anforderungen der Verordnung zum Umgang mit wassergefährdenden Stoffen (AwSV).

Die Erteilung der wasserrechtlichen Erlaubnis beziehungsweise die Gewährung eventuell notwendiger Ausnahmen von Verboten stehen im pflichtgemäßen Ermessen der zuständigen Wasserbehörde. Bei gegebenenfalls notwendigen Schutzgüterabwägungen und der Ermessensausübung ist der neue § 2 Satz 1 und 2 EEG (2023) zu berücksichtigen. Danach "liegen die Errichtung und der Betrieb von Anlagen sowie den dazugehörigen Nebenanlagen im überragenden öffentlichen Interesse und dienen der öffentlichen Sicherheit. Bis die Stromerzeugung im Bundesgebiet nahezu treibhausgasneutral ist, sollen die erneuerbaren Energien als vorrangiger Belang in die jeweils durchzuführenden Schutzgüterabwägungen eingebracht werden." Ergänzend wird hierzu in der Gesetzesbegründung (BT-Drs. 20/1630) ausgeführt, dass die erneuerbaren Energien nur im Ausnahmefall überwunden werden können und für den Fall des planungsrechtlichen Außenbereichs, wenn keine Ausschlussplanung erfolgt ist, andere öffentliche Interessen den erneuerbaren Energien als wesentlicher Teil des Klimaschutzgebotes nur dann entgegenstehen, wenn sie mit einem dem Artikel 20a GG vergleichbaren verfassungsrechtlichen Rang gesetzlich verankert beziehungsweise gesetzlich geschützt sind oder einen gleichwertigen Rang besitzen. Hier ist beispielsweise die gesicherte Wasserversorgung als besonders wichtiges auch mit Verfassungsrang ausgestattetes Gemeinwohlbelang zu berücksichtigen. Das Vorhandensein von Trinkwasser in ausreichender Quantität und Qualität ist für die nach Artikel 2 Absatz 2 GG geschützten Güter des menschlichen Lebens und der menschlichen Gesundheit (körperliche Unversehrtheit) von maßgeblicher Bedeutung. So wird dem Schutz des Grundwassers zum Zwecke der Trinkwasserversorgung gemäß § 39 Absatz 2 Satz 2 SächsWG Priorität vor allen anderen Nutzungsarten eingeräumt. Soweit konkrete Anhaltspunkte für eine Gefährdung der Trinkwasserversorgung bestehen, kann daher der im § 2 EEG (2023) verankerte Vorrang der erneuerbaren Energien nicht mehr greifen.

Hinsichtlich der Einzelheiten zum Verfahren ist die örtlich zuständige untere Wasserbehörde Ansprechpartner.

Während des Baus der Erdwärmekollektoranlagen beachten:

Nach dem Erdwärmekollektoreinbau und dessen Verfüllung sowie vor Inbetriebnahme der Erdwärmekollektoranlage sind Druckprüfungen durchzuführen und ein entsprechend ausgefülltes Prüfzeugnis laut Anforderungen der VDI 4640 Blatt 2 der unteren Wasserbehörde zu übergeben. Die untere Wasserbehörde wird hierauf entweder im Anzeigeverfahren oder im Rahmen der wasserrechtlichen Erlaubnis hinweisen.

Nach dem Bau der Erdwärmekollektoranlagen veranlassen:

Spätestens vier Wochen nach Abschluss der Aufschlussarbeiten sind die für die Gewässeraufsicht bedeutsamen Angaben (zum Beispiel zu Bodenschichten, Grundwasserstand) sowie die vollständige Anlagendokumentation der unteren Wasserbehörde zuzuleiten. Die Anlagendokumentation sollte folgende Unterlagen enthalten: Leitungsführung, eingebrachtes Volumen des Wärmeträgermittels sowie dessen Mischungsverhältnis, optische Überprüfung der Schweißverbindungen, Durchflussprüfung und Druckprüfung. Die untere Wasserbehörde wird hierauf entweder im Anzeigeverfahren oder im Rahmen der wasserrechtlichen Erlaubnis hinweisen.

Bergrecht

Bei der Errichtung und dem Betrieb von Erdwärmekollektoren wird hauptsächlich die Energie der Sonne und des Niederschlagswassers genutzt (siehe auch VDI 4640 Blatt 2). Die Anwendung des Bergrechtes entfällt damit. Da in weiten Teilen Sachsens mit Altbergbau gerechnet werden muss, wird allen Bauherren empfohlen, vor Beginn des Erdaufschlusses eine Mitteilung über unterirdische Hohlräume gemäß § 7 Sächsische Hohlraumverordnung bei der Bergbehörde einzuholen.

Weitere Rechtsvorschriften

Darüber hinaus ist weiterhin nach der Abgabenordnung (AO) Nachstehendes zu beachten. Geht die Errichtung von Erdwärme-kollektoren mit der Eröffnung eines gewerblichen Betriebes oder einer Betriebstätte – jeweils im steuerlichen Sinn – einher, ist dies nach § 138 Absatz 1 AO anzuzeigen.

Im Fall einer Betriebseröffnung besteht nach § 138 Absatz 1b und 4 AO ferner die Verpflichtung, dem zuständigen Finanzamt innerhalb eines Monats nach Eröffnung weitere Auskünfte über die für die Besteuerung erheblichen rechtlichen und tatsächlichen Verhältnisse nach amtlich vorgeschriebenem Datensatz zu erteilen (Fragebogen zur steuerlichen Erfassung). Für die elektronische Übermittlung steht das Internetportal "Mein ELSTER" zur Verfügung. In diesem Zusammenhang hat der Anlagenbetreiber auch die Höhe der voraussichtlich zu erzielenden Umsätze anzugeben und kann verschiedene Wahlrechte hinsichtlich des umsatzsteuerlichen Besteuerungsverfahrens ausüben.

ELBA.Sax

Mit ELBA.Sax (Elektronische Bohranzeige Sachsen) wird für die Anzeigeverfahren nach dem WHG in Verbindung mit dem SächsWG ein Zugang zum Einreichen der Anzeige für den Erdaufschluss bei der zuständigen unteren Wasserbehörde der Landkreise/Kreisfreien Städte zur Verfügung gestellt (www.bohranzeige.sachsen.de).

Einheitliche Stelle

Auf Antrag des Trägers des Vorhabens kann das gegebenenfalls notwendige Erlaubnisverfahren sowie alle sonstigen Zulassungsverfahren und Anzeigen, die für die Errichtung der Erdwärmekollektoranlagen nach Bundes- oder Landesrecht erforderlich sind, über eine einheitliche Stelle abgewickelt werden (§ 11a Absatz 2 WHG). Die Inanspruchnahme der einheitlichen Stelle ist freiwillig. Die einheitliche Stelle dient als Kontaktpunkt und kann für den Vorhabensträger zur Verfahrensvereinfachung und Beschleunigung Serviceleistungen wahrnehmen. So berät und unterstützt die einheitliche Stelle während des Erlaubnisverfahrens den Antragsteller. Dies betrifft den Zeitpunkt ab Antragseingang bis zur Mitteilung des Ergebnisses. Die einheitliche Stelle führt auf Wunsch des Antragstellers diesen durch das Erlaubnisverfahren, stellt ihm alle erforderlichen Informationen zur Verfügung und bezieht gegebenenfalls andere Verwaltungsbehörden ein. Die Befugnisse der jeweils für die sachliche Prüfung und Entscheidung zuständigen Behörde bleiben jedoch unberührt die einheitliche Stelle hat nur koordinierende Aufgaben zur Unterstützung des Antragstellers.

Einheitliche Stelle für die Errichtung von Erdwärmekollektoranlagen, wenn eine wasserrechtliche Anzeige oder Erlaubnispflicht besteht, ist in Sachsen die örtlich zuständige untere Wasserbehörde (siehe Tabelle 1).

2.3 Anforderungen an die Planung von Erdwärmekollektoranlagen

Neben der Auslegung, dem fachgerechten Bau und der Errichtung des Erdwärmekollektors sollte die qualifizierte Installation und regelmäßige Überprüfung der Wärmepumpe sicher gestellt werden. Eine Wärmepumpe kann nur dann effizient genutzt werden, wenn die Wärmequellenanlage, zum Beispiel der Erdwärmekollektor, korrekt ausgelegt und installiert ist. Es empfiehlt sich daher, Fachunternehmen mit der Ausführung der Bauarbeiten zu beauftragen, die über einen Nachweis ihrer besonderen Fachkunde auf diesem Gebiet verfügen.

Informationen zu Bodenverhältnissen können im LfULG erfragt und/oder aus geologischen/bodenkundlichen Karten entnommen werden. Aus bodenkundlichen Daten können Aussagen zur spezifischen Wärmekapazität, Wärme- und Temperaturleitfähigkeit von Böden und damit zur potenziellen Standorteignung für Erdwärmekollektoren abgeleitet werden.

Erdwärmekollektoren sollen fachgerecht und ausreichend dimensioniert sein. Andernfalls können im Wärmeträgermittel, in der Verfüllung sowie im umgebenden Erdreich Temperaturen im Frostbereich auftreten, die Schäden am Kollektor sowie Veränderungen im umgebenden Erdreich verursachen und in der Folge nachteilige Auswirkungen auf die Grundwasserbeschaffenheit bewirken können. Um eine minimale Soletemperatur von –5 °C nicht zu unterschreiten, muss die Rohranordnung (Abstand und Lage zueinander) auf Entzugsleistung und Entzugsenergie abgestimmt sein. Der Abstand der Rohre muss so groß gewählt werden, dass eventuell saisonal entstehende Eisradien nicht zusammenwachsen, sich keine durchgehende Eisschicht im Winter und kein Matsch an der Erdoberfläche im Frühjahr bildet, sowie dass Niederschlags- und Schmelzwasser ganzjährig versickern kann.

Bei der Auslegung der Erdwärmekollektoranlage sind die maximale flächenspezifische Entzugsleistung in Watt pro Kollektorfläche (W/m²) und die maximale flächenspezifische Jahresentzugsenergie in kWh/(m²·a) zu berücksichtigen. Diese sind in Abhängigkeit von der Klimazone und der Bodenart für konventionelle Erdwärmekollektoren, für Systeme mit Kapillarrohrmatten, für Erdwärmekörbe und für Grabenkollektoren in der VDI 4640 Blatt 2 zu finden. Aus diesen Angaben und der Betriebsstundenzahl sowie der erforderlichen Kälteleistung lässt sich überschlägig die Kollektorfläche berechnen. Entsprechende Randbedingungen und Annahmen sind hierbei zu berücksichtigen und für die konkrete Anlagenplanung anzupassen.

Die flächenhafte Jahresentzugsenergie werden durch die Speicherkapazität, die Wärmetransporteigenschaften und die thermische Regeneration des Untergrundes sowie durch die Kollektorgeometrie und Betriebsweise der Anlage beeinflusst. Bezüglich des Bodens spielen Wassergehalt, Mineralbestand und Lagerungsdichte (Trockenrohdichte) eine wesentliche Rolle. Grundsätzlich eignen sich Standorte mit gut durchfeuchteten (und/oder geringen Grundwasserflurabständen), wasserspeichernden, dicht gelagerten, sandreichen Böden besser als Standorte mit trockenen, locker gelagerten Böden. Weiterhin sind das Jahresmittel der Umgebungstemperatur, deren tiefster Monatsmittelwert, der Bodentyp und der Wassergehalt des Bodens (Wärmeleitfähigkeit, Wärmekapazität) bei der Anlagenplanung zu berücksichtigen. Die Jahresentzugsenergie ist kein reiner bodenphysikalischer Wert, sondern hängt neben den Untergrundeigenschaften zum Beispiel auch von der Heizleistung, Jahresarbeitszahl und laufenden Jahresbetriebsstunden der Wärmepumpe ab. Sie variiert somit je nach Untergrundbeschaffenheit, Wassergehalt und technischen Randbedingungen und kann zur Erstabschätzung eines Erdwärmevorhabens und zur Auslegung von kleineren Erdwärmeanlagen im Einfamilienhausbereich herangezogen werden.

2.4 Anforderungen an Bauausführung und Betrieb von Erdwärmekollektoranlagen

Erdwärmekollektoren dürfen nicht überbaut und die Oberfläche über ihnen darf nicht versiegelt werden. Die Errichtung von Erdwärmekollektoranlagen soll unter Beachtung der Regeln der Technik erfolgen. Grundsätzlich sind die maßgebenden DIN-Normen, VDI-Richtlinien und DVGW-Regelwerke zu beachten.

Die Herstellung von Erdwärmekollektoren ist eine Bauleistung. Es ist daher ratsam, hinsichtlich der Ausführung auf fachlich und technisch leistungsfähige/erfahrende Fachunternehmen mit qualifiziertem Fachpersonal zurückzugreifen, zum Beispiel aus dem Bereich Rohrverlegung, Sanitär-Heizung-Klima.

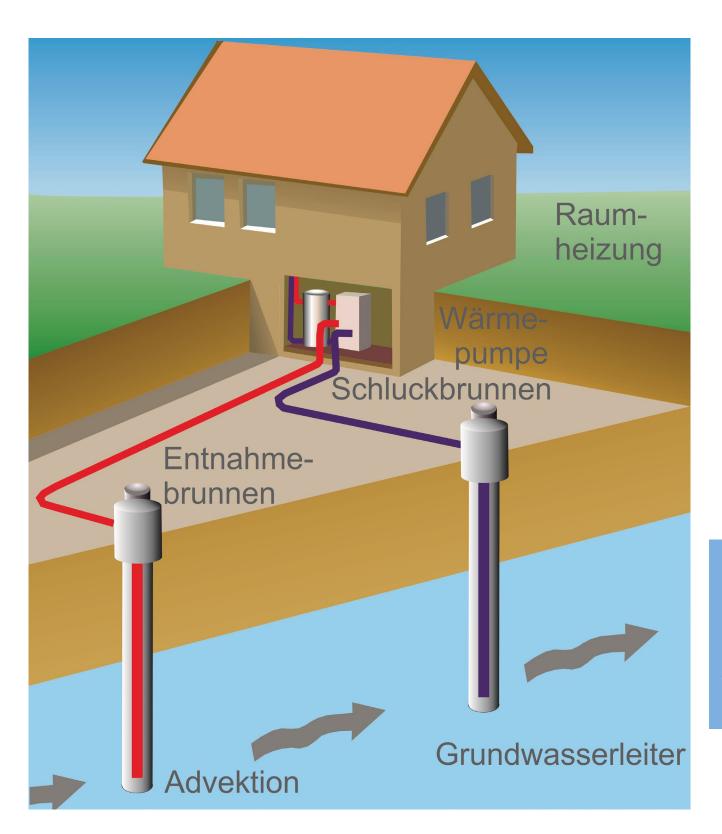
Bauausführung

Folgende technische Anforderungen an Bauausführung, Dokumentation und Betrieb von Erdwärmekollektoranlagen sollten von den Fachfirmen bei sämtlichen Bauarbeiten standardmäßig beherrscht werden.

- Die Wahl von Materialien und Wärmeträgermittel soll nach Empfehlungen der VDI 4640 Blatt 2 erfolgen, der Wärmepumpeneinsatz nach DIN 8901. Die Errichtung der Erdwärmeanlage ist zu dokumentieren.
- Grundsätzlich gelten die Anforderungen an Wärmepumpen mit Erdwärmesonden und -kollektoren der LAWA-Empfehlungen (LAWA, 2018). Diese geben unter anderem vor, dass einwandige Anlagen und Anlagenteile zur Nutzung von Erdwärme nur nicht wassergefährdende Stoffe oder wässrige Lösungen der WGK 1 enthalten dürfen. Diese Frostschutzmittel müssen nachweislich für den Einsatz im Außenkreislauf einer Erdwärmekollektoranlage geeignet sein. Im Interesse einer hohen Anlagensicherheit und Funktionalität sollten erhältliche vorgemischte Soleflüssigkeiten (zum Beispiel Wasser-Glykol-Gemisch) verwendet werden. Zulässige Frostschutzmittel können aus der Positivliste der LAWA-Empfehlungen (LAWA, 2018) entnommen werden, die regelmäßig aktualisiert und im Internet veröffentlicht wird.
- Für den Schutz von Bäumen und Pflanzenbeständen sind die DIN 18920 "Schutz von Bäumen, Pflanzenbeständen und Vegetationsflächen bei Baumaßnahmen" in Verbindung mit der RAL-LP 4 "Richtlinie für die Anlage von Straßen, Teil Landschaftspflege, Abschnitt 4" sowie eventuelle kommunale Baumschutzsatzungen zu beachten und einzuhalten.

- Auf die prinzipielle Sorgfaltspflicht bei Maßnahmen, mit denen Einwirkungen auf ein Gewässer verbunden sein können und beim Umgang mit wassergefährdenden Stoffen gemäß § 5 Absatz 1 WHG und § 59 SächsWG wird verwiesen. Jegliche nachteilige Veränderung der Beschaffenheit des Grundwassers ist auszuschließen. Unfälle mit wassergefährdenden Stoffen sind der Wasserbehörde oder Polizei unverzüglich anzuzeigen, wenn diese nicht mit einfachen betrieblichen Mitteln beseitigt werden können. Der Verursacher muss in Eigenverantwortung Sofortmaßnahmen zur Schadensbehebung oder -minimierung ergreifen.
- Erdwärmeanlagen können sich bei zu geringem Abstand gegenseitig thermisch beeinflussen. Zur Vermeidung negativer Einflüsse sind bei Erdwärmekollektoren Abstände von 1 m zu den Grundstücksgrenzen zu berücksichtigen (VDI 4640 Blatt 2). Zu Gebäuden, Fundamenten, Ver- und Entsorgungsleitungen und Ähnlichem müssen Erdwärmekollektoren ebenfalls einen Abstand von mindestens 1 m einhalten. Bei Spiralkollektoren und Erdwärmekörben sollten die Abstände zur Bebauung und Grundstücksgrenze 2 m bis 3 m, zu anderen Versorgungsleitungen mindestens 1 m und zwischen den Erdwärmekörben 4 m betragen (VDI 4640 Blatt 2).
- Die Erdwärmekollektoren und dazugehörige Teile müssen werkseitig entsprechend den Vorgaben der VDI 4640 Blatt 2 hergestellt sein (Schweißverfahren nach zum Beispiel DVS-Richtlinien 2207 und 2208-1, Werkstoffe nach DIN 8074 und 8075, Material und Erdeinbau DVGW W 400-2 (A)).
- Erdarbeiten (Verlegung grundsätzlich auf gewachsenem Boden, Einbau der Erdwärmekollektoren, Verdichten, zum Beispiel DVGW W 400-2 (A), DIN EN 1610) erfolgen entsprechend den Vorgaben der VDI 4640 Blatt 2.
- Das Verlegen und Anbinden von Kollektorleitungen und Verteiler erfolgt entsprechend den Vorgaben der VDI 4640 Blatt 2. Die Verlegerichtlinien der Hersteller sind zu beachten.
- Um eine Beschädigung der Rohre zu vermeiden, sollten diese in ein 20 cm mächtiges Sandbett eingebaut werden. 30 cm über den Rohren ist ein Warnband einzulegen. Entsprechend der späteren Oberflächennutzung ist der Untergrund gemäß geltender Richtlinien zu verdichten (VDI 4640 Blatt 2).

■ Spätestens vier Wochen nach Abschluss der Aufschlussarbeiten sind die für die Gewässeraufsicht bedeutsamen Angaben (zum Beispiel zu Bodenschichten, Grundwasserstand) sowie die vollständige Anlagendokumentation der unteren Wasserbehörde zuzuleiten (siehe Mitteilung im Rahmen der Anzeige beziehungsweise wasserrechtliche Erlaubnis). Die Anlagendokumentation sollte folgende Unterlagen enthalten: Leitungsführung, eingebrachtes Volumen des Wärmeträgermittels sowie dessen Mischungsverhältnis, optische Überprüfung der Schweißverbindungen, Durchflussprüfung und Druckprüfung.


Anlagenbetrieb

- Liegt eine wasserrechtliche Erlaubnis vor, sind die in ihr erlassenen Nebenbestimmungen zum Betrieb der Erdwärmeanlage zu beachten.
- Erdwärmekollektoranlagen sind durch selbsttätige Leckageüberwachungseinrichtungen (baumustergeprüfte Druck-/ Strömungswächter) gegen Flüssigkeitsverluste zu sichern, da eventuelles Auslaufen eines wassergefährdenden Wärmeträgermittels zu einer schädlichen Veränderung der Grundwasserbeschaffenheit führen kann. Im Falle einer Leckage des Erdwärmekollektors (Abfall des Flüssigkeitsdruckes) muss die Anlage sofort abgeschaltet und ein Störsignal abgegeben werden. Weitere Ausführungen zu Druckabsicherungen sind in der VDI 4640 Blatt 2 zu finden.
- Die Dichtheit der Anlage (einschließlich der Anschlussleitungen und Verbindungen) und die gleichmäßige Durchströmung sind nach entsprechend vorgeschriebenen Druckprüfungen laut VDI 4640 Blatt 2 durch eine Fachfirma durchzuführen und zu gewährleisen. Die entsprechend ausgefüllten Prüfprotokolle sind der unteren Wasserbehörde zu übergeben.
- Wer die Erdwärmekollektoranlage errichtet, haftet auch für den ordnungsgemäßen Bau der Anlage. Ebenso haftet der Anlagenbetreiber für Errichtung und ordnungsgemäßen Betrieb der Anlage.

- Die Rechte und Pflichten aufgrund wasserrechtlicher Entscheidungen gehen mit der Erdwärmekollektoranlage auf den Rechtsnachfolger über, soweit bei der Entscheidung nichts anderes bestimmt ist (§ 8 Absatz 1 SächsWG). Dies ist der unteren Wasserbehörde innerhalb von drei Monaten anzuzeigen, sofern im wasserrechtlichen Bescheid nichts anderes festgelegt ist (§ 8 Absatz 2 SächsWG).
- Vom Betreiber der Anlage ist regelmäßig zu prüfen, ob aus dem obertägig zugänglichen Anlageteil Wärmeträgermittel austritt. In diesem Fall ist die Anlage sofort außer Betrieb zu nehmen, das Wärmeträgermittel mit Trinkwasser aus der Kollektoranlage zu spülen und fachgerecht zu entsorgen. In beiden Fällen ist unverzüglich das Heizungsbau-/Installationsunternehmen beziehungsweise das mit der Planung befasste Ingenieurbüro mit der Klärung der Ursachen beziehungsweise Behebung des Schadens zu beauftragen. Sollte Wärmeträgermittel ins Erdreich eingedrungen sein, muss die untere Wasserbehörde und die untere Bodenschutzbehörde umgehend informiert werden.
- Wenn für eine Erdwärmeanlage eine wasserrechtliche Erlaubnis erteilt wurde, sollte bei vorübergehender Außerbetriebnahme der Erdwärmekollektoranlage und bei Nutzungsänderungen (zum Beispiel die Erhöhung der Heizleistung, Nutzung zu Kühlzwecken oder Austausch der Wärmepumpe beziehungsweise des Kältemittels) die untere Wasserbehörde informiert werden. Bei Stilllegung beziehungsweise dauerhafter Außerbetriebnahme sollte gemäß VDI 4640 Blatt 2 verfahren werden.

Grundwasser– *w*ärmepumpen

3 Verfahrenshandbuch zum Bau und Betrieb von Grundwasserwärmepumpen in Sachsen

3.1 Bau und Funktionsweise von Grundwasserwärmepumpen

Grundwasserwärmepumpenanlagen stellen eine Möglichkeit zur Nutzung oberflächennaher Erdwärme dar und leisten damit einen Beitrag zu einer klimaschonenden sowie nachhaltigen Energiegewinnung. Sie können das ganze Jahr über konstante Wärmequellentemperaturen von rund 8 °C bis 10 °C nutzen, was eine hohe Energieausbeute ermöglicht.

Zur Gewinnung von Erdwärme kann Grundwasser direkt genutzt werden, sofern es in konstant ausreichender Menge und Beschaffenheit verfügbar ist. Hierfür wird das Grundwasser meist über einen Förderbrunnen (Entnahmebrunnen) erschlossen, mittels Unterwasserpumpe direkt zur Grundwasser-Wärmepumpe gefördert und über einen Schluckbrunnen (Einleitbrunnen) dem genutzten Grundwasserkörper wieder zugeführt (siehe Abbildung 3–1).

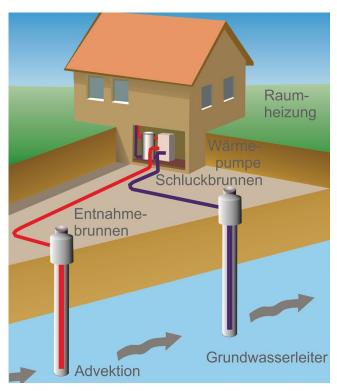


Abbildung 3-1: Schema Grundwasserwärmepumpenanlage mit Entnahme und Einleitbrunnen

Das Grundwasser wird über Entnahmebrunnen gefördert und im Wärmepumpenkreislauf einem Wärmetauscher zugeführt. Dort erfolgt der Energieentzug zu Heizzwecken oder die Energiezufuhr für Kühlzwecke. Anschließend wird das thermisch veränderte Grundwasser über Schluckbrunnen dem Grundwasserleiter (GWL) wieder zugeführt. Die Rückleitung des gesamten geförderten Grundwassers erfolgt in der Regel auf demselben Grundstück wie die Entnahme und vollständig unterhalb des

Ruhewasserspiegels in denselben GWL, der auch für die Förderung genutzt wird, um eine dauerhaft quantitative Veränderung des Grundwasserhaushaltes des GWL zu vermeiden.

Die Nutzung von Grubenwasser für Grundwasserwärmepumpenanlagen ist im Prinzip möglich, aber als Sonderfall zu betrachten.

Zur Erkundung der hydrogeologischen Standortverhältnisse für eine solche Anlage wird die Zuhilfenahme eines sachkundigen Geologen oder eines fachlich versierten Ingenieurbüros empfohlen.

Da bei einer Nutzung der Anlage zu Heizzwecken in der Regel eine Temperaturabsenkung des Wassers um 4 K bis 5 K erfolgt, muss die Mindesttemperatur des Grundwassers im Zulauf 7 °C betragen, damit es nicht zu Frostschäden kommt. Aus Sicht des Grundwasserschutzes sind Temperaturänderungen tolerierbar, wenn eine nachteilige Veränderung der Beschaffenheit des Grundwassers nicht zu besorgen ist (§ 48 Wasserhaushaltsgesetz (WHG)), das heißt wenn die Temperaturänderungen innerhalb der natürlichen, regionalen Schwankungsbreite liegen. Für die Praxis bedeutet das eine zulässige Temperaturänderung von ±6 K sowie eine Mindesteinleittemperatur von 5 °C beziehungsweise eine maximale Einleittemperatur von 20 °C.

Einschränkungen der Nutzbarkeit bestehen neben einem ausreichend wasserführenden GWL vor allem hinsichtlich der Grundwasserbeschaffenheit. Bei sauerstoffreduzierten Wässern mit hohen Eisen- und Mangangehalten besteht die Gefahr der Brunnenverockerung, bei aggressiven Wässern die Gefahr der Anlagenkorrosion. Herstellerangaben zu materialbezogenen wasserchemischen Grenz- und Richtwerten beim Einsatz entsprechender Produkte sollten aus diesen Gründen unbedingt beachtet werden.

Bei Grundwasserwärmepumpenanlagen kann die Wärmeenergie des Grundwassers für Heiz- und Kühlzwecke genutzt werden. Je nach Anlagengröße und Untergrundverhältnissen sind die Wirtschaftlichkeitsgrenzen in den meisten Fällen bei Brunnentiefen von 20 m bis 50 m erreicht, da mit zunehmender Brunnentiefe die Bau- und Betriebskosten stark ansteigen.

3.2 Rechtsgrundlagen und Verfahren

Die rechtlichen Grundlagen für den Bau und Betrieb einer Grundwasserwärmepumpenanlage in Sachsen sind maßgeblich im WHG, Sächsischen Wassergesetz (SächsWG), Bundesberggesetz (BBergG) sowie im Gesetz zur staatlichen geologischen Landesaufnahme sowie zur Übermittlung, Sicherung und öffentlichen Bereitstellung geologischer Daten und zur Zurverfügungstellung geologischer Daten zur Erfüllung öffentlicher Aufgaben (Geologiedatengesetz – (GeolDG)) enthalten.

Wasserrecht

1. Schritt: Erkundungsarbeiten – Abteufen der Erkundungsbohrung, Pump- und Schluckversuch, Wasseranalytik

Ist nicht bekannt, ob sich der Untergrund (Grundwasserdargebot, –zusammensetzung oder Schluckvermögen des GWL) für den Betrieb einer Grundwasserwärmepumpenanlage eignet, ist es fachlich geboten und liegt im eigenen Interesse des Bauherrn, Erkundungsbohrungen abzuteufen und einen Pump- und Schluckversuch durchzuführen. Die Erkundungsbohrung (in der Regel Brunnenbohrung) ist nach § 49 Absatz 1 Satz 1 WHG einen Monat vor Beginn der Arbeiten bei der zuständigen unteren Wasserbehörde des Landratsamtes/der Kreisfreien Stadt (Anschriften siehe Teil I, Tabelle 1) mit den entsprechenden Unterlagen anzuzeigen, da die Bohrungen sich unmittelbar oder mittelbar auf die Bewegung, die Höhe oder die Beschaffenheit des Grundwassers auswirken können (Formular zum Antrag siehe Anlage 3-2).

Mit dem Vorhaben darf nach Ablauf einer Frist von einem Monat begonnen werden, sofern die untere Wasserbehörde keine anderweitige Entscheidung getroffen hat (§ 41 Absatz 1 Satz 3 SächsWG).

Bereits die Erkundungsbohrung kann eine Gewässerbenutzung darstellen und bedarf möglicherweise einer behördlichen Erlaubnis (§ 8 WHG). Nach Eingang der Anzeige prüft daher die zuständige Wasserbehörde, ob eine erlaubnispflichtige Benutzung gemäß § 49 Absatz 1 Satz 2 WHG oder § 9 Absatz 2 Nummer 2 WHG bei der geplanten Erkundungsbohrung vorliegt. Soweit der Bauherr nicht bereits im Rahmen der Anzeige der Bohrung sein Einverständnis für die Durchführung eines kostenpflichtigen Erlaubnisverfahrens erteilt hat, wird der Bauherr durch die untere Wasserbehörde auf die gegebenenfalls bestehende Notwendigkeit der Beantragung einer wasserrechtlichen Erlaubnis hingewiesen.

Der Pumpversuch ist gemäß § 46 Absatz 1 Satz 1 Nummer 1 WHG in der Regel erlaubnisfrei, da nur geringe Mengen des Grundwassers zu einem vorübergehenden Zweck zu Tage gefördert werden. Der Schluckversuch hingegen (Wiedereinleiten des entnommenen Grundwassers) bedarf gemäß § 8 Absatz 1 in Verbindung mit § 9 Absatz 1 Nummer 4 WHG der wasserrechtlichen Erlaubnis. Hinsichtlich der Voraussetzungen für die Erteilung einer wasserrechtlichen Erlaubnis wird auf die nachfolgenden Ausführungen unter dem 2. Schritt "Errichtung der Grundwasserwärmepumpenanlage" verwiesen.

Sollten im Ausnahmefall Grundwasserdargebot und -beschaffenheit bekannt, für den Betrieb einer Grundwasserwärmepumpenanlage geeignet und somit keine Untersuchungen des Untergrundes erforderlich sein, ist die Bohranzeige nach § 49 WHG Bestandteil des Wasserrechtsantrages zur Erteilung einer Erlaubnis nach § 8 Absatz 1 WHG.

Kurz und knapp:

- Es besteht immer eine wasserrechtliche Anzeigepflicht gegenüber der unteren Wasserbehörde.
- Abhängig von den konkreten Gegebenheiten vor Ort ist ein wasserrechtliches Erlaubnisverfahren für das Abteufen der Bohrung bei der unteren Wasserbehörde durchzuführen. Ebenso ist immer ein Erlaubnisverfahren für die Entnahme des Grundwassers zur thermischen Nutzung und die Wiedereinleitung durchzuführen.
- Für alle Bohrungen gilt stets die Anzeigepflicht nach dem GeolDG gegenüber dem LfULG.
- Für Bohrungen tiefer als 100 m gilt die bergrechtliche Anzeigepflicht gegenüber dem Sächsischen Oberbergamt (SOBA).

2. Schritt: Errichtung der Grundwasserwärmepumpenanlage

Die Entnahme von Grundwasser zur thermischen Nutzung und die Wiedereinleitung des genutzten Grundwassers stellen erlaubnispflichtige Benutzungstatbestände dar.

Daher ist nach der Durchführung der Erkundungsbohrung, dem Ausbau der Brunnen sowie der Testarbeiten (zum Beispiel Pumpversuch) der Antrag auf wasserrechtliche Erlaubnis für den Betrieb der Grundwasserwärmepumpenanlage nach § 8 Absatz 1 in Verbindung mit § 9 Absatz Nummer 4 und 5 WHG bei der zuständigen unteren Wasserbehörde zu stellen (Formular zum Antrag siehe Anlage 3-3). Dem Antrag sind entsprechende Unterlagen zu Pump-/Schluckversuch, Grundwasserdargebot und -beschaffenheit und so weiter beizulegen.

Die Voraussetzungen für die Erteilung einer wasserrechtlichen Erlaubnis ergeben sich aus § 12 Absatz 1 WHG. Danach ist die Erlaubnis zu versagen, wenn schädliche, auch durch Nebenbestimmungen nicht vermeidbare oder nicht ausgleichbare Gewässerveränderungen zu erwarten sind oder andere Anforderungen nach öffentlich-rechtlichen Vorschriften nicht erfüllt werden.

Stoffbezogene Prüfung

Aus der stoffbezogenen Prüfung können sich Auflagen für die beim Bohren und beim Ausbau der Bohrung einzusetzenden Materialien ergeben. Eine Produktzulassung der verwendeten Stoffe beeinflusst nicht die Erlaubnispflicht sondern die Erlaubnisfähigkeit, das heißt wurde bei der Produktzulassung das Umweltrecht berücksichtigt, so ist die fachliche Prüfung vorweggenommen.

Standortbezogene Prüfung

Die zuständige untere Wasserbehörde muss gegebenenfalls in den nachfolgend aufgeführten, wasserwirtschaftlich besonders sensiblen Gebieten besondere Anforderungen an den Bau von Grundwasserwärmepumpen stellen beziehungsweise deren Bau gegebenenfalls auch ablehnen:

Lage in Wasserschutzgebieten: Die Errichtung von Grundwasserwärmepumpen im Trinkwasserschutzgebiet beziehungsweise Arbeiten im Zusammenhang mit ihrer Errichtung können entsprechend der Trinkwasserschutzgebietsverordnung ausgeschlossen oder nur eingeschränkt zulässig sein. Befreiungen von den Anforderungen der Trinkwasserschutzgebietsverordnung sind gemäß § 52 Absatz 1 Satz 2 WHG im Einzelfall möglich, wenn der Schutzzweck der Wasserschutzgebietsverordnung nicht gefährdet wird oder überwiegende Gründe des Wohls der Allgemeinheit dies erfordern. In Heilquellenschutzgebieten gelten die Ausführungen zu den Trinkwasserschutzgebieten entsprechend.

Lage in Gebieten mit gehäuften, herausragenden beziehungsweise sensiblen Gewässerbenutzungen (zum Beispiel Mineral-, Thermalwassergewinnung, Trinkwassergewinnung zur Lebensmittelherstellung, Grundwasserentnahmestellen nach Wassersicherstellungsgesetz, hohe Hausbrunnendichte): Die zuständige Wasserbehörde entscheidet immer im Einzelfall, ob betroffene Dritte in das wasserrechtliche Verfahren einzubeziehen sind.

Lage in Gebieten mit bestehenden Boden- und/oder Grundwasserverunreinigungen: Innerhalb des kontaminierten Bereiches einer Altlast, einer schädlichen Boden- oder einer Grundwasserverunreinigung hängt die Zulässigkeit der Errichtung von Grundwasserwärmepumpenanlagen von den Umständen des Einzelfalles ab, da hier die Gefahr der Verschleppung von Kontaminationen in tiefe Boden- und Grundwasserbereiche besteht.

Standorte mit aktivem Bergbau/Altbergbau: Da hier Probleme beim Bohren beziehungsweise Abdichten der Bohrung auftreten können, hängt auch hier die Zulässigkeit der Errichtung von den Umständen des Einzelfalles ab.

Lage innerhalb eines Gewässerrandstreifens: Die Errichtung von Grundwasserwärmepumpen innerhalb eines Gewässerrandstreifens ist verboten (§ 38 Absatz 4 Satz 2 Nummer 3 WHG, § 24 Absatz 3 Nummer 2 SächsWG). Von dem Verbot kann eine Befreiung erteilt werden, wenn überwiegende Gründe des Wohls der Allgemeinheit die Maßnahme erfordern oder das Verbot im Einzelfall zu einer unbilligen Härte führt.

Lage in Überschwemmungsgebieten: In festgesetzten Überschwemmungsgebieten sowie in Überschwemmungsgebieten kraft Gesetzes (§ 72 Absatz 2 SächsWG) oder vorläufig gesicherten Überschwemmungsgebieten (§ 76 Absatz 3 WHG) ist gemäß § 78 Absatz 4 Satz 1 WHG die Errichtung von (Wohn-)Gebäuden mit Grundwasserwärmepumpenanlagen untersagt. Gemäß § 78 Absatz 5 Satz 1 WHG kann unter den dort genannten Voraussetzungen im Einzelfall hierfür eine Genehmigung erteilt werden.

Lage in überschwemmungsgefährdeten Gebieten: Grundwasserwärmepumpen sind entsprechend § 75 Absatz 5 Satz 2 SächsWG so zu errichten, dass der Eintrag wassergefährdender Stoffe bei Überschwemmungen verhindert wird.

Im Rahmen der standortbezogenen Prüfung ist neben der wasserwirtschaftlichen auch die örtliche **hydrogeologische Situation** bedeutsam: Gebiete mit gespannten (artesischen) GWL, GWL im ausgeprägten Stockwerksbau, Gebiete mit stark wechselnden Untergrundverhältnissen, signifikanten altlastbedingten Grundwasserkontaminationen sowie Gebiete mit bohr- und ausbautechnischen Schwierigkeiten (zum Beispiel

Altbergbau, Hohlraumgebiete, hydraulisch wirksame Störungsund Bruchzonen) sind für den Bau von Grundwasserwärmepumpen nur eingeschränkt oder gar nicht geeignet und werden entsprechend geprüft.

Soweit es sich um Grundwasserwärmepumpen im Bereich der gewerblichen Wirtschaft und im Bereich öffentlicher Einrichtungen handelt, gelten ergänzend die besonderen Anforderungen der Verordnung zum Umgang mit wassergefährdenden Stoffen (AwSV).

Die Erteilung der wasserrechtlichen Erlaubnis beziehungsweise die Gewährung eventuell notwendiger Ausnahmen von Verboten stehen im pflichtgemäßen Ermessen der zuständigen Wasserbehörde. Bei gegebenenfalls notwendigen Schutzgüterabwägungen und der Ermessensausübung ist der neue § 2 Satz 1 und 2 EEG (2023) zu berücksichtigen. Danach "liegen die Errichtung und der Betrieb von Anlagen sowie den dazugehörigen Nebenanlagen im überragenden öffentlichen Interesse und dienen der öffentlichen Sicherheit. Bis die Stromerzeugung im Bundesgebiet nahezu treibhausgasneutral ist, sollen die erneuerbaren Energien als vorrangiger Belang in die jeweils durchzuführenden Schutzgüterabwägungen eingebracht werden." Ergänzend wird hierzu in der Gesetzesbegründung (BT-Drs. 20/1630) ausgeführt, dass die erneuerbaren Energien nur im Ausnahmefall überwunden werden können und für den Fall des planungsrechtlichen Außenbereichs, wenn keine Ausschlussplanung erfolgt ist, andere öffentliche Interessen den erneuerbaren Energien als wesentlicher Teil des Klimaschutzgebotes nur dann entgegenstehen, wenn sie mit einem dem Artikel 20a GG vergleichbaren verfassungsrechtlichen Rang gesetzlich verankert beziehungsweise gesetzlich geschützt sind oder einen gleichwertigen Rang besitzen. Hier ist beispielsweise die gesicherte Wasserversorgung als besonders wichtiges auch mit Verfassungsrang ausgestattetes Gemeinwohlbelang zu berücksichtigen.

Das Vorhandensein von Trinkwasser in ausreichender Quantität und Qualität ist für die nach Artikel 2 Absatz 2 GG geschützten Güter des menschlichen Lebens und der menschlichen Gesundheit (körperliche Unversehrtheit) von maßgeblicher Bedeutung. So wird dem Schutz des Grundwassers zum Zwecke der Trinkwasserversorgung gemäß § 39 Absatz 2 Satz 2 SächsWG Priorität vor allen anderen Nutzungsarten eingeräumt. Soweit konkrete Anhaltspunkte für eine Gefährdung der Trinkwasserversorgung bestehen, kann daher der im § 2 EEG (2023) verankerte Vorrang der erneuerbaren Energien nicht mehr greifen.

Die Erlaubnis wird in der Regel auf 10 bis 15 Jahre befristet. Sie gewährt die Befugnis, das Grundwasser zu benutzen, aber keinen Anspruch auf Zufluss von Wasser in einer bestimmten Menge und Beschaffenheit (§ 10 WHG).

Die im Rahmen des Anzeigeverfahrens oder in den wasserrechtlichen Bescheiden der unteren Wasserbehörde enthaltenen Anforderungen und Hinweise sind zu beachten.

Fristen für die Entscheidung über die Erlaubnis

Die zuständige Behörde entscheidet gemäß § 11a Absatz 5 Satz 1 Nummer 1b oder 2b WHG über die Erteilung der Erlaubnis 1. innerhalb eines Jahres bei Bau und Betrieb einer Grundwasserwärmepumpenanlage, wenn das Vorhaben der Erzeugung von Strom mit einer Kapazität < 150 kW dient,

2. innerhalb von zwei Jahren bei Bau und Betrieb einer Grundwasserwärmepumpenanlage, wenn das Vorhaben der Erzeugung von Strom in einem Kraftwerk dient.

Die untere Wasserbehörde kann die jeweilige Frist nach Satz 1 einmalig um bis zu 18 und längstens um 24 Monate verlängern, soweit die Prüfung von Anforderungen nach umweltrechtlichen Vorschriften, die der Umsetzung entsprechender Vorgaben der Europäischen Gemeinschaften oder der Europäischen Union dienen, insbesondere die Prüfung der Einhaltung der Bewirtschaftungsziele, mit einem erhöhten Zeitaufwand verbunden ist. Im Übrigen kann die untere Wasserbehörde die jeweilige Frist nach Satz 1 um bis zu einem Jahr verlängern, wenn außergewöhnliche Umstände vorliegen. Sie teilt die Fristverlängerung dem Träger des Vorhabens mit. Die Frist beginnt mit Eingang der vollständigen Antragsunterlagen.

Befristet für den Geltungszeitraum der Verordnung (EU) 2022/2577 des Rates vom 22. Dezember 2022 zur Festlegung eines Rahmens für einen beschleunigten Ausbau der Nutzung erneuerbarer Energien (ABI. L 335 vom 29.12.2022, S. 36) – derzeit bis 30. Juni 2024 – wird die nationale Frist des 11a Absatz 5 WHG gemäß Artikel 7 Absatz 1 der genannten Verordnung auf 3 Monate verkürzt, um den Ausbau der erneuerbaren Energien (EE) zusätzlich zu beschleunigen und um das Ausmaß der aktuellen Energiekrise sowie ihrer potenziellen sozialen, wirtschaftlichen und finanziellen Auswirkungen zumindest zum Teil abzufedern.

3. Schritt: Abschlussdokumentation nach Errichtung der Anlage

Spätestens vier Wochen nach Abschluss der Aufschlussarbeiten sind die für die Gewässeraufsicht bedeutsamen Angaben (zum Beispiel zu Bodenschichten, Grundwasserstand) sowie die vollständige Anlagendokumentation der unteren Wasserbehörde zuzuleiten. Die Anlagendokumentation sollte folgende Unterlagen enthalten (siehe auch wasserrechtliche Erlaubnis):

- Übersichtsplan im Maßstab 1:5.000,
- Lageplan des Grundstückes im Maßstab 1:200 mit Darstellung des Brunnenstandortes (Einmessen an unveränderlichen Festpunkten wie zum Beispiel Grundstücksgrenzen),

- Dokumentation der Bohrung (zum Beispiel vom Bohrmeister oder Geologen bearbeitetes Schichtenverzeichnis inklusive Kopfblätter) gemäß DIN EN ISO 22475-1 in Verbindung mit DIN EN ISO 14688-1 und DIN EN ISO 14688-2 mit Angaben zum Grundwasseranschnitt und zum Ruhewasserspiegel,
- zeichnerische Darstellung des Bohrprofils nach DIN 4023,
- Brunnenausbauzeichnung mit Darstellung der Hinterfüllung nach DIN 4943 und Angabe des eingebauten Pumpentypes,
- Messprotokolle der geophysikalischen Messungen, der Pumpversuche und der hydrochemischen Analytik, sofern diese durchgeführt wurden,
- Angabe Typ und Leistung der eingesetzten Wärmepumpe.

Im Falle einer **Außerbetriebnahme** der Grundwasserwärmepumpenanlage sollte dies bei der unteren Wasserbehörde von Landratsamt/Kreisfreier Stadt angezeigt werden (gegebenenfalls Verzicht auf die wasserrechtliche Erlaubnis – § 11 SächsWG). Die Brunnen sollten auf der Grundlage des DVGW W 135 (A) ordnungsgemäß durch ein Fachunternehmen für Brunnenbau zurückgebaut oder stillgelegt werden. Es ist sicherzustellen, dass keine Gefahr für das Grundwasser entstehen kann. Wenn es zum Schutz des Grundwassers erforderlich ist, kann der Rückbau auch von der unteren Wasserbehörde angeordnet werden. Dabei ist die Art des Rückbaus vorher mit der unteren Wasserbehörde abzustimmen beziehungsweise wird durch diese festgelegt.

Umweltverträglichkeitsprüfung

Grundwasserentnahmen unterliegen bei einer jährlichen Entnahmemenge von 5.000 m³ bis < 100.000 m³ der Pflicht zur Durchführung einer standortbezogenen Vorprüfung, wenn durch die Gewässerbenutzung erhebliche nachteilige Auswirkungen auf grundwasserabhängige Ökosysteme zu erwarten sind. Bei darüber hinaus gehenden Mengen bedarf es der allgemeinen Vorprüfung. Die Umweltverträglichkeitsprüfung ist obligatorisch ab einer Entnahmemenge von 10 Millionen m³ durchzuführen.

Bergrecht

Nach § 3 Abs. 2 Satz 2 Nummer 2 b) BBergG gilt Erdwärme als bergfreier Bodenschatz, der grundsätzlich dem Anwendungsbereich des bergrechtlichen Regimes unterliegt. Das Bundesberggesetz nimmt jedoch in § 4 Abs. 2 Nummer 1 BBergG die Gewinnung von Bodenschätzen und damit auch von Erdwärme in einem Grundstück im Zusammenhang mit dessen baulicher Nutzung vom Anwendungsbereich des Bergrechts aus. Gleiches gilt für die Aufbereitung von Erdwärme nach § 4 Abs. 3 Satz 2 Halbsatz 2 BBergG. Diese Ausnahmen enthalten keine bezifferte Tiefenbegrenzung. In § 127 BBergG wird lediglich eine Grenze von 100 Metern für die technische Überwachungsvorschrift festgelegt, die für Bohrungen generell gilt.

Die Gewinnung von Erdwärme in einem Grundstück im Zusammenhang mit dessen baulicher Nutzung mit den üblichen

Bohrtechniken fällt grundsätzlich nicht in den Anwendungsbereich des Bundesberggesetzes, sondern unterliegt ab 100 Metern lediglich der technischen Überwachungsvorschrift des § 127 BBergG. In der Praxis genügt dann das Anzeigeverfahren. Eine bergrechtliche Erlaubnis oder Bewilligung dieser oberflächennahen Erdwärmenutzung ist nicht erforderlich.

Erdwärme im Sinne des Bundesberggesetzes und damit bergrechtlich relevant ist folglich nur die Geothermie, die aus tiefen, geologischen Reservoiren gewonnen wird und die unmittelbar oder nach Umwandlung in elektrische Energie zur Versorgung des Marktes, also einer Vielzahl von Abnehmern zur Verfügung gestellt werden kann und damit von volkswirtschaftlicher Relevanz ist (so auch von Hammerstein in Boldt/Weller, Bundesberggesetz, 2. Aufl., 2015, § 3 Rdnr. 47 ff). Indizien für eine solche Einstufung liegen vor, wenn die Gewinnungsanlage eine maximale Heizleistung von 0,2 MW überschreitet oder bei einer Tiefe des Erdwärmehorizontes von mehr als 400 m.

Die bergrechtliche Anzeigepflicht gilt unabhängig von der wasserrechtlichen Anzeigepflicht und dem damit gegebenenfalls verbundenen wasserrechtlichen Erlaubnisverfahren.

Da in weiten Teilen Sachsens mit Altbergbau gerechnet werden muss, wird allen Bauherren empfohlen, vor Beginn der Bohrarbeiten eine Mitteilung über unterirdische Hohlräume gemäß § 7 Sächsische Hohlraumverordnung bei der Bergbehörde einzuholen.

Geologiedatengesetz

Nach § 8 Absatz 1 GeolDG sind alle Bohrungen (unabhängig von ihrer geplanten Tiefe) durch den Bohrunternehmer spätestens zwei Wochen vor Beginn der Arbeiten beim LfULG anzuzeigen. Nach Abschluss der Bohrung (spätestens sechs Monate nach dem Niederbringen der Bohrung) sind dem LfULG die Bohrergebnisse in Form der(s) Schichtenverzeichnisse(s) und zugehörige Untersuchungsergebnisse (Pumpversuche, Korngrößenanalysen, geophysikalische Untersuchungen und so weiter) mitzuteilen. Diese Unterlagen können digital als PDF/A-Dateien beziehungsweise über das Elektronische Bohranzeigeverfahren ELBA.Sax übergeben werden.

Die Bohrproben und sonstiges Beobachtungsmaterial sind vom Bohrunternehmen aufzubewahren, zu sichern und dem LfULG auf Verlangen zur Verfügung zu stellen (siehe §§ 8 ff. in Verbindung mit § 14 GeolDG). Sie dürfen erst nach Absprache und nur mit Erlaubnis des LfULG vernichtet werden.

Weitere Rechtsvorschriften

Außerdem sind gegebenenfalls weitere Rechtsvorschriften wie das Gesetz zur Suche und Auswahl eines Standortes für ein Endlager für hochradioaktive Abfälle Standortauswahlgesetz – (StandAG) und die Abgabenordnung – (AO) zu beachten.

Am 28. September 2020 sind die Teilgebiete veröffentlicht worden, die günstige geologische Voraussetzungen für die sichere Endlagerung radioaktiver Abfälle erwarten lassen. Die dabei identifizierten Gebiete sind vor Veränderungen zu schützen, damit ihre Eignung als Endlagerstandort nicht beeinträchtigt wird. § 21 StandAG regelt daher Sicherungsvorschriften, wobei für Bohrungen in identifizierten Gebieten mit mehr als 100 m Tiefe definierte Ausnahmetatbestände erfüllt sein müssen. Diese Prüfung nehmen die Behörden ohne zusätzliche Antragstellung von sich aus vor.

Geht die Errichtung einer Grundwasserwärmepumpenanlage mit der Eröffnung eines gewerblichen Betriebes oder einer Betriebstätte – jeweils im steuerlichen Sinn – einher, ist dies nach § 138 Absatz 1 AO anzuzeigen. Im Fall einer Betriebseröffnung besteht nach § 138 Absatz 1b und 4 AO ferner die Verpflichtung, dem zuständigen Finanzamt innerhalb eines Monats nach Eröffnung weitere Auskünfte über die für die Besteuerung erheblichen rechtlichen und tatsächlichen Verhältnisse nach amtlich vorgeschriebenem Datensatz zu erteilen (Fragebogen zur steuerlichen Erfassung). Für die elektronische Übermittlung steht das Internetportal "Mein ELSTER" zur Verfügung. In diesem Zusammenhang hat der Anlagenbetreiber auch die Höhe der voraussichtlich zu erzielenden Umsätze anzugeben und kann verschiedene Wahlrechte hinsichtlich des umsatzsteuerlichen Besteuerungsverfahrens ausüben.

ELBA.Sax

Mit ELBA.Sax (Elektronische Bohranzeige Sachsen) wird für die Anzeigeverfahren nach dem WHG in Verbindung mit dem SächsWG, BBergG und GeolDG internetbasiert ein gebündelter Zugang zum Einreichen der Bohranzeige bei den zuständigen Behörden (untere Wasserbehörden der Landkreise/Kreisfreien Städte, SOBA und LfULG) zur Verfügung gestellt (www.bohranzeige.sachsen.de). Wird für die Anzeige ELBA.Sax genutzt, müssen für ein Bohrvorhaben in Sachsen nicht mehr mehrere Anzeigen erfolgen, sondern es ist nur noch eine einzige Anzeige notwendig. Alle für ein Bohrvorhaben zuständigen Behörden erhalten die Anzeige und werden beteiligt.

Einheitliche Stelle

Auf Antrag des Trägers des Vorhabens kann das gegebenenfalls notwendige Erlaubnisverfahren sowie alle sonstigen Zulassungsverfahren und Anzeigen, die für die Errichtung der Erdwärmesondenanlage nach Bundes- oder Landesrecht erforderlich sind, über eine einheitliche Stelle abgewickelt werden (§ 11a Absatz 2 WHG).

Die Inanspruchnahme der einheitlichen Stelle ist freiwillig. Die einheitliche Stelle dient als Kontaktpunkt und kann für den Vorhabensträger zur Verfahrensvereinfachung und Beschleunigung Serviceleistungen wahrnehmen. So berät und unterstützt die einheitliche Stelle während des Erlaubnisverfahrens den Antragsteller. Dies betrifft den Zeitpunkt ab Antragseingang bis zur Mitteilung des Ergebnisses. Die einheitliche Stelle führt auf Wunsch des Antragstellers diesen durch das Erlaubnisverfahren, stellt ihm alle erforderlichen Informationen zur Verfügung und bezieht gegebenenfalls andere Verwaltungsbehörden ein. Die Befugnisse der jeweils für die sachliche Prüfung und Entscheidung zuständigen Behörde bleiben jedoch unberührt – die einheitliche Stelle hat nur koordinierende Aufgaben zur Unterstützung des Antragstellers.

Einheitliche Stelle für die Errichtung einer Grundwasserwärmepumpenanlage ist in Sachsen die jeweils örtlich zuständige untere Wasserbehörde, sofern kein Verfahren nach dem BBergG zu führen ist. Abbildung 3–2 vermittelt einen Überblick zu den Anzeige- und Genehmigungsverfahren in Sachsen.

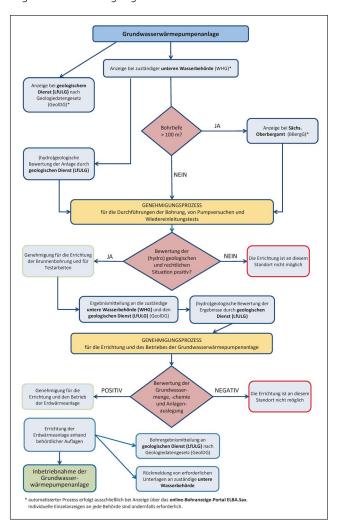


Abbildung 3-2: Schema Verfahrensablauf Genehmigungsprozess einer Grundwasserwärmepumpenanlage

3.3 Anforderungen an Planung, Bauausführung und Betrieb von Grundwasserwärmepumpenanlagen

Standortanforderungen

Kenntnisse der regionalen und lokalen (hydro)geologischen, hydrologischen und hydraulischen Gegebenheiten sind unabdingbar. Liegen diese Kenntnisse nicht vor, sind die relevanten Kennwerte (zum Beispiel Grundwasserfließrichtung, GWLmächtigkeit) zu ermitteln.

Wichtigste Voraussetzung für den Betrieb von Grundwasserwärmepumpenanlagen sind geeignete hydrogeologische und hydrologische Verhältnisse. Entsprechend den gegebenen lokalen Verhältnissen ist die Anlage so auszulegen, dass der sich infolge der geplanten Grundwasserentnahme bildende Absenkungstrichter keine Setzungsschäden nach sich zieht beziehungsweise die Wiedereinleitung des Wassers keine bauwerksrelevanten Grundwasseranstiege oder Vernässungen verursacht.

Im Allgemeinen sind Porengrundwasserleiter des Lockergesteins (Kiese und Sande) mit geringen Anteilen an Feinbestandteilen (Schluff, Ton) sowie geringen Grundwasserflurabständen für solche Anlagen als potenziell geeignet einzuschätzen. Sie sind bohrtechnisch einfach zu erschließen und meist durch eine hohe Ergiebigkeit (Entnahmebrunnen) und ausreichendes Schluckvermögen (Schluckbrunnen) gekennzeichnet. Eingeschränkt geeignet sind Kluftgrundwasserleiter im Festgestein. Das Auffinden gut durchlässiger Bereiche ist hier mit einem höheren Bohrrisiko und möglicherweise aufwändigen Feldversuchen verbunden.

Des Weiteren sind Standorte mit hohen saisonalen Wasserstandsschwankungen und/oder geringen Grundwassermächtigkeiten nicht oder nur bedingt nutzbar. GWL mit hohen Grundwasserflurabständen sind wegen der hohen Erschließungs- und Betriebskosten in der Regel nicht geeignet.

Neben den hydrogeologischen und hydrologischen Voraussetzungen sind auch Aspekte der Grundwasserbeschaffenheit für den Betrieb von Grundwasserwärmepumpenanlagen relevant. Besonders wichtig sind relativ konstante Grundwassertemperaturen, da Standorte mit hohen saisonalen Temperaturschwankungen (zum Beispiel in der Nähe infiltrierender Oberflächengewässer) die Nutzung von Brunnenanlagen stark einschränken oder verhindern können. Für die Ermittlung von mittleren Grundwassertemperaturen an einem Standort sollten daher mindestens über einen Zeitraum eines halben Jahres, idealerweise eines ganzen Jahres, Temperaturmessungen über die Tiefe des GWL durchgeführt werden. Hinsichtlich der Grundwasserbeschaffenheit sind sauerstoffreiche (> 3 mg/l Sauerstoff), weiche bis mittelharte Grundwässer ideal. Weniger geeignet sind sauerstoffarme/-freie Wässer mit einem geringen Redoxpotenzial und hohen Eisen- und/oder Mangangehalten. Bei Kontakt dieser Wässer mit Luftsauerstoff erfolgt eine Oxidationsreaktion, die eine Brunnenverockerung nach sich ziehen und damit bis zum Verlust der hydraulischen Durchlässigkeit führen kann. Werden solche Wässer trotzdem in geothermischen Brunnenanlagen genutzt, müssen sie in geschlossenen Systemen mit permanentem Überdruck geführt werden, um diesen Effekt zu verhindern. Oder es sollte von der Errichtung einer derartigen Anlage abgesehen werden (Ad-Hoc-Arbeitsgruppe Geologie, 2010).

Anforderungen an Planung und Bauausführung

Grundsätzlich sollte bei Planung und Bauausführung ein fachkundiger und mit den örtlichen Standortverhältnissen vertrauter (Hydro)Geologe beziehungsweise ein entsprechendes Ingenieurbüro hinzugezogen werden.

Bei der **Planung** einer geothermischen Brunnenanlage muss zuerst einzelfall- und standortbezogen geklärt werden, ob sich der Untergrund für die Nutzung einer Grundwasserwärmepumpenanlage eignet, da die Untergrundverhältnisse wie zum Beispiel Gesteinseigenschaften, hydraulische Kennwerte, Grundwassereigenschaften und Grundwasserdargebot kleinräumig stark variieren können.

- Liegen noch keine standortbezogenen Kenntnisse vor, müssen diese durch Unterlagenrecherchen (zum Beispiel geologische Archive) und/oder das Abteufen einer Erkundungsbohrung einschließlich Pumpversuch zusammengetragen werden. Bereits bei Erkundungsbohrungen ist darauf zu achten, dass getrennte Grundwasserstockwerke nicht hydraulisch kurzgeschlossen werden.
- Die Brunnenleistung des Entnahmebrunnens muss die Dauerentnahme für den Nenndurchfluss der angeschlossenen Wärmepumpe gewährleisten. Pro 1 kW Verdampferleistung sind rund 0,25 m³/h Wasser notwendig – so zum Beispiel für ein Einfamilienhaus mit einer benötigten Heizleistung von 15 kW eine Förderrate von 1 l/s (3,6 m³/h).
- Aber auch der Schluckbrunnen muss ausreichend dimensioniert werden, insbesondere bei weniger gut durchlässigen GWL (zum Beispiel bei mehreren Förderund/oder Schluckbrunnen). Insgesamt ist die Brunnendimensionierung so zu gestalten, dass der von der Wärmepumpe benötigte Grundwasserzufluss beziehungsweise die Grundwasserwiedereinleitung auch bei Spitzenlasten gewährleistet sind.
- Wichtig ist außerdem, dass unter Beachtung der Grundwasserfließrichtung Entnahme- und Schluckbrunnen ausreichend weit voneinander entfernt sind, um eine gegenseitige Beeinflussung (hydraulischer und/oder thermischer Kurzschluss) und damit eine Verminderung der Wärmeentzugsleistung zu vermeiden.
- Der Mindestabstand der Brunnen zueinander hängt von den hydrogeologischen Verhältnissen, der Grundwasserfördermenge und der Einleittemperatur ab.
- Liegen keine Kenntnisse zum Grundwasserdargebot vor, sind diese über einen mindestens 24-stündigen Pumpversuch gemäß DVGW W 111 (A) mit gleichzeitiger Rückführung des geförderten Grundwassers über einen Schluckbrunnen in den GWL nachzuweisen.

- Zur Ergänzung der Informationen zum Grundwasserdargebot beziehungsweise zur Hydrogeologie sind gegebenenfalls auch geophysikalische Bohrlochvermessungen nach DVGW W 110 (A) durchzuführen.
- Die Wiedereinleitung des Wassers hat unterhalb des Ruhewasserspiegels in den GWL zu erfolgen, um mögliche chemische Veränderungen durch Belüftung oder Eintrag von Gasbläschen in das Grundwasser zu vermeiden.
- Um die Eignung des Grundwassers für Grundwasserwärmepumpenanlagen beurteilen sowie die technische Realisierung der Anlage planen zu können, muss das Grundwasser hinsichtlich seiner Beschaffenheit analysiert werden. Dabei ist es wichtig zu klären, inwieweit der GWL über eine einheitliche Hydrochemie verfügt oder ob eine hydrochemische Schichtung vorliegt. Dafür sind Proben in der oberen und unteren Hälfte des GWL zu entnehmen. Die Bohrung ist deshalb mit Hilfsverrohrung abzuteufen, um eine Vermischung unterschiedlicher Grundwässer zu vermeiden.
- Prinzipiell sollten vor Ort die Parameter Temperatur, pH-Wert, Leitfähigkeit, Sauerstoffgehalt und Redoxpotenzial bestimmt werden. Im Labor sind die Proben auf die Hauptionen Calzium (Ca²+), Magnesium (Mg+), Natrium (Na+), Hydrogencarbonat (HCO₃-), Chlor (Cl-), Sulfat (SO₄²-), Kohlenstoffdioxid (CO₂) sowie Eisen (Fe²+) und Mangan (Mn²+) zu analysieren (Ad-Hoc-Arbeitsgruppe Geologie, 2010).
- Es wird empfohlen, Grundwasserprobennahme und Analytik durch ein nach DIN EN ISO/IEC 17025 akkreditiertes Labor durchführen zu lassen.
- Auf Altlastenverdachts- beziehungsweise Altlastenflächen muss die Beschaffenheitsanalytik des Grundwassers um die relevanten anthropogenen Schadstoffe erweitert werden. Mit den Ergebnissen zur Beschaffenheit lassen sich die Verockerungsgefahr sowie die korrosive Wirkung des Grundwassers beurteilen und ermöglichen somit die optimale Anpassung der Anlage an die hydrochemischen Standortbedingungen.

- Ist die Verteilung der Milieuindikatoren über die grundwassererfüllte Mächtigkeit geklärt, kann die Lage der Filterstrecken in den Brunnen festgelegt werden. Diese sollen sowohl im Förder- als auch im Schluckbrunnen in Grundwasserabschnitten mit gleichen Milieubedingungen liegen. Dadurch werden zum einen die Mischung unterschiedlicher Grundwässer und zum anderen teure Wartungsarbeiten an der Anlage vermieden (Ad-Hoc-Arbeitsgruppe Geologie, 2010). Im Einzelfall kann bei reduzierten (sauerstoffarmen/- freien) Grundwässern auch die Erlaubnis für die Rückgabe über eine Versickerungsanlage (zum Beispiel Sickerschächte, -blöcke, Rigolen) gewährt werden, wenn eine schnelle Verockerung des Schluckbrunnens zu erwarten ist. In solchen Fällen ist mittels Sickerversuch der Nachweis zu führen, dass die Wassermengen schadlos versickert werden können.
- Bei Wiedereinleitung sollte entnommenes Grundwasser vorzugsweise wieder dem gleichen Grundwasserkörper zugeführt werden.
- Bereits in der Planungsphase des Vorhabens müssen die hydraulischen und thermischen Auswirkungen auf benachbarte, bereits zugelassene Anlagen geprüft werden. Neben den thermischen Auswirkungen (Temperaturfahne) sind vor allem die Auswirkungen auf das nutzbare Grundwasserdargebot im Bereich der Förder- (Absenkungstrichter) und Schluckbrunnen (Grundwasseraufhöhung) wie auch die Fragen der Standsicherheit für die umliegenden Gebäude zu beachten.
- Hinsichtlich der thermischen Beeinflussung entsteht bei der Wiedereinleitung des thermisch genutzten Grundwassers in den GWL eine Temperaturfahne in Grundwasserabstromrichtung. Sie kann andere geothermische Anlagen negativ beeinflussen, wenn sie sich über mehrere (fremde) Grundstücke erstreckt. Um dies zu vermeiden, wird eine orientierende Temperaturfeldberechnung (Modellierung) empfohlen, die mindestens Aussagen zu Lage, Richtung und Ausmaß der Temperaturfahne sowie zur Interaktion von Oberflächen- und Grundwasser enthalten sollte. Das betrifft sowohl Grundwasserwärmepumpenanlagen zu Heiz- als auch zu Kühlzwecken. Diese Berechnungen sollten für mittlere Jahresentnahmen sowie für die Spitzenlasten durchgeführt werden.
- Erweist sich der Standort als geeignet, kann die Erkundungsbohrung zum Entnahmebrunnen ausgebaut werden.

Die endgültige Planung des Brunnenausbaus erfolgt auf Basis der Feldaufnahmen und des daraus abgeleiteten Schichtenverzeichnisses nach den aktuellen DIN EN ISO-Normen. Wichtig für die Planung des Brunnenbaus sind Anzahl, Lage, Tiefe und Durchmesser der Brunnen, die Art des Bohrverfahrens sowie die Brunnenbaumaterialien (unter Beachtung der chemischen Verhältnisse im GWL).

Der **Brunnenbau**, das heißt die Brunnenbohrungen und der Ausbau, erfolgt auf Basis der vorgelegten Planung und der Vorgaben der zuständigen unteren Wasserbehörde nach den anerkannten Regeln der Technik (DVGW-Regelwerk, ISO-/DIN-Normen, VDI-Richtlinien).

- Brunnen müssen sach- und fachgerecht errichtet werden. Um die Funktionsfähigkeit des Brunnens über viele Jahre zu gewährleisten und um Grundwasserverunreinigungen zu vermeiden, dürfen Brunnen nur durch zugelassene Fachfirmen errichtet werden, die mit dem zulassungspflichtigen Handwerk Brunnenbauer in der Handwerksrolle der Handwerkskammer eingetragen sind (§ 1 Absatz 1 und 2 in Verbindung mit der Anlage A Nummer 7 Handwerksordnung (HwO)). Sollte sich die technische Ausführung der Brunnenbauwerke oder der Wärmepumpenanlage von der Planung unterscheiden, ist dies der unteren Wasserbehörde unter Vorlage der entsprechenden Unterlagen anzuzeigen. Sofern Brunnen in Trinkwasserschutzgebieten überhaupt zugelassen werden, kann die untere Wasserbehörde von Landratsamt/Kreisfreier Stadt hier zum Trinkwasserschutz weitere, besondere Anforderungen stellen. Dies kann die Ausführung und Überwachung der Arbeiten (zum Beispiel die Fachbegleitung durch einen öffentlich bestellten Sachverständigen des Brunnenbauerhandwerks) oder den Sachkundenachweis der Bohrfirma betreffen (zum Beispiel die Zertifizierung nach dem DVGW W 120-1 (A) oder einem vergleichbaren Standard).
- Beim Brunnenbau ist insbesondere darauf zu achten, dass getrennte Grundwasserstockwerke nicht hydraulisch kurzgeschlossen werden. Sollen tiefere Stockwerke erschlossen werden, sind bei der Durchörterung stockwerkstrennender Schichten entsprechende Abdichtungsmaßnahmen vorzunehmen.

- Die Erzeugung hydraulischer Kontakte zwischen Grundwässern unterschiedlicher Stockwerke ist unzulässig (Stofftransport, Grundwasserdruckverhältnisse).
- Die bei Bohrungen eingesetzten Bohrspülungen dürfen nicht wassergefährdend sein, in der Regel ist Wasser in Trinkwasserqualität zu nutzen. Für Bohrspülungszusätze gelten die Vorgaben des DVGW W 116 (A).
- Die Brunnen sind im Bereich des Ringraumes um das Rohr beziehungsweise im Schachtbereich (bei Schachtbrunnen) mit für das Grundwasser geeigneten Materialien nach DVGW W 123 (A) abzudichten, um die Infiltration von Oberflächenwasser in das Grundwasser zu verhindern. Darüber hinaus müssen die Brunnen normgerechte, tagwasserdichte Brunnenköpfe oder Schachtabdeckungen aufweisen. Seitliche Durchbrüche müssen in Brunnenstuben (wenn vorhanden) ebenfalls druckdicht ausgeführt werden.
- Alle mit dem Grundwasser in Verbindung stehende Anlagenteile müssen korrosionsbeständig sein. Die Rohrleitungen und Armaturen sind entsprechend den Vorschriften für Grundwasserwärmepumpenanlagen nach VDI 4640 Blatt 2 auszuführen. Der Verdampfer der Wärmepumpe sollte vollständig aus hochwertigem Edelstahl gefertigt sein, um möglichen Grundwasserverunreinigungen durch Kältemittel oder Kältemaschinenöl vorzubeugen.
- Um für den künftigen Anlagenbetrieb eine dauerhafte Beobachtung des Grundwasserstandes sowie eine gegebenenfalls erforderliche Grundwasserprobennahme zu ermöglichen, sind in die Brunnenköpfe mindestens zwei Zoll breite Peilöffnungen mit verschließbaren Deckeln einzubauen. In Abhängigkeit vom Brunnenausbaudurchmesser sollten Peilrohre installiert werden, um Kontrollmessungen und Probennahmen ohne Behinderung durch die Brunneneinbauten (zum Beispiel Steigleitung, Stromzuführung) durchführen zu können.
- Das am Entnahmebrunnen geförderte Grundwasser darf nur für die gemäß wasserrechtlicher Erlaubnis genehmigten Zwecke für die Wärmepumpen genutzt werden und muss deshalb in einem geschlossenen Leitungssystem mit entsprechender Kennzeichnung zirkulieren. Es darf keine Verbindung zum öffentlichen Wasserleitungsnetz bestehen.

- Wichtig ist eine ordnungsgemäße und ausführliche Dokumentation, die die qualitätsgesicherte Ausführung der Arbeiten belegt und eine spätere Recherche zum Beispiel bei möglicherweise eintretenden Schäden erlaubt. Die Dokumentation soll vor allem enthalten:
 - Schichtenverzeichnisse nach den aktuellen DIN EN ISO-Normen inklusive Angaben zu den Grundwasserverhältnissen (zum Beispiel Wasseranschnitte, Ruhewasserspiegel, gespannt/ungespannt), zum Bohrvorgang (zum Beispiel Bohrbarkeit, eingesetzte Spülungen und Spülungszusätze),
 - Bohr- und Ausbaupläne,
 - Koordinaten der Brunnen.
 - Ergebnisse der durchgeführten Untersuchungen (zum Beispiel Pump- und Schluckversuche, chemische Grundwasseranalysen),
 - räumliches Ausmaß und Beträge der Grundwasserabsenkung und -aufhöhung sowie gutachterliche Einschätzung zu deren Auswirkungen auf das Umfeld (zum Beispiel Setzungen, Hebungen).
- Die durch das Fachbüro zu erstellenden Unterlagen zu allen Bohrungen sind sowohl dem Anlagenbetreiber als auch der unteren Wasserbehörde und dem LfULG vorzulegen. Sofern die Mitteilung an das LfULG auf digitalem Weg erfolgt, wird empfohlen, das Erfassungsprogramm UHYDRO des LfULG zu nutzen. Die Bohrproben und sonstiges Beobachtungsmaterial sind gemäß GeolDG vom Bohrunternehmen aufzubewahren, zu sichern und dem LfULG auf Verlangen zur Verfügung zu stellen. Es darf erst nach Absprache und nur mit Erlaubnis des LfULG vernichtet werden.
- Die Ausführungen gelten sowohl für kleine Anlagen bis 30 kW Heizleistung als auch für große Anlagen (≥ 30 kW). Es ist jedoch zu beachten, dass für größere geothermische Gewässerbenutzungen (> 150 kW Wärmeentzugsleistung) erweiterte Anforderungen zum Beispiel hinsichtlich der (hydro)geologischen Erkundung des Untergrundes in der Planungsphase oder zusätzliche Messeinrichtungen für die Überwachung der fertiggestellten Anlage gelten.

Anforderungen an den Betrieb

Die wichtigsten Voraussetzungen für den Betrieb einer geothermischen Brunnenanlage sind ein ausreichendes Grundwasserdargebot, eine den Standorteigenschaften entsprechende Dimensionierung und der ausreichende Abstand der Brunnen untereinander. Im Weiteren dürfen im Umfeld der Brunnen keine wassergefährdenden Stoffe gelagert werden. Die Einleitung von Fremdwässern in das Grundwasser über den Schluckbrunnen ist ohne wasserrechtliche Erlaubnis hierfür nicht gestattet.

Für den **Betrieb** der eigentlichen Pumpenanlage sind Vorkehrungen zur Überwachung der technischen Anlagenteile zu treffen.

- Für die Überprüfung der entnommenen Wassermengen ist in der Druckleitung hinter der Wärmepumpe ein Wasserzähler (Durchflusssummenzähler) oder an geeigneter Stelle ein Betriebsstundenzähler zur Feststellung der Pumpenbetriebsdauer einzubauen.
- Des Weiteren sind geeignete Geräte zur Bestimmung von Entnahme- und Wiedereinleittemperatur zu installieren. Die Messungen sind in regelmäßigen Abständen beziehungsweise mittels Datenlogger durchzuführen und zu dokumentieren.
- Darüber hinaus ist die Anlage mit einer Sicherheitseinrichtung zu versehen, die diese abschaltet, wenn der Wasserspiegel im Schluckbrunnen ansteigt oder wenn im Entnahmebrunnen eine zu starke Grundwasserabsenkung festgestellt wird.
- Die Wärmepumpe muss über einen Druckwächter verfügen, der bei Druckabfall im Kältemittelkreislauf die Anlage abschaltet und das Sicherheitsventil in der Ableitung zum Schluckbrunnen schließt.
- Das Führen eines Betriebstagebuches dient dem Nachweis des ordnungsgemäßen Betriebes gegenüber der unteren Wasserbehörde sowie zur Eigenkontrolle und wird empfohlen. In diesem sollten die Messungen der Entnahmemengen, die Betriebsstunden, die Grundwassertemperaturen am Entnahmeund Schluckbrunnen, die durchgeführten Wartungsarbeiten und so weiter dokumentiert werden.
- Betriebsstörungen sind unverzüglich der unteren Wasserbehörde zu melden.
- Die Gesamtanlage ist vom Betreiber regelmäßig auf ihre Funktionsfähigkeit zu überwachen und zu warten. Die Wartung der Anlage sollte regelmäßig nach den Vorgaben des Herstellers durch eine Fachfirma ausgeführt werden.
- Eine gegebenenfalls notwendige Brunnenregeneration ist der zuständigen unteren Wasserbehörde schriftlich anzuzeigen und zu erläutern. Für die chemische Regeneration der Brunnen wird eine wasserrechtliche Erlaubnis benötigt.
- Sollten weitere Änderungen an der Anlage oder deren Betriebsweise vorgenommen werden, ist dies mit der unteren Wasserbehörde abzustimmen. Ein Eigentümerwechsel ist ebenfalls der unteren Wasserbehörde anzuzeigen.

- Ist eine Außerbetriebnahme geplant und ist für die Brunnen keine Folgenutzung vorgesehen, sollen diese nach den Regeln der Technik zurückgebaut werden. Der Rückbau ist der zuständigen unteren Wasserbehörde anzuzeigen und gegebenenfalls erlaubnispflichtig. Er muss nach DVGW W 135 (A) erfolgen.
- Pumpen und Material, das nicht im Untergrund verbleiben kann, sollen entfernt und ordnungsgemäß entsorgt werden.
- Anschließend sollen die Brunnen dauerhaft verfüllt werden, so dass entsprechend den hydrogeologischen Standortbedingungen die dichtende Wirkung hydraulisch wirksamer Trennschichten (das heißt Grundwasserstauer und -hemmer) durch die Rückbaumaßnahme erhalten beziehungsweise wiederhergestellt werden. Für die Verfüllung ist grundwasserunschädliches Material zu verwenden.

Anlage 3-1: Checkliste Grundwasserwärmepumpenanlagen

1. Vorinformationen

- ✓ Welche Varianten von Erdwärmenutzungen sind an meinem Standort möglich (zum Beispiel Sonden, Brunnen, Kollektoren)?
- ✓ Bietet mein Stromversorger einen günstigen Wärmepumpentarif an?
- ✓ Welche Fördermöglichkeiten bestehen? https://www.bafa.de

2. Gebäudetechnische Informationen

- ✓ Beratung zum Heizsystem durch eine Fachfirma z. B. Heizungsfirma, Energieberater
- ✓ Information über Heiz- und/oder Kühlbedarf des Gebäudes pro Jahr (zum Beispiel Heizlastberechnung nach DIN EN 12831-1); Warmwasserbereitung ggf. einbeziehen

3. Standortspezifische hydrogeologische Gegebenheiten

Hinweis: Neben Kenntnissen zu eventuellen Altlasten/Kontaminationen am Standort sind Informationen zum Grundwasserflurabstand, zu Grundwasserständen und Grundwassermessstellen notwendig. Diese sind zum Beispiel unter: https://www.umwelt.sachsen.de/umwelt/wasser/13110.htm zu finden beziehungsweise durch eine Erkundungsbohrung am Standort zu ermitteln.

✓ Grundwasserdargebot

- Ist ausreichend Grundwasser vorhanden?
 Faustformel Fördermenge: pro 1 kW Heizleistung sind rund 0,25 m³/h Wasser nötig
- Kann der Untergrund das verwendete Grundwasser wieder aufnehmen?

✓ Grundwasserchemie

- Informationen zu Grundwassertemperatur, pH-Wert, Leitfähigkeit, Sauerstoffgehalt, Redoxpotenzial
- Informationen zu Gehalten von Eisen (Fe²⁺), Mangan (Mn²⁺), Calcium (Ca²⁺), Magnesium (Mg⁺), Natrium (Na⁺), Hydrogenkarbonat (HCO₃⁻), Chlor (Cl⁻), Sulfat (SO₄²⁻)

4. Planung und Dimensionierung der Brunnenanlage

Hinweis: Mit (hydro)geologischen Daten kann eine Fachfirma die erforderliche Brunnenanzahl, –tiefe und –durchmesser für den benötigten Heiz- und/oder Kühlbedarf am Standort individuell berechnen. Die Firma sollte Erfahrungen im Bereich Hydrogeologie, Brunnenbau und Geothermie aufweisen (Referenzen). Eine Über- und Unterdimensionierung der Brunnen ist aus Gründen des Grundwasserschutzes sowie der Effizienz der Anlage zu vermeiden. Während des Betriebes sind Grundwassertemperaturänderung von ± 6 °C sowie eine Mindesteinleittemperatur von 5 °C beziehungsweise eine maximale Einleittemperatur von 20 °C zulässig.

- ✓ Fachgerechte Berechnung der Grundwasserwärmepumpenanlage unter Berücksichtigung von:
 - Heizlasten (gegebenenfalls Kühllasten) des Gebäudes
 - I hydrogeologischen, hydrochemischen Standortbedingungen
- ✓ Positionierung Schluckbrunnen in ausreichender Entfernung vom Förderbrunnen in Grundwasserfließrichtung (abstromig)

5. Grundstücksbezogene Informationen

- ✓ Absprache über Lage der Bohrungen auf dem Grundstück mit der Bohrfirma Berücksichtigung von Zufahrt und Platzbedarf für das Bohrgerät
- ✓ Vorhandensein von Grundstücksplänen, einschließlich zum Beispiel Schachtscheinen von Medienträgern (zum Beispiel Gas, Wasser, Abwasser und Telekom)
- ✓ Beachtung der Mindestabstände zur Grundstücksgrenze, Recherche von konkurrierenden rundwassernutzungen im Umfeld

6. Zertifizierte Bohrfirma

- ✓ Zertifizierung der Bohrfirma (zum Beispiel nach DVGW W 120 (A) beziehungsweise W 120-1 (A), W 120-2(A))
- ✓ Vorlage von Referenzen der Bohrfirma
- ✓ Bestätigung der Firma zur Einhaltung der Anforderungen des Gewässerschutzes

7. Wurden alle Anzeigen durchgeführt und liegen alle Genehmigungen vor?

Hinweis: Die Bohranzeige und der Antrag auf wasserrechtliche Erlaubnis kann gebündelt elektronisch über ELBA.Sax <u>www.bohranzeige.sachsen.de</u> erfolgen.

- ✓ Anzeige Erkundungsbohrung einschließlich Pump- und Schluckversuch sowie Grundwasseranalytik (wenn keine Informationen zum Grundwasserdargebot und -chemie vorliegen) bei der für die Kreisfreie Stadt beziehungsweise den Landkreis zuständigen unteren Wasserbehörde (Umweltamt), SOBA und LfULG.
- ✓ Auswertung der Untersuchungsergebnisse, Optimierung der Anlage (gegebenenfalls weitere Förder- und Schluckbrunnen), Dokumentation
 - → positive Entscheidung für die Brunnenanlage
- ✓ Antrag auf wasserrechtliche Erlaubnis des Gesamtvorhabens bei der für die Kreisfreie Stadt beziehungsweise den Landkreis zuständigen unteren Wasserbehörde

8. Bohrarbeiten und Brunnenausbau

- Einhalten der Auflagen und Hinweise des Bescheides der unteren Wasserbehörde durch die Bohrfirma
- ✓ Ausführung nach den anerkannten Regeln der Technik (DVGW-Regelwerk, ISO-/DINNormen, VDI-Richtlinien)
- ✓ Verwendung von hochwertigen Materialien (Korrosionsschutz)
- ✓ Installation von korrosionsfreien Unterwasserpumpen im Förderbrunnen
- ✓ Wiedereinleiten des Wassers in den Schluckbrunnen unterhalb Ruhewasserspiegel

9. Anschluss an die Wärmepumpe

- ✓ Installation eines Schmutzfängers vor der Wärmepumpenanlage
- ✓ Verwendung von korrosionssicheren Rohrleitungen und Armaturen
- ✓ Einbau Sicherheitseinrichtung, welche Anlage abschaltet, wenn der Wasserspiegel im Schluckbrunnen ansteigt oder im Entnahmebrunnen eine zu starke Grundwasserabsenkung festgestellt wird
- ✓ Einbau Druckwächter in Wärmepumpe, der bei Druckabfall im Kältemittelkreislauf die Anlage abschaltet und das Sicherheitsventil in der Ableitung zum Schluckbrunnen schließt
- ✓ Dichtheitsprüfung (Druckabsicherung) und Dämmung der Rohrleitungen

10. Inbetriebnahme der Wärmepumpe, Wartung der Brunnenanlage

- ✓ Erklärung der Funktionsweise der Wärmepumpe vom Heizungsinstallateur
- ✓ Einstellung der Heizkurve durch Heizungsinstallateur
- ✓ Übergabe der Dokumentation aller ausgeführten Arbeiten und der Prüfzeugnisse nach Abschluss der Arbeiten an den Bauherren und an die Behörden
- ✓ Führen eines Betriebstagebuches

Anlage 3-2: Bau und Betrieb einer Grundwasserwärmepumpenanlage – Formular Teil 1: Bohranzeige nach § 49 Absatz 1 WHG und Anzeige eines Pump- und Schluckversuchs

Hinweis: Die Bohranzeige und der Antrag auf wasserrechtliche Erlaubnis sollte bevorzugt elektronisch über ELBA.Sax <u>www.bohranzeige.sachsen.de</u> erfolgen.

1. Allgemeine Angaben

Antragsteller (Bauherr)	Name, Vorname:					
	PLZ, Ort:					
	Straße, Nr.:					
	Telefon-Nr.: Telefax-Nr.:					
	E-Mail-Adresse:					
	S. I.h. II. I		0 1 1 10 1 1 11			
Standort der Anlage	Stadt/Landkreis:		Gemeinde/Ortsteil:			
	Gemarkung:		Flurstück:			
	PLZ:		Straße, Nr.:			
	Planung	Geländehöhe	Hochwert	Rechtswert		
		[m über NHN]:	(ETRS 89, UTM 33):	(ETRS 89, UTM 33):		
	Förderbrunnen:					
	Schluckbrunnen:					
	Messtischblatt Nummer TK25:		Name:	Name:		
Bohrunternehmen	F'					
Bonrunternenmen	Firma:					
	PLZ, Ort:					
	Straße, Nr.:					
	Telefon-Nr.:		Telefax-Nr.:			
	E-Mail-Adresse:					
	Verantwortlicher Fachman	n:				
	Telefon-Nr.: Telefax-Nr.:					
Planendes	Firma:					
Ingenieurbüro (wenn zutreffend –	Ansprechpartner:					
Fachplaner Anlagenteile,	PLZ, Ort:					
Fachplaner Hydrogeologie)	Straße, Nr.:					
	Telefon-Nr.:		Telefax-Nr.:			
	E-Mail-Adresse:					

2. Angaben zur Durchführung der Bohrungen für Entnahme- und Schluckbrunnen/Rückleitungseinheit

Entnahmebrunnen	Entnahmebrunnen		
Beginn der Arbeiten	:	Voraussichtliche Dauer:	
Anzahl:	Bohrdurchmesser [mm]:	geplante Bohrtiefe [m]:	
Bohrverfahren:			
Spülungsmittel (bei	Spülbohrung):		
Entsorgung des Boh	r– und Spülgutes:		
Geplanter Ausbau (A	Geplanter Ausbau (Ausbautiefe, Ausbaudurchmesser, Filterlage):		
Schluckbrunnen			
Beginn der Arbeiten: Voraussichtliche Dauer:		Voraussichtliche Dauer:	
Anzahl:	Bohrdurchmesser [mm]:	geplante Bohrtiefe [m]:	
Bohrverfahren:			
Spülungsmittel (bei	Spülungsmittel (bei Spülbohrung):		
Entsorgung des Boh	Entsorgung des Bohr- und Spülgutes:		
Geplanter Ausbau (A	Geplanter Ausbau (Ausbautiefe, Ausbaudurchmesser, Filterlage):		

3.	Pump-	und	Schluckversuch
C	Ganlanta F	ntnal	memenge:

G	eplante Wiedereinleitungs	smenge:		
G	ieplante Pumpversuchsdau	er:		
G	ieplante hydrochemische U	Intersuchungen:		
Α	usführende Firma:			
4.	Grundwasserschutz -	- Schutzgüter	,	
Α	ndere Grundwassernutzun	gen im unmittel	baren Umkreis:	
W	Vasserschutzgebiet:	ja	□ nein	
N	laturschutzgebiet:	□ ja	□ nein	
Α	ltlastenstandort:	□ ja	□ nein	
Hin	weis: Diese Anzeige entbind	let nicht von der A	Anzeigepflicht nach § 8 Absatz 1 GeolDG	
5.	Beizufügende Unterla	agen (□oblige	atorisch)	
	Katasterauszug oder Ausz Grundstücksgrenzen und			der Bohrpunkte, Rohrleitungsverlauf, Standort der Wärmepumpe,
	Übersichtslageplan, mögli (Maßstab: 1:10.000 oder 1		uf der amtlichen topografischen Karte (TK)	
	Nachweis der Brunnenbaufachfirma oder des Bohrunternehmens über erworbene Kenntnisse und Fähigkeiten zur Erfüllung der Qualifikationsanforderungen unter anderem nach DVGW W 120-2 (A) beziehungsweise zur Erfüllung der Anforderungen gleichwertige Zertifikate			3
	Soweit bekannt, Angaben zu hydrogeologischen Verhältnissen, unter anderem von der Maßnahme voraussichtlich betroffene Grundwasserstockwerke/-leiter, Grundwasserfließrichtung, voraussichtliches Bohrprofil (Angabe zur Informationsquelle; Auswertung geologischer Karten, Bohrarchive und so weiter)			
6.	Bestätigung und Unt	erschrift		
		_	eln der Technik nach den einschlägigen n des Gewässerschutzes werden beachtet.	□ ja □ nein
Das	s Anzeigeformular ist bei der	zuständigen unt	eren Wasserbehörde in zweifacher Ausfertigung	mindestens einen Monat vor Beginn der Tätigkeiten einzureichen.
Ant	tragsteller:			

Unterschrift des Antragstellers

Im Allgemeinen sind die Unterlagen 3-fach bei der zuständigen unteren Wasserbehörde einzureichen.

Ort, Datum

Anlage 3-3: Bau und Betrieb einer Grundwasserwärmepumpenanlage - Formular Teil 2: Antrag auf wasserrechtliche Erlaubnis nach § 8 Absatz 1 in Verbindung mit § 9 Absatz 1 Nummer 4 und 5 WGH für Bau und Betrieb einer Grundwasserwärmepumpenanlage

1. Allgemeine Angaben

Antragsteller (Bauherr)	Name, Vorname:				
	PLZ, Ort:				
	Straße, Nr.:	Straße, Nr.:			
	Telefon-Nr.:		Telefax-Nr.:	Telefax-Nr.:	
	E-Mail-Adresse:				
Standort der Anlage	Stadt/Landkreis:		Gemeinde/Ortsteil:		
Standort der Amage	Gemarkung:		Flurstück:		
	PLZ:		Straße, Nr.:		
	Ausführung	Geländehöhe [m über NHN]:	Hochwert (ETRS 89, UTM 33):	Rechtswert (ETRS 89, UTM 33):	
	Förderbrunnen:				
	Schluckbrunnen:				
	Messtischblatt, TK 25-Nr.:		Name:		
2. Technische Daten W	/ärmepumpenanlage				
Gebäudespezifische	Wärmebedarf/Heizlast [kW]:		Kühlbedarf/Kühllast [kW]:	Kühlbedarf/Kühllast [kW]:	
Angahan					

Gebäudespezifische	Wärmebedarf/Heizlast [kW]: Kühlbedarf/Kühllast [kW]:					
Angaben	Jahresbetriebsstunden Heizperiode [h]:					
	Jahresbetriebsstunden Kühlperiode [h]:					
	Wärmebedarfsberechnung:	□ ja	□ nein			
Wärmepumpenanlage	Hersteller:	Тур:				
	Heizleistung [kW]:	Leistungszahl (COP)	:			
	Kühlleistung [kW]:	Leistungszahl (COP)	:			
	Standort:	☐ außerhalb	☐ innerhalb des Gebäudes			
	Kältemittel der Wärmepumpe:	Menge [I]:				
	Zwischenkreislauf:	□ ја	□ nein			
	Kältemittel Zwischenkreislauf:	Тур:				
Förderpumpe	Hersteller:	Тур:				
	Förderrate [m³/s]:					
Sicherheitseinrichtungen	Wasserzähler/Betriebsstundenzähler Wärmepumpe:					
und Schutzvorkehrungen	Temperaturmesssonden Entnahme-/Einleittemperatur: □					
	Sicherheitseinrichtung Wasserstand Schluckbrunnen:					
	Druckwächter Wärmepumpe/Sicherheitsventil in Ableitung	zum Schluckbrunnen:				

3. Angaben zur Wasserentnahme

Beschreibung der Entnahmeanlage:				
Brunnenausbau	Durchmesser	Filteroberkante	Filterunterkante	Ausbausohle
	[mm]	[m unter GOK]*	[m unter GOK]	[m unter GOK]
Förderbrunnen				
Grundwasserstand in Ruhe [r	n unter GOK]:			
Grundwasserstand im Betrieb:	Durchschnittliche Absenkung	[m unter GOK]	Maximale Absenkung [m unt	ter GOK]
Wasserentzug Spitzenbedarf Heizperiode:	I/s	m³/h	m³/d	m³/a
Wasserentzug Spitzenbedarf Kühlperiode:	I/s	m³/h	m³/d	m³/a
Wasserentzug Durchschnitt Heizperiode:	I/s	m³/h	m³/d	m³/a
Wasserentzug Durchschnitt Kühlperiode:	I/s	m³/h	m³/d	m³/a

4. Angaben zur Wiedereinleitung

Tranguoch zur Wiedereimertung				
Beschreibung der Wiedereinleitanlage (Brunnen, Versickerungsanlage, Einleitung ins Gewässer):				
Brunnenausbau	Durchmesser	Filteroberkante	Filterunterkante	Ausbausohle
	[mm]	[m unter GOK]	[m unter GOK]	[m unter GOK]
Schluckbrunnen				
Grundwasserstand in Ruhe [r	n unter GOK]:			
Grundwasserstand im Betrieb:	Durchschnittliche Aufhöhung	g [m unter GOK]	Maximale Aufhöhung [m un	ter GOK]
Einleitmenge Spitzenbedarf Heizperiode:	I/s	m³/h	m³/d	m³/a
Einleitmenge Spitzenbedarf Kühlperiode:	I/s	m³/h	m³/d	m³/a
Einleitmenge Durchschnitt Heizperiode:	I/s	m³/h	m³/d	m³/a
Einleitmenge Durchschnitt Kühlperiode:	I/s	m³/h	m³/d	m³/a
Temperaturdifferenz im Wärr	metauscher Wassereingang zu \	Wasserausgang [K]:		

5. Angaben zur Hydrogeologie (unter Angabe der Quelle)

Grundwasserflurabstand [m unter GOK]:		
Grundwassermächtigkeit [m]:		
Grundwasserströmungsrichtung:		
Grundwassergefälle [%]:		
Durchlässigkeitsbeiwert (kf-Wert) [m/s]:		
Abstand Entnahme- und Schluckbrunnen [m]:		
Temperaturfahne: Länge [m]:	Breite [m]:	

^{* [}m unter GOK]...Meter unter Geländeoberkante

6.	Beizufügende Anlagen (□obligatorisch; soweit in Teil 1 nicht bereits eingereicht)		
	Koordinaten aller weiteren Brunnen, die unter Punkt 1 – Standort der Anlage nicht aufgefüh	nrt sind	
	Katasterauszug oder Auszug aus der Liegenschaftskarte mit Flurnummer, Gemarkung, Lage v Standort der Wärmepumpe, Grundstücksgrenzen und Nachbarbebauungen	von Entnahme- und Schluckbrunnen, Rohrleitungsverlauf,	
	Übersichtslageplan, möglichst basierend auf der amtlichen topografischen Karte (TK) (Maßstab: 1:10.000 oder 1:25.000)		
	Angaben zu hydrogeologischen Verhältnissen, unter anderem zu von der Maßnahme voraus Grundwasserleitereigenschaften, Altbohrungen (Angabe zur Informationsquelle; Auswertung		
	Bohr- und Ausbauprofile (Schichtenverzeichnisse inkl. Angaben zu den Grundwasserverhältn	nissen, Ausbaupläne)	
	Dokumentation und Auswertung des Pump- und Schluckversuchs		
	Darstellung der Absenkungs- und Auffüllungsfiguren (Tiefe und Radius des Absenkungstrich Regelbetriebs und bei maximaler Absenkung beziehungsweise Wiedereinleitung sowie Darst	· · · · · · · · · · · · · · · · · · ·	
	Dokumentation und Ergebnisse der orientierenden Temperaturfeldberechnung (Wärmeausbr	eitungsmodellierung)	
	Chemisch-physikalische Analyse des Grundwassers (vor Ort: Temperatur, pH-Wert, Leitfähigl Magnesium (Mg+), Natrium (Na+), Hydrogencarbonat (HCO ₃ -), Chlor (Cl-), Sulfat (SO ₄ ²⁻), Kohle der Probennahmeprotokolle, einschließlich Bewertung hinsichtlich Eignung für Grundwasse	enstoffdioxid (CO ₂), Eisen (Fe ²⁺), Mangan (Mn ²⁺)) einschließlich	
	Erläuterungsbericht des Planungsbüros mit Beschreibung der Anlagen, Technische Daten ein Kontrolleinrichtungen	sschließlich der vorgesehenen Sicherheits-, Mess- und	
	Prüfzertifikate der Pumpenhersteller (Grundwasserpumpe, Wärmepumpe)		
	Sicherheitsdatenblatt des Wärmeträgers im Zwischenkreislauf (wenn Zwischenkreislauf notw	vendig)	
7.	Bestätigung und Unterschrift		
de	e Anforderungen des Gewässerschutzes an Anlagen zur Wärmenutzung entsprechend er Anforderungen an Bauausführung und Betrieb von Grundwasserwärmepumpen wie der einschlägigen Regelwerke werden eingehalten.	□ ja □ nein	
	Antragsformular ist bei der zuständigen unteren Wasserbehörde in zweifacher Ausfertigung rersuchungen einzureichen.	nach Beendigung der Probebohrungen sowie der dazugehörigen	
Ant	ragsteller:		
Ort,	Datum	Unterschrift des Antragstellers	

Anlage 4: Merkblatt des Sächsischen Oberbergamtes für das Abteufen von Bohrungen nach § 127 BBergG, die im Zusammenhang mit der Nutzung von Geothermie und anderen Nutzungen hergestellt werden

Merkblatt des Sächsischen Oberbergamtes

für das Abteufen von Bohrungen nach § 127 BBergG, die im Zusammenhang mit der Nutzung von Geothermie und anderen Nutzungen hergestellt werden

Kontakt: Sächsisches Oberbergamt, Postfach 1364, 09583 Freiberg; E-Mail: poststelle@oba.sachsen.de, Internet: http://www.oba.sachsen.de (Formular zum Download)

Gliederung für eine Anzeige der Bohrarbeiten gemäß § 50 BBergG

1. Erläuterung/Beschreibung des Vorhabens

- 1.1 Bauherr (Anschrift, Telefon, Fax, E-Mail)
- 1.2 Bohrunternehmen (Anschrift, Telefon, Fax, E-Mail)
- 1.3 Lage der Bohransatzpunkte Flurstück, Gemarkung, Gemeinde, Landkreis, Hoch- und Rechtswert nach Gauß-Krüger-Koordinaten, Höhe
- 1.4 Übersichtslageplan 1:10.000 oder 1:25.000
- 1.5 Lageplan 1:500 bis 1:1.000 mit eingetragenen Bohransatzpunkten und Grundstücksgrenzen
- 1.6 Eigentumsverhältnisse der genutzten beziehungsweise in Anspruch genommenen Flächen; Nachweis der Sicherung der Betretungs-/Nutzungsrechte

2. Angaben zur Durchführung der Bohrarbeiten

- 2.1 Voraussichtlicher Beginn und Dauer, Arbeitszeiten
- 2.2 Angaben zu den Bohrungen (Anzahl, Durchmesser, Teufe)
- 2.3 Angaben über das Bohrverfahren (zum Einsatz kommende Technik, Spülmittel)
- 2.4 Wasser- und Stromversorgung, Wasserableitung
- 2.5 Sicherungsmaßnahmen für den Fall eines artesischen Überlaufes unter der Maßgabe, dass im Rahmen der Bohrarbeiten sowie nach Abdichtung ein Übertritt in ein eventuell oberhalb liegendes Grundwasserstockwerk oder ein artesischer Überlauf mit Sicherheit vermieden werden
- 2.6 Bekannte hydrogeologische Verhältnisse, unter anderem von der Maßnahme voraussichtlich betroffene Grundwasserstockwerke/-leiter (Angabe zur Informationsgrundlage; Auswertung geologischer Karten, Bohrarchive und so weiter)
- 2.7 Schutzgebiete und sonstige Einschränkungen
- 2.8 Angaben zu erforderlichen Gestattungen, Zustimmungen, Genehmigungen und so weiter nach anderen Rechtsvorschriften, die im Zusammenhang mit dem Vorhaben unabhängig von der bergrechtlichen Zulassung einzuholen sind zum Beispiel wasserrechtliche Erlaubnis

3. Angaben zum Ausbau der Bohrungen

- 4. Verfüll-/Hinterfüllmaterial
- 4.1 Nachweis der Geeignetheit des Verfüllmaterials für die Verwendung im Grundwasser
- 5. Maßnahmen beim Antreffen von Hohlräumen
- 5.1 Verfüllplan für den Fall des Nichtausbaus
- 6. Einhaltung des Arbeitsschutzes

Der Unternehmer hat der zuständigen Behörde (Sächsisches Oberbergamt) die Bohrarbeiten nach § 127 BBergG (Eindringtiefe der Bohrung in den Boden > 100 m) rechtzeitig, spätestens aber zwei Wochen vor Beginn der beabsichtigten Tätigkeit anzuzeigen. Die Pflicht zur Anzeige entfällt, wenn ein Betriebsplan nach § 52 BBergG eingereicht wird.

IV Verzeichnisse

Abbildungsverzeichr	nis	
Abbildung 1:	Temperaturverlauf in den oberen Bodenschichten	6
Abbildung 2:	Übersicht Beispiele der Erdwärmenutzung	7
Abbildung 3:	Übersicht Nutzungsformern oberflächennaher Erdwärme	9
Abbildung 4:	Funktion einer Wärmepumpe	10
Abbildung 5:	Leistungszahl ϵ als Funktion der Temperaturdifferenz ΔT zwischen Verdampfer und Verflüssiger ($T_0 = 273 \text{ K}$)	10
Abbildung 6:	Mögliche Anwendungen von Grubenwassergeothermieanlagen	12
Abbildung 7:	Schema Grubenwassernutzung des Besucherbergwerks Ehrenfriedersdorf (copyright: TUBA Freiberg, Institut für technische Thermodynamik)	13
Abbildung 8:	Schema einer mitteltiefen Erdwärmesonde	14
Abbildung 9:	Nutzungsmöglichkeiten tiefer Geothermie	15
Abbildung 1-1:	Schema Erdwärmesonde	18
Abbildung 1-2:	Schema erdberührte Betonbauteile	19
Abbildung 1-3:	Schema Verfahrensablauf Genehmigungsprozess einer Erdwärmesondenanlage	25
Abbildung 1-4:	Eingebaute Erdwärmesonde	28
Abbildung 2-1:	Schema Erdwärmekollektor	34
Abbildung 3-1:	Schema Grundwasserwärmepumpenanlage mit Entnahme- und Einleitbrunnen	44
Abbildung 3-2:	Schema Verfahrensablauf Genehmigungsprozess einer Grundwasserwärmepumpenanlage	49
Tabellenverzeichnis		
Tabelle 1:	Übersicht der unteren Wasserbehörden	8
Anlagenverzeichnis		
Anlage 1-1:	Checkliste Erdwärmesondenanlagen für Bauherren	30
Anlage 1-2:	Anzeige von Erdaufschlüssen gemäß § 41 SächsWG i. V. m. § 49 WHG und Antrag auf wasserrechtliche Erlaubnis zur Gewässerbenutzung nach § 8 Absatz 1 i. V. m. § 9 Absatz 2 Nummer 2 WHG für Erdwärmesonden	31
Anlage 3-1:	Checkliste Grundwasserwärmepumpenanlagen	
Anlage 3-2:	Bau und Betrieb einer Grundwasserwärmepumpenanlage – Formular Teil 1: Bohranzeige nach § 49 Absatz 1 WHG und Anzeige eines Pump- und Schluckversuchs	57
Anlage 3-3:	Bau und Betrieb einer Grundwasserwärmepumpenanlage – Formular Teil 2: Antrag auf wasserrechtliche Erlaubnis nach § 8 Absatz 1 in Verbindung mit § 9 Absatz 1 Nummer 4 und 5 WGH für Bau und Betrieb einer Grundwasserwärmepumpenanlage	59
Anlage 4:	Merkblatt des Sächsischen Oberbergamtes für das Abteufen von Bohrungen nach § 127 BBergG, die im Zusammenhang mit der Nutzung von Geothermie und anderen Nutzungen hergestellt werden	62

Abkürzungsv	Abkürzungsverzeichnis		
а	Jahr		
AO	Abgabeordnung		
BAfA	Bundesamt für Wirtschaft und Ausfuhrkontrolle		
β	Jahresarbeitszahl		
CO ₂	Kohlenstoffdioxid		
СОР	"coefficient of performance" Leitungszahl Wärmepumpe		
DIN	Deutsche Institut für Normung e. V.		
DVGW	Deutscher Verein des Gas- und Wasserfaches e. V.		
EN	Europäische Norm		
EU	Europäische Union		
e. V.	eingeschriebener Verein		
٤	Leistungszahl		
°C	Grad Celsius		
GOK	Geländeoberkante		
GWL	Grundwasserleiter		
FCKW	Fluor-Chlor-Kohlenwasserstoffe		
h	Stunden		
HN	Höhennull		
ISO	Organization for Standardization		
JAZ	Jahresarbeitszahl		
h	Stunde		
LAWA	Bund/Länder-Arbeitsgemeinschaft Wasser		
LfULG	Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie		
K	Kelvin		
kf-Wert	Durchlässigkeitsbeiwert, der den Grad der Versickerungsfähigkeit (Wasserdurchlässigkeit) von Böden beschreibt		

kW (therm, elektr)	Kilowatt (thermisch, elektrisch)
kWh (therm, elektr)	Kilowattstunden (thermisch, elektrisch)
1	Liter
M:	Maßstab:
m (mm, cm, km)	Meter (Millimeter, Zentimeter, Kilometer)
m ü. NHN	Meter über Normalhöhennull
m u. NHN	Meter unter Normalhöhennull
NHN	Normalhöhennull
Nr.	Nummer
PE	Polyethylen
pH-Wert	Abkürzung für Potenzial des Wasserstoffs (Wasserstoffionen-Aktivität), lateinisch: pondus hydrogenii
PLZ	Postleitzahl
PP	Polypropylen
0/0	Prozent
S.	Seite
S	Sekunde
SMEKUL	Sächsisches Staatsministerium für Energie, Klimaschutz, Umwelt und Landwirtschaft
SOBA	Sächsisches Oberbergamt
T (ΔT, T ₀)	Temperatur (Temperaturdifferenz, T = 0 K (absoluten Nullpunkt))
TK	Topographische Karte
TRT	Thermal Response Test
VDI	Verein Deutscher Ingenieure
W (MW)	Watt (Megawatt)
WGK	Wassergefährdungsklasse

Literaturverzeichnis

Richtlinie (EU) 2018/2001 des Europäischen Parlaments und des Rates (RED II Richtlinie) vom 11. Dezember 2018 zur Förderung der Nutzung von Energie aus erneuerbaren Quellen (Neufassung) (Amtsblatt der EU L 328 vom 21. Dezember 2018, S. 82)

Verordnung (EU) 2022/2577 des Rates vom 22. Dezember 2022 zur Festlegung eines Rahmens für einen beschleunigten Ausbau der Nutzung erneuerbarer Energien (ABI. L 335 vom 29.12.2022, S. 36) – derzeit bis 30. Juni 2024

Abgabenordnung (AO) in der Fassung der Bekanntmachung vom 1. Oktober 2002 (BGBI. I S. 3866; 2003 I S. 61), die zuletzt durch Artikel 33 des Gesetzes vom 5. Oktober 2021 (BGBI. I S. 4607) geändert worden ist

Bundesberggesetz (BBergG) vom 13. August 1980 (BGBI. I S. 1310), das zuletzt durch Artikel 256 der Verordnung vom 19. Juni 2020 (BGBI. I S. 1328) geändert worden ist

Erneuerbare-Energien-Gesetz vom 21. Juli 2014 (BGBI. I S. 1066), das zuletzt durch Artikel 6 des Gesetzes vom 20. Dezember 2022 (BGBI. I S. 2512) geändert worden ist (EEG (2023))

Gesetz über die Sicherstellung von Leistungen auf dem Gebiet der Wasserwirtschaft für Zwecke der Verteidigung (Wassersicherstellungsgesetz – WasSiG) vom 24. August 1965 (BGBI. I S. 1225, 1817), das zuletzt durch Artikel 251 der Verordnung vom 19. Juni 2020 (BGBI. I S. 1328) geändert worden ist

Gesetz zur Ordnung des Handwerks (Handwerksordnung – HwO), in der Fassung der Bekanntmachung vom 24. September 1998 (BGBI. I S. 3074; 2006 I S. 2095), die zuletzt durch Artikel 3 des Gesetzes vom 20. Juli 2022 (BGBI. I S. 1174) geändert worden ist

Gesetz zur Ordnung des Wasserhaushaltes (Wasserhaushaltsgesetz – WHG), amtliche Fassung vom 31. Juli 2009 (BGBI. I S. 2585), das zuletzt durch Artikel 2 des Gesetzes vom 18. August 2021 (BGBI. I S. 3901) geändert worden ist

Gesetz zur staatlichen geologischen Landesaufnahme sowie zur Übermittlung, Sicherung und öffentlichen Bereitstellung geologischer Daten und zur Zurverfügungstellung geologischer Daten zur Erfüllung öffentlicher Aufgaben (Geologiedatengesetz – GeolDG) vom 19. Juni 2020 (BGBI. I S. 1387) (ersetzt G 750-1 vom 4. Dezember 1934 I 1223 (LagerstG) und V 750-1-1 vom 14. Dezember 1934 I 1261 (LagerstGDV))

Gesetz zur Suche und Auswahl eines Standortes für ein Endlager für hochradioaktive Abfälle (Standortauswahlgesetz – StandAG) vom 5. Mai 2017 (BGBI. I S. 1074), das zuletzt durch Artikel 1 des Gesetzes vom 7. Dezember 2020 (BGBI. I S. 2760) geändert worden ist

Gesetz zur Umsetzung von Vorgaben der Richtlinie (EU) 2018/2001 des Europäischen Parlaments und des Rates vom 11. Dezember 2018 zur Förderung der Nutzung von Energie aus erneuerbaren Quellen (Neufassung) für Zulassungsverfahren nach dem Bundes-Immissionsschutzgesetz, dem Wasserhaushaltsgesetz und dem Bundeswasserstraßengesetz vom 18. August 2021 (BGBI. I S. 3901)

Grundgesetz für die Bundesrepublik Deutschland (GG) in der im Bundesgesetzblatt Teil III, Gliederungsnummer 100-1, veröffentlichten vereinigten Fassung, das zuletzt durch Artikel 1 des Gesetzes vom 28. Juni 2022 (BGBI. I S.968) geändert worden ist

Polizeiverordnung des Sächsischen Staatsministeriums für Wirtschaft, Arbeit und Verkehr über die Abwehr von Gefahren aus unterirdischen Hohlräumen sowie Halden und Restlöchern (Sächsische Hohlraumverordnung – SächsHohlrVO) vom 20. Februar 2012 (SächsGVBI. S. 191)

Sächsische Anlagenverordnung – SächsVAwS), vom 18. April 2000 (SächsGVBI. S. 223), die zuletzt durch Artikel 13 des Gesetzes vom 12. Juli 2013 (SächsGVBI. S. 503) geändert worden ist

Sächsisches Wassergesetz (SächsWG) vom 12. Juli 2013 (SächsGVBI. S. 503), das zuletzt durch Artikel 2 des Gesetzes vom 8. Juli 2016 (SächsGVBI. S. 287) geändert worden ist

Verordnung über Anlagen zum Umgang mit wassergefährdenden Stoffen (AwSV) vom 18. April 2017 (BGBI. I S. 905), die zuletzt durch Artikel 256 der Verordnung vom 19. Juni 2020 (BGBI. I S. 1328) geändert worden ist

Verordnung über Stoffe, die die Ozonschicht schädigen (Chemikalien-Ozonschichtverordnung – ChemOzonSchichtV) in der Fassung der Bekanntmachung vom 15. Februar 2012 (BGBI. I S. 409), die zuletzt durch Artikel 298 der Verordnung vom 19. Juni 2020 (BGBI. I S. 1328) geändert worden

Deutscher Bundestag Drucksache (BT-Drs.) 20/1630 vom 2. Mai 2022, Gesetzentwurf der Bundesregierung, Entwurf eines Gesetzes zu Sofortmaßnahmen für einen beschleunigten Ausbau der erneuerbaren Energien und weiteren Maßnahmen im Stromsektor

Richtlinien, Regelwerke

ATV DIN 18299: 2019-09: VOB Vergabe- und Vertragsordnung für Bauleistungen – Teil C: Allgemeine Technische Vertragsbedingungen für Bauleistungen (ATV) – Allgemeine Regelungen für Bauarbeiten jeder Art, Deutsches Institut für Normung e. V., Berlin

ATV DIN 18301: 2019-09: VOB Vergabe- und Vertragsordnung für Bauleistungen – Teil C: Allgemeine Technische Vertragsbedingungen für Bauleistungen (ATV) – Bohrarbeiten, Deutsches Institut für Normung e. V., Berlin

ATV DIN 18302: 2019-09: VOB Vergabe- und Vertragsordnung für Bauleistungen – Teil C: Allgemeine Technische Vertragsbedingungen für Bauleistungen (ATV) – Arbeiten zum Ausbau von Bohrungen, Deutsches Institut für Normung e. V., Berlin

DIN 4023: 2006-02: Geotechnische Erkundung und Untersuchung – Zeichnerische Darstellung der Ergebnisse von Bohrungen und sonstigen direkten Aufschlüssen, Deutsches Institut für Normung e. V., Berlin

DIN 4124: 2012-01: Baugruben und Gräben – Böschungen, Verbau, Arbeitsraumbreiten, Deutsches Institut für Normung e. V., Berlin

DIN 4943: 2013-09: Zeichnerische Darstellung und Dokumentation von Brunnen und Grundwassermessstellen, Deutsches Institut für Normung e. V., Berlin

DIN 8074: 2011-12: Rohre aus Polyethylen (PE) – PE 80, PE 100 – Maße, Deutsches Institut für Normung e. V., Berlin

DIN 8075: 2018-08: Rohre aus Polyethylen (PE) – PE 80, PE 100 – Allgemeine Güteanforderungen, Prüfungen, Deutsches Institut für Normung e. V., Berlin

DIN 8901: 2002-12: Kälteanlagen und Wärmepumpen – Schutz von Erdreich, Grund- und Oberflächenwasser – Sicherheitstechnische und umweltrelevante Anforderungen und Prüfung, Deutsches Institut für Normung e. V., Berlin

DIN 18130-2: 2015-08: Baugrund, Untersuchung von Bodenproben – Bestimmung des Wasserdurchlässigkeitsbeiwerts – Teil 2: Feldversuche, Deutsches Institut für Normung e. V., Berlin

DIN 18920: 2014-07: Vegetationstechnik im Landschaftsbau – Schutz von Bäumen, Pflanzenbeständen und Vegetationsflächen bei Baumaßnahmen, Deutsches Institut für Normung e. V., Berlin

DIN EN 1610: 2015-12: Einbau und Prüfung von Abwasserleitungen und -kanälen; Deutsche Fassung EN 1610:2015, Deutsches Institut für Normung e. V., Berlin

DIN EN 1610 Berichtigung 1: 2016-09: Einbau und Prüfung von Abwasserleitungen und -kanälen; Deutsche Fassung EN 1610:2015, Berichtigung zu DIN EN 1610:2015-12, Deutsches Institut für Normung e. V., Berlin

DIN EN 12831-1: 2017-09: Energetische Bewertung von Gebäuden – Verfahren zur Berechnung der Norm-Heizlast – Teil 1: Raumheizlast, Modul M3-3; Deutsche Fassung EN 12831-1:2017, Deutsches Institut für Normung e. V., Berlin

DIN EN ISO 14688-1: 2020-11: Geotechnische Erkundung und Untersuchung – Benennung, Beschreibung und Klassifizierung von Boden – Teil 1: Benennung und Beschreibung (ISO 14688-1:2017); Deutsche Fassung EN ISO 14688-1:2018, Deutsches Institut für Normung e. V., Berlin

DIN EN ISO 14688-2: 2020-11: Geotechnische Erkundung und Untersuchung – Benennung, Beschreibung und Klassifizierung von Boden – Teil 2: Grundlagen für Bodenklassifizierungen (ISO 14688-2:2017); Deutsche Fassung EN ISO 14688-2:2018, Deutsches Institut für Normung e. V., Berlin

DIN EN ISO 14689: 2018-05: Geotechnische Erkundung und Untersuchung – Benennung, Beschreibung und Klassifizierung von Fels (ISO 14689:2017); Deutsche Fassung EN ISO 14689:2018, Deutsches Institut für Normung e. V., Berlin

DIN EN ISO 14689: 2018-05: Geotechnische Erkundung und Untersuchung – Benennung, Beschreibung und Klassifizierung von Fels (ISO 14689:2017); Deutsche Fassung EN ISO 14689:2018, Deutsches Institut für Normung e. V., Berlin

DIN EN ISO 22475-1 2007-01: Geotechnische Erkundung und Untersuchung – Probenentnahmeverfahren und Grundwassermessungen – Teil 1: Technische Grundlagen der Ausführung (ISO 22475-1:2006); Deutsche Fassung EN ISO 22475-1:2006, Deutsches Institut für Normung e. V., Berlin

DIN EN ISO/IEC 17025: 2018-03, Deutsches Institut für Normung e. V.: Allgemeine Anforderungen an die Kompetenz von Prüf- und Kalibrierlaboratorien (ISO/IEC 17025:2017); Deutsche und Englische Fassung EN ISO/IEC 17025:2017, Deutsches Institut für Normung e. V., Berlin

DVGW DVS 2207-1: 2015-08: Schweißen von thermoplastischen Kunststoffen – Heizelementschweißen von Rohren, Rohrleitungsteilen und Tafeln aus PE; Themengebiet: Fügen von Kunststoffen, Deutsche Vereinigung des Gas- und Wasserfaches e. V., Bonn

DVGW W 101 (A): 2021–03: Richtlinien für Trinkwasserschutzgebiete; Teil 1: Schutzgebiete für Grundwasser – Arbeitsblatt, Deutsche Vereinigung des Gas- und Wasserfaches e. V., Bonn

DVGW W 101 Korrektur: 2021–04: Korrektur zu DVGW-Arbeitsblatt W 101 "Richtlinien für Trinkwasserschutzgebiete; Teil 1: Schutzgebiete für Grundwasser", Ausgabe März 2021, Deutsche Vereinigung des Gas- und Wasserfaches e. V., Bonn

DVGW W 110 (A): 2019-05: Bohrlochgeophysik in Bohrungen, Brunnen und Grundwassermessstellen – Arbeitsblatt, Deutsche Vereinigung des Gas- und Wasserfaches e. V., Bonn

DVGW W 111 (A): 2015-03: Pumpversuche bei der Wassererschließung – Arbeitsblatt, Deutsche Vereinigung des Gas- und Wasserfaches e. V., Bonn

DVGW W 114 (M): 1989-06: Gewinnung und Entnahme von Gesteinsproben bei Bohrarbeiten zur Grundwassererschließung – Merkblatt, Deutsche Vereinigung des Gas- und Wasserfaches e. V., Bonn

DVGW W 115 (A): 2008-07: Bohrungen zur Erkundung, Gewinnung und Beobachtung von Grundwasser – Arbeitsblatt, Deutsche Vereinigung des Gas- und Wasserfaches e. V., Bonn

DVGW W 116 (A): 2019–12: Verwendung von Spülungszusätzen in Bohrspülungen bei Bohrarbeiten im Grundwassermessstellenund Brunnenbau – Arbeitsblatt, Deutsche Vereinigung des Gasund Wasserfaches e. V., Bonn

DVGW W 120 (A): 2005-12: Qualifikationsanforderungen für die Bereiche Bohrtechnik, Brunnenbau und Brunnenregenerierung – Arbeitsblatt; Vereinigung des Gas- und Wasserfaches e. V., Bonn

DVGW W 120-1 (A): 2012-08: Qualifikationsanforderungen für die Bereiche Bohrtechnik, Brunnenbau, -regenerierung, -sanierung und -rückbau – Arbeitsblatt, Deutsche Vereinigung des Gas- und Wasserfaches e. V., Bonn

DVGW W 120-2 (A): 2013-07: Qualifikationsanforderungen für die Bereiche Bohrtechnik und oberflächennahe Geothermie (Erdwärmesonden) – Arbeitsblatt, Deutsche Vereinigung des Gas- und Wasserfaches e. V., Bonn

DVGW W 123 (A): 2001-09: Bau und Ausbau von Vertikalfilterbrunnen – Arbeitsblatt, Deutsche Vereinigung des Gas- und Wasserfaches e. V., Bonn

DVGW W 135 (A): 2018-12: Sanierung und Rückbau von Brunnen, Grundwassermessstellen und Bohrungen – Arbeitsblatt, Deutsche Vereinigung des Gas- und Wasserfaches e. V., Bonn

DVGW W 400-2 (A): 2004-09: Technische Regeln Wasserverteilungsanlagen (TRWV); Teil 2: Bau und Prüfung – Arbeitsblatt, Deutsche Vereinigung des Gas- und Wasserfaches e. V., Bonn

DVS 2207: Schweißen von thermoplastischen Kunststoffen – mehrere Richtlinien, Themengebiet: Fügen von Kunststoffen, Deutscher Verband für Schweißen und verwandte Verfahren e. V.

DVS 2208–1: 2019–09: Schweißen von thermoplastischen Kunststoffen Maschinen und Geräte für das Heizelementschweißen von Rohren, Rohrleitungsteilen und Tafeln – Richtlinie, Themengebiet: Fügen von Kunststoffen, Deutscher Verband für Schweißen und verwandte Verfahren e. V.

LAWA 2018: Empfehlungen der LAWA für wasserwirtschaftliche Anforderungen an Erdwärmesonden und -kollektoren, 2018

RAS-LP 4: 1999: Richtlinie für die Anlage von Straßen, Teil: Landschaftspflege, Abschnitt 4: Schutz von Bäumen, Vegetationsbeständen und Tieren bei Baumaßnahmen, Technische Regelwerke FGSV-Nr.: 293/4, Forschungsgesellschaft für Straßen- und Verkehrswesen, Köln

Richtlinie Erlaubniserteilung bergfreier Bodenschätze: Richtlinie des Sächsischen Oberbergamtes für die Erteilung einer Erlaubnis zur Aufsuchung sowie einer Bewilligung zur Gewinnung bergfreier Bodenschätze vom 4. März 2004, Freiberg (SächsABI. S. 314)

VDI 4640: Thermische Nutzung des Untergrunds – Richtlinien Blatt 1 bis Blatt 5, Verein Deutscher Ingenieure – VDI-Gesellschaft Energie und Umwelt, Düsseldorf

VDI 4640 Blatt 1: 2010-06: Thermische Nutzung des Untergrunds – Grundlagen, Genehmigungen, Umweltaspekte – Richtlinie, Verein Deutscher Ingenieure – VDI-Gesellschaft Energie und Umwelt, Düsseldorf

VDI 4640 Blatt 2: 2019-06: Thermische Nutzung des Untergrunds – Erdgekoppelte Wärmepumpenanlagen – Richtlinie, Verein Deutscher Ingenieure – VDI-Gesellschaft Energie und Umwelt, Düsseldorf

VDI 4640 Blatt 4: 2004-09: Thermische Nutzung des Untergrunds – Direkte Nutzungen – Richtlinie, Verein Deutscher Ingenieure – VDI-Gesellschaft Energie und Umwelt, Düsseldorf

VDI 4640 Blatt 5: 2020-07: Thermische Nutzung des Untergrunds – Thermal Response Test (TRT) – Richtlinie, Verein Deutscher Ingenieure – VDI-Gesellschaft Energie und Umwelt, Düsseldorf

Literaturverzeichnis Kollektoren

BW 2008: Umweltministerium Baden-Württemberg: Leitfaden zur Nutzung von Erdwärme mit Erdwärmekollektoren. Stuttgart, 2008

Landesamt für Bergbau, Energie und Geologie: GeoBerichte 24, Leitfaden der Erdwärmenutzung in Niedersachsen, Rechtliche und technische Grundlagen, Hannover, 2012; Änderungsfassung, 2017

LLUR SH 2011: Landesamt für Landwirtschaft, Umwelt und ländliche Räume Schleswig-Holstein: Leitfaden zur geothermischen Nutzung des oberflächennahen Untergrundes, Erdwärmekollektoren – Erdwärmesonden, Empfehlungen für Planer, Ingenieure und Bauherren, Flintbek, 2011

Literaturverzeichnis Grundwasserwärmepumpen

Ad-Hoc-Arbeitsgruppe Geologie 2010: Fachbericht zu bisher bekannten Auswirkungen geothermischer Vorhaben in den Bundesländern. – Informationen aus den Bund-Länderarbeitsgruppen der Staatlichen Geologischen Dienste, 2010, Wiesbaden

Bayerisches Staatsministerium für Umwelt, Gesundheit und Verbraucherschutz (STMUGV): Oberflächennahe Geothermie – Heizen und Kühlen mit Energie aus dem Untergrund. Ein Überblick für Bauherren, Planer und Fachhandwerker in Bayern. 2007, München

Landesumweltamt Nordrhein-Westfalen (LUA NRW): Wasser-wirtschaftliche Anforderungen an die Nutzung von oberflächennaher Erdwärme. – Merkblätter, Bd. 48, 2004, Essen

Umweltministerium Baden-Württemberg: Leitfaden zur Nutzung von Erdwärme mit Grundwasserwärmepumpen, 2009, Stuttgart

Berger, Hans-Jürgen; Felix, Manfred; Görne, Sascha; Koch, Erhard, Krentz, Ottomar; Förster, Andrea; Förster, Hans-Jürgen; Konietzky, Heinz; Lunow, Christian; Walter, Katrin; Schütz, Holger; Stanek, Klaus; Wagner, Steffen (2011): Tiefengeothermie Sachsen: 1. Arbeitsetappe 09/2009-07/2010 – Schriftenreihe des LfULG, Heft 9/2011, Dresden, https://publikationen.sachsen.de/bdb/ artikel/15145

Borg, Anna; Bauer, Mathias Jürgen (2017): TIGER – Kommunikationskonzept Tiefe Geothermie, essentials, 2017, DOI 10.1007/978-3-658-18500-8_3

Gérard et al. 2006: Gérard A., Genter A., Kohl T., Lutz P., Rose P. & Rummel F.: The deep EGS (Enhanced Geothermal System) project at Soultz-sous-Forêts (Alsace, France), 2006, Geothermics 35: p. 473-483

Grab, Thomas; Storch, Thomas; Groß, Ulrich (2018): Energetische Nutzung von Grubenwasser aus gefluteten Bergwerken, Institut für Wärmetechnik und Thermodynamik, Lehrstuhl Technische Thermodynamik, TU Bergakademie Freiberg, in Springer-Verlag GmbH Deutschland, Teil 17 von Springer Nature 2018, M. Bauer et alii, Handbuch Oberflächennahe Geothermie (S. 523–586), https://doi.org/10.1007/978-3-662-50307-2_17

Lange, Thomas; Boeck, Helmut-Juri; Grafe, Friedemann; Tunger, Bernd; Wilsnack, Thomas (2005): Bestandsaufnahme und nutzungsorientierte Analyse des tiefengeothermischen Potentials des Freistaats Sachsen und seiner unmittelbaren Randgebiete; Abschlussbericht, 30.11.2005, Chemnitz/Freiberg

LANUV 2018: Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen: Potenzialstudie Warmes Grubenwasser, LANUV-Fachbericht 90, 2018, Recklinghausen

Herausgeber:

Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie (LfULG)

Pillnitzer Platz 3, 01326 Dresden Telefon: +49 351 2612-0 Telefax: +49 351 2612-1099

E-Mail: poststelle.lfulg@smekul.sachsen.de

www.lfulg.sachsen.de

Redaktion:

Karina Hofmann

LfULG, Abteilung Geologie, Referat Rohstoffgeologie

Telefon: + 49 3731 294-1409 Telefax: + 49 3731 294-1011

E-Mail: karina.hofmann@smekul.sachsen.de

Autoren:

Karina Hofmann

Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie (LfULG)

Abteilung Geologie, Referat Rohstoffgeologie

Halsbrücker Straße 31a, 09599 Freiberg

Telefon: + 49 3731 294-1409

Telefax: + 49 3731 294-1011

E-Mail: karina.hofmann@smekul.sachsen.de Susanna Börner, Annett Brünner, Annett Schröter

Sächsisches Staatsministerium für Energie, Klimaschutz, Umwelt und Landwirtschaft,

Abteilung 4. Wasser und technischer Umweltschutz

Fotos und Grafiken:

Titelfoto Kapitel III.1: Erdwärmebohrung, LfULG, K. Hofmann Titelfoto Kapitel III.2: Erdwärmekollektoren, shutterstock Foto

Gestaltung und Satz:

Serviceplan Make GmbH & Co. KG

Druck:

Braun & Sohn Druckerei GmbH & Co. KG

Redaktionsschluss:

16.01.2023

Auflage:

500 Exemplare, 1. Auflage

Bezua:

Diese Druckschrift kann kostenfrei bezogen werden bei:

Zentraler Broschürenversand der Sächsischen Staatsregierung

Hammerweg 30, 01127 Dresden

Telefon: +49 351 2103-671 oder -672

Telefax: +49 351 2103-681 E-Mail: publikationen@sachsen.de

www.publikationen.sachsen.de

Verteilerhinweis

Diese Informationsschrift wird von der Sächsischen Staatsregierung im Rahmen ihrer verfassungsmäßigen Verpflichtung zur Information der Öffentlichkeit herausgegeben. Sie darf weder von Parteien noch von deren Kandidaten oder Helfern im Zeitraum von sechs Monaten vor einer Wahl zum Zwecke der Wahlwerbung verwendet werden. Dies gilt für alle Wahlen.

Missbräuchlich ist insbesondere die Verteilung auf Wahlveranstaltungen, an Informationsständen der Parteien sowie das Einlegen, Aufdrucken oder Aufkleben parteipolitischer Informationen oder Werbemittel. Untersagt ist auch die Weitergabe an Dritte zur Verwendung bei der Wahlwerbung. Auch ohne zeitlichen Bezug zu einer bevorstehenden Wahl darf die vorliegende Druckschrift nicht so verwendet werden, dass dies als Parteinahme des Herausgebers zu Gunsten einzelner politischer Gruppen verstanden werden könnte.

Diese Beschränkungen gelten unabhängig vom Vertriebsweg, also unabhängig davon, auf welchem Wege und in welcher Anzahl diese Informationsschrift dem Empfänger zugegangen ist. Erlaubt ist jedoch den Parteien, diese Informationsschrift zur Unterrichtung ihrer Mitglieder zu verwenden.

Täglich für ein gütes Leben.

www.lfulg.sachsen.de